

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-106317-2

Client Project/Site: Ford LTP Livonia MI - E203631

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Moke Delyour

Authorized for release by: 1/17/2019 3:36:43 PM

Michael DelMonico, Project Manager I (330)497-9396

michael.delmonico@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

4

5

9

10

12

13

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Not Calculated

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 240-106317-2

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits

Glossary

NC

ND

PQL

QC

RER RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

4

9

10

12

13

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Job ID: 240-106317-2

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-106317-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 12/27/2018 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MW-94S-122118 (240-106317-3) and DUP-02 (240-106317-6) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 12/31/2018.

1,2-Dichloroethane-d4 (Surr) failed the surrogate recovery criteria high for MW-94S-122118 (240-106317-3), DUP-02 (240-106317-6), MB 240-362467/7, LCS 240-362467/4, 240-106318-E-2 MS and 240-106318-F-2 MSD. Refer to the QC report for details.

Surrogate recovery for the following samples was outside the upper control limit. This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed: MW-94S-122118 (240-106317-3), DUP-02 (240-106317-6), (LCS 240-362467/4) and (MB 240-362467/7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Samples MW-94S-122118 (240-106317-3) and DUP-02 (240-106317-6) were analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 01/02/2019.

TestAmerica Job ID: 240-106317-2

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Job ID: 240-106317-2 (Continued)

Laboratory: TestAmerica Canton (Continued)

1,4-Dioxane exceeded the RPD limit for the MSD of sample 240-106318-2 in batch 240-362602. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

E

6

8

9

10

13

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

7

8

46

11

12

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-106317-3	MW-94S-122118	Water	12/21/18 13:00	12/27/18 08:30
240-106317-6	DUP-02	Water	12/21/18 00:00	12/27/18 08:30

4

Q

9

11

13

Detection Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Client Sample ID: MW-94S-122118 Lab Sample ID: 240-106317-3

Analyte	Result Qualifier	RL	MDL Unit		thod Prep Type
cis-1,2-Dichloroethene	0.16 J	1.0	0.16 ug/L	1 826	0B Total/NA

Client Sample ID: DUP-02 Lab Sample ID: 240-106317-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	0.18 J	1.0	0.16 ug/L	1 8260B	Total/NA

4

5

6

_

9

10

12

13

1/

Client Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: MW-94S-122118

TestAmerica Job ID: 240-106317-2

Lab Sample ID: 240-106317-3

Matrix: Water

Date Collected: 12/21/18 13:00 Date Received: 12/27/18 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			01/02/19 15:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		63 - 125			•		01/02/19 15:42	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 17:46	1
cis-1,2-Dichloroethene	0.16	J	1.0	0.16	ug/L			12/31/18 17:46	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			12/31/18 17:46	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 17:46	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			12/31/18 17:46	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			12/31/18 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	141	X	70 - 121			•		12/31/18 17:46	1
4-Bromofluorobenzene (Surr)	95		59 - 120					12/31/18 17:46	1
Toluene-d8 (Surr)	99		70 - 123					12/31/18 17:46	1
Dibromofluoromethane (Surr)	102		75 - 128					12/31/18 17:46	1

Client Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Lab Sample ID: 240-106317-6

Matrix: Water

Client Sample ID: DUP-02 Date Collected: 12/21/18 00:00 Date Received: 12/27/18 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			01/02/19 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		63 - 125					01/02/19 16:59	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 18:58	1
cis-1,2-Dichloroethene	0.18	J	1.0	0.16	ug/L			12/31/18 18:58	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			12/31/18 18:58	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 18:58	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			12/31/18 18:58	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			12/31/18 18:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	143	X	70 - 121			•		12/31/18 18:58	1
4-Bromofluorobenzene (Surr)	95		59 - 120					12/31/18 18:58	1
Toluene-d8 (Surr)	100		70 - 123					12/31/18 18:58	1
Dibromofluoromethane (Surr)	101		75 - 128					12/31/18 18:58	1

3

6

8

9

11

Surrogate Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)
240-106317-3	MW-94S-122118	141 X	95	99	102
240-106317-6	DUP-02	143 X	95	100	101
240-106318-E-2 MS	Matrix Spike	131 X	112	106	93
240-106318-F-2 MSD	Matrix Spike Duplicate	126 X	110	104	92
LCS 240-362467/4	Lab Control Sample	126 X	113	106	92
MB 240-362467/7	Method Blank	135 X	94	100	98

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		DCA	
Lab Sample ID	Client Sample ID	(63-125)	
240-106317-3	MW-94S-122118	91	
240-106317-6	DUP-02	77	
240-106318-I-2 MS	Matrix Spike	104	
240-106318-I-2 MSD	Matrix Spike Duplicate	102	
LCS 240-362602/4	Lab Control Sample	99	
MB 240-362602/5	Method Blank	99	

DCA = 1,2-Dichloroethane-d4 (Surr)

TestAmerica Canton

Page 11 of 19

6

2

4

6

8

9

TestAmerica Job ID: 240-106317-2

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-362467/7

Matrix: Water

Analysis Batch: 362467

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 13:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			12/31/18 13:16	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			12/31/18 13:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			12/31/18 13:16	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			12/31/18 13:16	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			12/31/18 13:16	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	135	X	70 - 121		12/31/18 13:16	1
4-Bromofluorobenzene (Surr)	94		59 - 120		12/31/18 13:16	1
Toluene-d8 (Surr)	100		70 - 123		12/31/18 13:16	1
Dibromofluoromethane (Surr)	98		75 - 128		12/31/18 13:16	1

Lab Sample ID: LCS 240-362467/4

Matrix: Water

Analysis Batch: 362467

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
10.0	9.21		ug/L		92	65 - 139
10.0	9.22		ug/L		92	76 - 128
10.0	8.44		ug/L		84	74 - 130
10.0	9.44		ug/L		94	78 - 133
10.0	8.04		ug/L		80	76 - 125
10.0	12.7		ug/L		127	58 - 143
	Added 10.0 10.0 10.0 10.0 10.0 10.0	Added Result 10.0 9.21 10.0 9.22 10.0 8.44 10.0 9.44 10.0 8.04	Added Result Qualifier 10.0 9.21 10.0 9.22 10.0 8.44 10.0 9.44 10.0 8.04	Added Result Qualifier Unit 10.0 9.21 ug/L 10.0 9.22 ug/L 10.0 8.44 ug/L 10.0 9.44 ug/L 10.0 8.04 ug/L	Added Result Qualifier Unit D 10.0 9.21 ug/L ug/L 10.0 9.22 ug/L ug/L 10.0 8.44 ug/L ug/L 10.0 9.44 ug/L ug/L 10.0 8.04 ug/L	Added Result Qualifier Unit D %Rec 10.0 9.21 ug/L 92 10.0 9.22 ug/L 92 10.0 8.44 ug/L 84 10.0 9.44 ug/L 94 10.0 8.04 ug/L 80

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	126	X	70 - 121
4-Bromofluorobenzene (Surr)	113		59 - 120
Toluene-d8 (Surr)	106		70 - 123
Dibromofluoromethane (Surr)	92		75 - 128

Lab Sample ID: 24

Matrix: Water

Analysis Batch: 362467

240-106318-E-2 MS	Client Sample ID: Matrix Spike
	Prep Type: Total/NA
202407	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	10.0	10.0		ug/L		100	53 - 140	
cis-1,2-Dichloroethene	1.0	U	10.0	10.1		ug/L		101	64 - 130	
Tetrachloroethene	1.0	U	10.0	8.96		ug/L		90	51 ₋ 136	
trans-1,2-Dichloroethene	1.0	U	10.0	10.2		ug/L		102	68 - 133	
Trichloroethene	1.0	U	10.0	8.42		ug/L		84	55 - 131	
Vinyl chloride	1.0	U	10.0	13.8		ug/L		138	43 - 154	

MS	MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	131	X	70 - 121
4-Bromofluorobenzene (Surr)	112		59 - 120
Toluene-d8 (Surr)	106		70 - 123

TestAmerica Canton

1/17/2019

Page 12 of 19

TestAmerica Job ID: 240-106317-2

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Project/Site: Ford LTP Livonia MI - E203631

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-106318-E-2 MS

Matrix: Water

Analysis Batch: 362467

Client: ARCADIS U.S., Inc.

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 75 - 128 93

Lab Sample ID: 240-106318-F-2 MSD

Matrix: Water

Analysis Batch: 362467

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD **Analyte** Unit %Rec Limit 1,1-Dichloroethene 1.0 U 10.0 10.0 ug/L 100 53 - 140 0 35 cis-1,2-Dichloroethene 1.0 U 10.0 10.0 100 64 - 130 21 ug/L Tetrachloroethene 1.0 U 10.0 8.61 ug/L 86 51 - 136 23 trans-1.2-Dichloroethene 1.0 U 10.0 10.2 102 68 - 133 24 ug/L 0 Trichloroethene 1.0 U 10.0 8.66 ug/L 87 55 - 131 3 23 Vinyl chloride 1.0 U 10.0 13.6 ug/L 136 43 - 154 29

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	126	X	70 - 121
4-Bromofluorobenzene (Surr)	110		59 - 120
Toluene-d8 (Surr)	104		70 - 123
Dibromofluoromethane (Surr)	92		75 - 128

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-362602/5

Matrix: Water

Analysis Batch: 362602

MR MR

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 1,4-Dioxane 0.86 ug/L 01/02/19 11:25 2.0 Ū

MB MB

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 63 - 125 01/02/19 11:25

Lab Sample ID: LCS 240-362602/4

Matrix: Water

Analysis Batch: 362602

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1.4-Dioxane 10.0 10.7 ug/L 107 59 ₋ 131

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 63 - 125

QC Sample Results

Client: ARCADIS U.S., Inc.

Surrogate

Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID: 240-106318-I-2 MS

TestAmerica Job ID: 240-106317-2

Client Sample ID: Matrix Spike

Matrix: Water Prep Type: Total/NA **Analysis Batch: 362602**

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits 1,4-Dioxane 10.0 2.0 U F2 12.2 ug/L 122 52 - 129

> MS MS %Recovery Qualifier Limits

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

63 - 125 1,2-Dichloroethane-d4 (Surr) 104

Lab Sample ID: 240-106318-I-2 MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 362602 MSD MSD RPD Sample Sample Spike %Rec.

Result Qualifier Added Result Qualifier Limits RPD Analyte Unit D %Rec Limit 1,4-Dioxane 2.0 U F2 10.0 10.7 F2 107 52 - 129 14 ug/L

MSD MSD %Recovery Qualifier Surrogate Limits

1,2-Dichloroethane-d4 (Surr) 102 63 - 125

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

GC/MS VOA

Analysis Batch: 362467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106317-3	MW-94S-122118	Total/NA	Water	8260B	
240-106317-6	DUP-02	Total/NA	Water	8260B	
MB 240-362467/7	Method Blank	Total/NA	Water	8260B	
LCS 240-362467/4	Lab Control Sample	Total/NA	Water	8260B	
240-106318-E-2 MS	Matrix Spike	Total/NA	Water	8260B	
240-106318-F-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

Analysis Batch: 362602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106317-3	MW-94S-122118	Total/NA	Water	8260B SIM	
240-106317-6	DUP-02	Total/NA	Water	8260B SIM	
MB 240-362602/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-362602/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-106318-I-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-106318-I-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

TestAmerica Job ID: 240-106317-2

Lab Chronicle

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106317-2

Client Sample ID: MW-94S-122118 Lab Sample ID: 240-106317-3

Date Collected: 12/21/18 13:00 Date Received: 12/27/18 08:30 Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Type Analyst Lab TAL CAN Total/NA Analysis 8260B 362467 12/31/18 17:46 LRW Total/NA 8260B SIM 362602 01/02/19 15:42 SAM TAL CAN Analysis 1

Client Sample ID: DUP-02 Lab Sample ID: 240-106317-6

Date Collected: 12/21/18 00:00 Matrix: Water

Date Received: 12/27/18 08:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	362467	12/31/18 18:58	LRW	TAL CAN
Total/NA	Analysis	8260B SIM		1	362602	01/02/19 16:59	SAM	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

6

Ω

9

11

46

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. TestAmerica Job ID: 240-106317-2

Project/Site: Ford LTP Livonia MI - E203631

Laboratory: TestAmerica Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2927	02-23-19 *
Connecticut	State Program	1	PH-0590	12-31-19
Florida	NELAP	4	E87225	06-30-19
Illinois	NELAP	5	200004	07-31-19
Kansas	NELAP	7	E-10336	04-30-19
Kentucky (UST)	State Program	4	58	02-23-19 *
Kentucky (WW)	State Program	4	98016	12-31-19
Minnesota	NELAP	5	039-999-348	12-31-19 *
Minnesota (Petrofund)	State Program	1	3506	07-31-19
Nevada	State Program	9	OH00048	07-31-19
New Jersey	NELAP	2	OH001	06-30-19
New York	NELAP	2	10975	03-31-19 *
Ohio VAP	State Program	5	CL0024	09-06-19
Oregon	NELAP	10	4062	02-23-19 *
Pennsylvania	NELAP	3	68-00340	08-31-19 *
Texas	NELAP	6	T104704517-18-10	08-31-19
USDA	Federal		P330-16-00404	12-28-19
Virginia	NELAP	3	460175	09-14-19
Washington	State Program	10	C971	01-12-20 *
West Virginia DEP	State Program	3	210	12-31-19

TestAmerica Canton

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

N - None
O - AsNaO2
P - Na2O4S
O - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecahydrate **TestAmerica** Company Rudis U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No: 240-56713-24439.3 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MarSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 1730 85.2 0.88 Page 3 of 13 I - Ice J - DI Water K - EDTA L - EDA Archive For Date/Time: 17 Total Number of containers 0 0 lethod of Shipment Disposal By Lab Analysis Requested C and Other Remarks. > 10/24C Special Instructions/QC Requirements CHIGANShain of Custody Record 3.2 (C3.2 E-Mail: michael.delmonico@testamericainc.com COLC Return To Client Gooler Temperature(s) eceived by: Received by 8560B_SIM - Local Method Lab PM: DelMonico, Michael <u>5</u> 2 3 Company Company / BT=Tissue, A:: Air Preservation Code: Matrix Water W=water, 5=s Water 8785 (C=comp, G=grab) Radiological Sample Type 85 A Stalord 1730 1309 408-860 Sample 300 3 Jan 205 1300 9151 Time 131 Wo#: Cadena #: E203631 Unknown TAT Requested (days): Due Date Requested: 96-61 1-16-61 PO#: MI001454.0003 31-18-C1 5-16-1 3-71-18 Sample Date 81-18-61 コウナ Project #: 24015353 SSOW# Poison B Skin Irritant Deliverable Requested: I, II, III, (V) Other (specify) Phone (330) 497-9396 Fax (330) 497-0772 Custody Seal No. 133119 91160-245-WM 811881 - SOB-MM angela.degrandis@arcadis-us.com Flammable 15+ Possible Hazard Identification 3 Ford LTP Livonia MI - E203631 28550 Cabot Drive Suite 500 Empty Kit Relinquished by: North Canton, OH 44720 Custody Seals Intact: 4101 Shuffel Street NW MW-875-Client Information Sample Identification ulinquished by: SH6-MW Non-Hazard ARCADIS U.S., Inc Angela DeGrandis DOP-O Dal-O nquished by: quished by: State, Zip: MI, 48377 Nov

TestAmerica Canton

Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler IR GUN #36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity —Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? If yes, Questions 12-16 have been checked at the originating laboratory. 12. Were all preserved sample(s) at the correct pH upon receipt?	Form Temp°C mp3, ≥_°C			
Cooler Received on 12-27-18 FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier Receipt After-hours: Drop-off Date/Time Storage Location TestAmerica Cooler # TA Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Lee Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2°C) Observed Cooler Temp. °C Corrected Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Terms. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. See Multiple Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. See Multiple Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. See Multiple Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. See Multiple Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. See Multiple Coo	Form Temp °C mp3, _2 °C Tess No Tess No Tess No Tess No Tess that are not checked for pH by Receiving: VOAs Oil and Grease TOC TOC			
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier Receipt After-hours: Drop-off Date/Time Storage Location TestAmerica Cooler # TA Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Lee Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2°C) Observed Cooler Temp. See Multiple Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? 12. Were all preserved sample(s) at the correct pH upon receipt?	Form Temp °C mp3, _2 °C Tess No Tess No Tess No Tess No Tess that are not checked for pH by Receiving: VOAs Oil and Grease TOC TOC			
Receipt After-hours: Drop-off Date/Time TestAmerica Cooler # TA Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag; None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3. 2 °C Corrected Cooler Temp. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottle labels be reconciled with the COC? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? 12. Were all preserved sample(s) at the correct pH upon receipt?	Form Temp°C mp, Z°C Test No Test No Test No Test No Test No Test that are not checked for pH by Receiving: VOAs Oil and Grease TOC			
TestAmerica Cooler # TA Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler IR GUN#36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? 12. Were all preserved sample(s) at the correct pH upon receipt?	Form Temp°C mp°C mp			
Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Lee Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler IR GUN #36 (CF +0°C) Observed Cooler Temp. 3.2 °C Corrected Cooler Temp. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity — Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? If yes, Questions 12-16 have been checked at the originating laboratory. 12. Were all preserved sample(s) at the correct pH upon receipt?	Form Temp°C mp3, \(\) °C mp3, \(\)			
14. Were air bubbles >6 mm in any VOA vials? Larger than this.	Yes No NA Yes No			
Contacted PM Date by via Verbal Concerning	Yes (No) Voice Mail Other			
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:			
	L RC			
	ved in a broken container.			
Sample(s) were received with bubble >6 mi	in in diameter. (Notify PNI)			
19. SAMPLE PRESERVATION				
	further preserved in the laboratory.			
Sample(s) were Time preserved:Preservative(s) added/Lot number(s):				

CADENA INC.

January 18, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: MI001454.0002/3/4.00002/2B/3B

Client project scope reference: Sample COC only was used to define project analytical requirements.

Laboratory: TestAmerica - North Canton

Laboratory submittal: 106317-2 Sample date: 2018-12-21

Report received by CADENA: 2019-01-17

Initial Data Verification completed by CADENA: 2019-01-18

The following minor QC exceptions or missing information were noted:

SUR - GCMS VOC surrogate recoveries were outside of laboratory control limits biased HIGH for at least 1 surrogate. These client sample results that were detected for the analytical fraction specified should be considered to be estimated and qualified with J flags (non-detect results do not require qualification): GCMS VOC samples -003, -006.

MS/MSD recovery outliers or sample duplicate RPD outliers were not determined using a client sample from this submittal for the test and QC batch noted so qualification was not required based on these sample-specific QC outliers:

GCMS VOC QC batch.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

2 Water sample(s) were analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description						
<	Less than the reported concentration.						
>	Greater than the reported concentration.						
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.						
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.						
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.						
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.						
J-	The result is an estimated quantity, but the result may be biased low.						
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED						
JH	The sample result is considered estimated and is potentially biased high.						
JL	The sample result is considered estimated and is potentially biased low.						
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED						
NJ	Tentatively identified compound with approximated concentration.						
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)						
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.						
U	Indicates that the analyte / compound was analyzed for, but not detected.						
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.						
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.						

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 106317-2

		Sample Name:	MW-94S-122118 2401063173				DUP-02 2401063176				
		Lab Sample ID:									
		Sample Date:	12/21/2018			12/21/2018					
			Report			Valid		Report		Valid	
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	
GC/MS VOC											
<u>OSW-82</u>	<u>:60B</u>										
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		
	cis-1,2-Dichloroethene	156-59-2	0.16	1.0	ug/l	J	0.18	1.0	ug/l	J	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		
OSW-82	<u> 60BBSim</u>										
	1,4-Dioxane	123-91-1	ND	2.0	ug/l		ND	2.0	ug/l		