

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-106462-1

Client Project/Site: Ford LTP Livonia MI - E203631 Revision: 1

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 1/18/2019 11:39:47 AM

Michael DelMonico, Project Manager I (330)497-9396 michael.delmonico@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Quaimer		
U	Indicates the analyte was analyzed for but not detected.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- (
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	12
MDC	Minimum Detectable Concentration (Radiochemistry)	13
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	The define Exception Level () and () Directory	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-106462-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-106462-1

Revision

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Revised 1/18/2019 - Report was revised to report samples separately.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 1/3/2019 8:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Sample MW-91S_122818 (240-106462-2) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 01/08/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-91S_122818 (240-106462-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 01/08/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-106462-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
240-106462-2	MW-91S_122818	Water	<u>12/28/18 10:12</u> 01/03/19 08:35

Client Sample ID: MW-91S_122818

No Detections.

Lab Sample ID: 240-106462-2

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 240-106462-2

Matrix: Water

5

8

Client Sample ID: MW-91S_122818

Date Collected: 12/28/18 10:12 Date Received: 01/03/19 08:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			01/08/19 21:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	85		63 - 125					01/08/19 21:52	
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/08/19 17:08	
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/08/19 17:08	
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/08/19 17:08	
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/08/19 17:08	
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/08/19 17:08	
Vinyl chloride	1.0	U	1.0	0.20	ug/L			01/08/19 17:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		70 - 121					01/08/19 17:08	
4-Bromofluorobenzene (Surr)	59		59 - 120					01/08/19 17:08	
Toluene-d8 (Surr)	77		70 - 123					01/08/19 17:08	
Dibromofluoromethane (Surr)	103		75 - 128					01/08/19 17:08	

Method: 8260B - Volatile Organic Compounds (GC/MS)

latrix: Water	- Volatile Organic Co		J J M J J			Prep Type: Total/NA	
						· · ·	
		DCA	Pe BFB	ercent Surro TOL	ogate Recov DBFM	very (Acceptance Limits)	i
Lab Sample ID	Client Sample ID	(70-121)	бгб (59-120)	(70-123)	(75-128)		
240-106462-2	MW-91S_122818	98	59	77	103		Ì
Surrogate Legend	_						
DCA = 1,2-Dichloro							
BFB = 4-Bromofluor							
	· · · ·						
TOL = Toluene-d8 ((Surr)						
TOL = Toluene-d8 (DBFM = Dibromoflu							
DBFM = Dibromoflu	oromethane (Surr)						
DBFM = Dibromoflu		c Compound	ds (GC/	'MS)			
DBFM = Dibromofu	oromethane (Surr)	c Compound	ds (GC/	'MS)		Prep Type: Total/NA	
DBFM = Dibromofu	oromethane (Surr)	c Compound	•		vgate Recov	Prep Type: Total/NA	
DBFM = Dibromoflu	oromethane (Surr)	c Compound	•		ngate Recov		
DBFM = Dibromofu	oromethane (Surr)		•		ogate Recov		
DBFM = Dibromoflu Aethod: 8260B Jatrix: Water Lab Sample ID	SIM - Volatile Organi	DCA	•		ogate Recov		
DBFM = Dibromoflu	Client Sample ID MW-91S_122818	DCA (63-125)	•		ogate Recov		

2 3 Client Sample ID: Method Blank Prep Type: Total/NA 5

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-363153/6 Matrix: Water

Analysis Batch: 363153									
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	<u> </u>	1.0	0.19	ug/L			01/08/19 10:03	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/08/19 10:03	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/08/19 10:03	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/08/19 10:03	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/08/19 10:03	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			01/08/19 10:03	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		70 - 121		01/08/19 10:03	1
4-Bromofluorobenzene (Surr)	59		59 - 120		01/08/19 10:03	1
Toluene-d8 (Surr)	78		70 - 123		01/08/19 10:03	1
Dibromofluoromethane (Surr)	92		75 - 128		01/08/19 10:03	1

Lab Sample ID: LCS 240-363153/4 Matrix: Water Analysis Batch: 363153

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	9.92		ug/L		99	65 - 139	
cis-1,2-Dichloroethene	10.0	9.49		ug/L		95	76 - 128	
Tetrachloroethene	10.0	9.56		ug/L		96	74 - 130	
trans-1,2-Dichloroethene	10.0	10.3		ug/L		103	78 - 133	
Trichloroethene	10.0	8.39		ug/L		84	76 - 125	
Vinyl chloride	10.0	10.0		ug/L		100	58 - 143	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	73		70 - 121
4-Bromofluorobenzene (Surr)	76		59 - 120
Toluene-d8 (Surr)	84		70 - 123
Dibromofluoromethane (Surr)	81		75 - 128

93

Lab Sample ID: 240-106456-E-1 MS Matrix: Water Analysis Batch: 363153

Toluene-d8 (Surr)

Analysis Baton. 000100										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	10.0	8.56		ug/L		86	53 - 140	
cis-1,2-Dichloroethene	1.0	U	10.0	8.72		ug/L		87	64 ₋ 130	
Tetrachloroethene	1.0	U	10.0	9.43		ug/L		94	51 ₋ 136	
trans-1,2-Dichloroethene	1.0	U	10.0	9.48		ug/L		95	68 - 133	
Trichloroethene	0.23	J	10.0	7.83		ug/L		76	55 - 131	
Vinyl chloride	1.0	U	10.0	10.3		ug/L		103	43 - 154	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	83		70 - 121							
4-Bromofluorobenzene (Surr)	85		59 - 120							

TestAmerica Canton

Client Sample ID: Matrix Spike

Prep Type: Total/NA

70 - 123

2 3 4 5 6 7

8 9 10 11

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-106456-E-1 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA Analysis Batch: 363153 MS MS %Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 75 - 128 88 Lab Sample ID: 240-106456-H-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA Analysis Batch: 363153 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit 1,1-Dichloroethene 1.0 U 10.0 8.67 ug/L 87 53 - 140 35 1 cis-1,2-Dichloroethene 10.0 8.95 21 1.0 U ug/L 90 64 - 130 3 Tetrachloroethene 1.0 U 10.0 9.43 ug/L 94 51 - 136 0 23 trans-1,2-Dichloroethene 1.0 U 10.0 9.58 96 24 ug/L 68 - 133 1 Trichloroethene 0.23 J 10.0 7.97 ug/L 77 55 - 131 2 23 Vinyl chloride 1.0 U 10.0 10.1 ug/L 101 43 - 154 2 29 MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 79 70 - 121 4-Bromofluorobenzene (Surr) 85 59 - 120 Toluene-d8 (Surr) 94 70 - 123 Dibromofluoromethane (Surr) 88 75 - 128

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-3 Matrix: Water	63200/13							C	lie	nt Sam	ple ID: Method Prep Type: To	
Analysis Batch: 363200	ME	B MB										
Analyte		t Qualifier	RL	I	MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
1,4-Dioxane		\overline{U}	2.0			ug/L					01/08/19 16:23	1
	МЕ	3 MB										
Surrogate		/ Qualifier	Limits						Pı	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		63 - 125							-	01/08/19 16:23	1
_ Lab Sample ID: LCS 240-3	863200/42						Cli	ont S	20	nnio ID	: Lab Control S	Samplo
Matrix: Water Analysis Batch: 363200	565200/12						Cili	ent S	an		Prep Type: To	
			Spike	LCS	LCS	;					%Rec.	
Analyte			Added	Result	Qua	lifier	Unit	I	D	%Rec	Limits	
1,4-Dioxane			10.0	11.8			ug/L		_	118	59 - 131	
	LCS LC	s										
Surrogate	%Recovery Qu	alifier	Limits									
1,2-Dichloroethane-d4 (Surr)	85		63 - 125									

1/18/2019 (Rev. 1)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MRL 240-3 Matrix: Water	363200/14					Clie	nt Sai	mple ID): Lab Con Prep Typ			4
Analysis Batch: 363200			.						24 8			
A			Spike Added		MRL Qualifier	Unit	D	%Rec	%Rec. Limits			
Analyte 1,4-Dioxane		·		0.00105		ng/uL		105	10 - 150			
1,4-DI0Xane			0.00100	0.00105	J	lly/uL		105	10 - 100			
		MRL										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	87		10 - 150									
Lab Sample ID: 500-15698	85-D-2 MS						C	lient Sa	mple ID: N	Matrix S	Spike	
Matrix: Water									Prep Typ			
Analysis Batch: 363200												
	Sample	Sample	Spike	MS	MS				%Rec.			1
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
1,4-Dioxane	2.0	U	10.0	12.5		ug/L		125	52 - 129			
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	92		63 - 125									
Lab Sample ID: 500-15698	85-D-2 MSD					Client	Samn	de ID: N	/latrix Spik	ce Dupl	licate	
Matrix: Water	// 2 2					U IIIII	oun-		Prep Typ			
Analysis Batch: 363200									1.00.00			
······	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,4-Dioxane	2.0	U	10.0	11.7		ug/L		117	52 - 129	7	13	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	88		63 - 125									

GC/MS VOA

Analy	vsis	Batch:	3631	53
	,			

Lab Sample ID 240-106462-2	Client Sample ID MW-91S_122818	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
Analysis Batch: 36					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106462-2	MW-91S_122818	Total/NA	Water	8260B SIM	

Lab Sample ID: 240-106462-2

Matrix: Water

Client Sample ID: MW-91S_122818 Date Collected: 12/28/18 10:12 Date Received: 01/03/19 08:35

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	363153	01/08/19 17:08	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	363200	01/08/19 21:52	SAM	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Job ID: 240-106462-1

Laboratory: TestAmerica Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
California	State Program	9	2927	02-23-19 *	
Connecticut	State Program	1	PH-0590	12-31-19	
Florida	NELAP	4	E87225	06-30-19	
Illinois	NELAP	5	200004	07-31-19	
Kansas	NELAP	7	E-10336	04-30-19	
Kentucky (UST)	State Program	4	58	02-23-19 *	
Kentucky (WW)	State Program	4	98016	12-31-19	
Minnesota	NELAP	5	039-999-348	12-31-19 *	
Minnesota (Petrofund)	State Program	1	3506	07-31-19	
Nevada	State Program	9	OH00048	07-31-19	
New Jersey	NELAP	2	OH001	06-30-19	
New York	NELAP	2	10975	03-31-19 *	
Ohio VAP	State Program	5	CL0024	09-06-19	
Oregon	NELAP	10	4062	02-23-19 *	
Pennsylvania	NELAP	3	68-00340	08-31-19 *	
Texas	NELAP	6	T104704517-18-10	08-31-19	
USDA	Federal		P330-16-00404	12-28-19	
Virginia	NELAP	3	460175	09-14-19	
Washington	State Program	10	C971	01-12-20 *	
West Virginia DEP	State Program	3	210	12-31-19	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Phone (330) 497-9396 Fax (330) 497-0772	MICHIGAN _{Chain}	ain of Cu	of Custody Record	ecord		TestAmerica The leader in environmental, testing	
Client Information	Sempler. Setter Turnes	nes	Lab PN DeiMo	Lab PM: DelMonico, Michael	Carrier Tracking No(s);	COC No: 240-56713-24439.11	
Client Contact Angela DeGrandis	Phone: 586-212-40	101-4	E-Mail: micha	E-Mail: michael.delmonico@testamericainc.com		Page: Page 11 of 13	
Company: ARCADIS U.S., Inc.				Analysis Requested	quested	.Job #:	
Address: 28550 Cabot Drive Suite 500	Due Date Requested:					1 m	
Gity: Novi	TAT Requested (days):					B NaOH N Norther N Norther C - Zh Acetate O - ASNaO2	
State, Zip: MI, 48377	Standar	Lard				D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3	
Phone:	PO#: MI001454.0003			{0		G- Amchlor S-H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	
Email: angela degrandis@arcadis-us.com	wo#: Cadena #: E203631	E				1 - Ice J - DI Water	
Project Name: Ford LTP Livonia MI - E203631	Project #: 24015353			10 29 (121)		K-EDA L-EDA	
Ford LTP	SSOW#.) DSI		of Other:	
ومعانون والمساولا			Matrix (wwater, 3=sold, 0=wastelol,	teld Filtered erform MS/N 2608 - VOCs (2608 SIM - Lo		redmuki listo	
	1	Preserva	ation Code:	A A		- special instructions/Note:	
MW-1275 122818	1/8//8//8/	1212 6		1		C	
- 91-1	1/88/18		Water	V V VN		e	
			Water				
			Water				
			Water				
			Water				
			Water				
			Water				
			Water	240-106462 Chain of Custody	stody		
			Water				
			Water				
Possible Hazard Identification	It Doison B Unknown	Radiological	cal	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are r	etained longer than 1 month) Archive For Months	
Deliverable Requested: I, II, III, Q, Other (specify)				Special Instructions/QC Requirements	ents:		
Empty Kit Relinquished by:	Date:	te:		Time:	Method of Shipment.		
Relinquished by. Sether Turmer	Date/Tupe: 12/36/18	1345	Arcali	S Received by JUN Luit	Date/Time:	118 1345	
elinquished by.	8 1/8 C/ Cl	14 4S	Arcumpany is		S turge 12/3 &	119 1945 Company Jis	
Reinquisted by A.D. COLU Stocage / APART	the parentine /19	1138	Company Arccell	5	- Date/Time:	1138 Company	
A Yes A No					Kemarks:		
Relinguisted : hin de	1/2/12	1320	tal	12	9 1/3/16	1 2 3 4 5 6 7	
				2			ł

Canton Facility	Login # :00462
	Cooler unpacked by:
Client Arcelis Site Name	- 8
Cooler Received on 1511	
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Cou	
Receipt After-hours: Drop-off Date/Time Storage Loca	
TestAmerica Cooler # Foam Box Client Cooler Box Othe	er oler Form oler Temp°C
Contacted PM Date by via Ver	bal Voice Mail Other
Concerning	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
18. SAMPLE CONDITION Sample(s) were received after the recommended	
18. SAMPLE CONDITION Sample(s) were received after the recommended	d holding time had expired.
18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container.
18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container.
18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container. 5 mm in diameter. (Notify PM)
18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container. 5 mm in diameter. (Notify PM)

WI-NC-099

Canton Facility Cooler #	IR Gun #	Observed Temp °C	Corrected Temp °C	Coolan
TA	36	1.4	I.L	ICE
100		3.2	3.2	T
4. 3.				*
- Charles - Char				
	-			

X:X-Drive Document Control\SOPs\Work Instructions\Word Version Work Instructions\WI-NC-099H-071615 Cooler Receipt Form_page 2 - Multiple Coolers.doc rls

REVISED REPORT: January 18, 2019 REVISION SUMMARY: Original lab report was separated by sampling location in individual submittals.

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: TestAmerica - North Canton Laboratory submittal: 106462-1 Sample date: 2018-12-28 Report received by CADENA: 2019-01-18 Initial Data Verification completed by CADENA: 2019-01-18

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

1 Water sample(s) was analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631 Laboratory: TestAmerica - North Canton Laboratory Submittal: 106462-1

		Sample Name: Lab Sample ID: Sample Date:	MW-919 2401064 12/28/2	_ 1622	8	Valid
	Analyte	Cas No.	Result	Limit	Units	
GC/MS VOC						
<u>OSW-826</u>	<u>DB</u>					
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l	
<u>OSW-826</u>	<u> DBBSim</u>					
	1,4-Dioxane	123-91-1	ND	2.0	ug/l	