

8/7/2020 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP

Project #:

Workorder #: 2008021

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 8/3/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 2008021

Work Order Summary

CLIENT: Mr. Jim Tomalia BILL TO: Accounts Payable

Arcadis U.S., Inc.

28550 Cabot Dr.

Suite 500

Arcadis U.S., Inc.
630 Plaza Drive
Suite 600

Novi, MI 48377 Highlands Ranch, CO 80129

PHONE: 517-819-0356 **P.O.** # 30050315.0302.01

FAX: PROJECT # Ford LTP

DATE RECEIVED: 08/03/2020 CONTACT: Ausha Scott DATE COMPLETED: 08/07/2020

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AA-12034BREWSTER-01_072220	Modified TO-15	8.5 "Hg	5 psi
02A	IAB-12034BREWSTER-02_072220	Modified TO-15	7.5 "Hg	5 psi
03A	IAF-12034BREWSTER-01_072220	Modified TO-15	6.5 "Hg	5 psi
04A	IAG-12034BREWSTER-04_072220	Modified TO-15	6.5 "Hg	5 psi
05A	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07AA	LCSD	Modified TO-15	NA	NA

	the	idi]	Payer		
CERTIFIED BY:			0	DATE:	08/07/20

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209219, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-19-14, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-013, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE Modified TO-15 Arcadis U.S., Inc. Workorder# 2008021

Four 6 Liter Summa Canister (100% Cert Ambient) samples were received on August 03, 2020. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the EATL modifications.

Requirement	TO-15	ATL Modifications
Initial Calibration	=30% RSD with 2<br compounds allowed out to < 40% RSD	=30% RSD with 4 compounds allowed out to < 40% RSD</td
Blank and standards	Zero Air	UHP Nitrogen provides a higher purity gas matrix than zero air

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client ID: AA-12034BREWSTER-01_072220

Lab ID: 2008021-01A **Date/Time Analyzed:** 8/5/20 04:02 PM

Date/Time Collected: 7/22/20 04:56 PM Dilution Factor: 1.87

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.060	0.18	0.74	Not Detected
1,4-Dioxane	123-91-1	0.046	0.17	0.67	0.15 J
cis-1,2-Dichloroethene	156-59-2	0.030	0.18	0.74	Not Detected
Tetrachloroethene	127-18-4	0.096	0.32	1.3	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.084	0.18	0.74	Not Detected
Trichloroethene	79-01-6	0.090	0.25	1.0	Not Detected
Vinyl Chloride	75-01-4	0.021	0.12	0.48	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	122	
4-Bromofluorobenzene	460-00-4	70-130	95	
Toluene-d8	2037-26-5	70-130	104	

Client ID: IAB-12034BREWSTER-02_072220

Lab ID: 2008021-02A **Date/Time Analyzed:** 8/5/20 04:39 PM

Date/Time Collected: 7/22/20 05:17 PM **Dilution Factor:** 1.79

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.058	0.18	0.71	Not Detected
1,4-Dioxane	123-91-1	0.044	0.16	0.64	0.21 J
cis-1,2-Dichloroethene	156-59-2	0.028	0.18	0.71	Not Detected
Tetrachloroethene	127-18-4	0.092	0.30	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.080	0.18	0.71	Not Detected
Trichloroethene	79-01-6	0.087	0.24	0.96	Not Detected
Vinyl Chloride	75-01-4	0.020	0.11	0.46	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	117	
4-Bromofluorobenzene	460-00-4	70-130	100	
Toluene-d8	2037-26-5	70-130	103	

Client ID: IAF-12034BREWSTER-01_072220

Lab ID: 2008021-03A **Date/Time Analyzed:** 8/5/20 05:15 PM

Date/Time Collected: 7/22/20 04:59 PM Dilution Factor: 1.71

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.055	0.17	0.68	Not Detected
1,4-Dioxane	123-91-1	0.042	0.15	0.62	0.18 J
cis-1,2-Dichloroethene	156-59-2	0.027	0.17	0.68	Not Detected
Tetrachloroethene	127-18-4	0.088	0.29	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.077	0.17	0.68	Not Detected
Trichloroethene	79-01-6	0.083	0.23	0.92	Not Detected
Vinyl Chloride	75-01-4	0.019	0.11	0.44	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	125	
4-Bromofluorobenzene	460-00-4	70-130	96	
Toluene-d8	2037-26-5	70-130	104	

Client ID: IAG-12034BREWSTER-04_072220

Lab ID: 2008021-04A **Date/Time Analyzed:** 8/5/20 05:52 PM

Date/Time Collected: 7/22/20 05:05 PM Dilution Factor: 1.71

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.055	0.17	0.68	Not Detected
1,4-Dioxane	123-91-1	0.042	0.15	0.62	0.44 J
cis-1,2-Dichloroethene	156-59-2	0.027	0.17	0.68	Not Detected
Tetrachloroethene	127-18-4	0.088	0.29	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.077	0.17	0.68	Not Detected
Trichloroethene	79-01-6	0.083	0.23	0.92	Not Detected
Vinyl Chloride	75-01-4	0.019	0.11	0.44	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	114	
4-Bromofluorobenzene	460-00-4	70-130	102	
Toluene-d8	2037-26-5	70-130	104	

Client ID: Lab Blank Lab ID: 2008021-05A

Date/Time Collected: NA - Not Applicable

Media: NA - Not Applicable

Date/Time Analyzed: 8/5/20 10:56 AM

Dilution Factor: 1.00

Instrument/Filename: msd21.i / 21080507a

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.032	0.099	0.40	Not Detected
1,4-Dioxane	123-91-1	0.024	0.090	0.36	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.016	0.099	0.40	Not Detected
Tetrachloroethene	127-18-4	0.051	0.17	0.68	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.045	0.099	0.40	Not Detected
Trichloroethene	79-01-6	0.048	0.13	0.54	Not Detected
Vinyl Chloride	75-01-4	0.011	0.064	0.26	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	110
4-Bromofluorobenzene	460-00-4	70-130	96
Toluene-d8	2037-26-5	70-130	102

Client ID: CCV

Lab ID: 2008021-06A **Date/Time Analyzed:** 8/5/20 06:31 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd21.i / 21080502

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	93
,4-Dioxane	123-91-1	100
sis-1,2-Dichloroethene	156-59-2	93
etrachloroethene	127-18-4	92
rans-1,2-Dichloroethene	156-60-5	92
richloroethene	79-01-6	103
'inyl Chloride	75-01-4	93

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	101
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	116

Client ID: LCS

Lab ID: 2008021-07A **Date/Time Analyzed:** 8/5/20 07:15 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd21.i / 21080503

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	95
1,4-Dioxane	123-91-1	103
cis-1,2-Dichloroethene	156-59-2	96
Tetrachloroethene	127-18-4	93
trans-1,2-Dichloroethene	156-60-5	93
Trichloroethene	79-01-6	102
Vinyl Chloride	75-01-4	94

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	101
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	116

^{* %} Recovery is calculated using unrounded analytical results.

Client ID: LCSD

Lab ID: 2008021-07AA **Date/Time Analyzed:** 8/5/20 07:52 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd21.i / 21080504

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	94
1,4-Dioxane	123-91-1	103
cis-1,2-Dichloroethene	156-59-2	96
Tetrachloroethene	127-18-4	96
rans-1,2-Dichloroethene	156-60-5	92
Trichloroethene	79-01-6	102
Vinyl Chloride	75-01-4	94

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	103
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	115

^{* %} Recovery is calculated using unrounded analytical results.

August 07, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - Soil Gas and Groundwater

Project number: 30050315.0302.01

Client project scopereference: Sample COC only was used to define project analytical requirements.

Laboratory: Eurofins Air Toxics -Folsom

Laboratory submittal: 2008021 Sample date: 2020-07-22

Report received by CADENA: 2020-08-07 Initial DataVerification completed: 2020-08-07 4 Air samples were analyzed for TO-15 parameters.

No data qualifications or sample integrity issues were observed.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description				
<	Less than the reported concentration.				
>	Greater than the reported concentration.				
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.				
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.				
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.				
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.				
J-	The result is an estimated quantity, but the result may be biased low.				
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED				
JH	The sample result is considered estimated and is potentially biased high.				
JL	The sample result is considered estimated and is potentially biased low.				
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED				
NJ	Tentatively identified compound with approximated concentration.				
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)				
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.				
U	Indicates that the analyte / compound was analyzed for, but not detected.				
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.				
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.				

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #2008021

CADENA Verification Report: 2020-08-07

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #38065R Review Level: Tier III Project: 30050315.302.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2008021 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

							Analysis	ysis	
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	TO-15 (Full Scan)	TO-15 (SIM)	MISC	
2008021	AA- 12034BREWSTER- 01_072220	2008021-01A	Air	7/22/2020		X			
	IAB- 12034BREWSTER- 02_072220	2008021-02A	Air	7/22/2020		Х			
	IAF- 12034BREWSTER- 01_072220	2008021-03A	Air	7/22/2020		X			
	IAG- 12034BREWSTER- 04_072220	2008021-04A	Air	7/22/2020		X			

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted	Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of three times the RL is applied to the difference between the duplicate sample results.

A field duplicate was not performed on a sample location within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan)	Re	ported	Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/I	VIS)			
Tier II Validation					
Canister return pressure (<-2"Hg)		X		Х	
Tier III Validation	'	'	'		
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Field Duplicate Sample RPD					Х
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		X		X	
D. Transcription/calculation errors present		X		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: August 28, 2020

PEER REVIEW: Dennis Capria

DATE: September 2, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

Client ID: AA-12034BREWSTER-01_072220

Lab ID: 2008021-01A **Date/Time Analyzed:** 8/5/20 04:02 PM

Date/Time Collected: 7/22/20 04:56 PM Dilution Factor: 1.87

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.060	0.18	0.74	Not Detected
1,4-Dioxane	123-91-1	0.046	0.17	0.67	0.15 J
cis-1,2-Dichloroethene	156-59-2	0.030	0.18	0.74	Not Detected
Tetrachloroethene	127-18-4	0.096	0.32	1.3	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.084	0.18	0.74	Not Detected
Trichloroethene	79-01-6	0.090	0.25	1.0	Not Detected
Vinyl Chloride	75-01-4	0.021	0.12	0.48	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	122
4-Bromofluorobenzene	460-00-4	70-130	95
Toluene-d8	2037-26-5	70-130	104

Client ID: IAB-12034BREWSTER-02_072220

Lab ID: 2008021-02A **Date/Time Analyzed:** 8/5/20 04:39 PM

Date/Time Collected: 7/22/20 05:17 PM **Dilution Factor:** 1.79

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.058	0.18	0.71	Not Detected
1,4-Dioxane	123-91-1	0.044	0.16	0.64	0.21 J
cis-1,2-Dichloroethene	156-59-2	0.028	0.18	0.71	Not Detected
Tetrachloroethene	127-18-4	0.092	0.30	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.080	0.18	0.71	Not Detected
Trichloroethene	79-01-6	0.087	0.24	0.96	Not Detected
Vinyl Chloride	75-01-4	0.020	0.11	0.46	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	117
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	103

Client ID: IAF-12034BREWSTER-01_072220

Lab ID: 2008021-03A **Date/Time Analyzed:** 8/5/20 05:15 PM

Date/Time Collected: 7/22/20 04:59 PM Dilution Factor: 1.71

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.055	0.17	0.68	Not Detected
1,4-Dioxane	123-91-1	0.042	0.15	0.62	0.18 J
cis-1,2-Dichloroethene	156-59-2	0.027	0.17	0.68	Not Detected
Tetrachloroethene	127-18-4	0.088	0.29	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.077	0.17	0.68	Not Detected
Trichloroethene	79-01-6	0.083	0.23	0.92	Not Detected
Vinyl Chloride	75-01-4	0.019	0.11	0.44	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	125
4-Bromofluorobenzene	460-00-4	70-130	96
Toluene-d8	2037-26-5	70-130	104

Client ID: IAG-12034BREWSTER-04_072220

Lab ID: 2008021-04A **Date/Time Analyzed:** 8/5/20 05:52 PM

Date/Time Collected: 7/22/20 05:05 PM Dilution Factor: 1.71

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.055	0.17	0.68	Not Detected
1,4-Dioxane	123-91-1	0.042	0.15	0.62	0.44 J
cis-1,2-Dichloroethene	156-59-2	0.027	0.17	0.68	Not Detected
Tetrachloroethene	127-18-4	0.088	0.29	1.2	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.077	0.17	0.68	Not Detected
Trichloroethene	79-01-6	0.083	0.23	0.92	Not Detected
Vinyl Chloride	75-01-4	0.019	0.11	0.44	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	114
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	104

Analysis Request /Canister Chain of Custody For Laborat 2 0 0 0 2 1 Workorder #:

Phone (8		Rd. Suite B, Folsom, CA 956 -5955; Fax (916) 351-8279	i30		Workord						Caniste	r Samplir Shroud V				
Client:		Ford	_PID:N	IA.	Special	Instructions/f	lotes: Repr	ort ONLY: 1,1-DO	CE, cis-1,2-	Ti			(Rush su	rcharges	may ar	(vlaa
Project Na		Ford LTP	_		DCE, trr	ans-1,2-DCE, 1	4-Dioxane	, PCE, TCE and	VC Submit			*	/ Turnarou			74.71
Project Ma			P.O.# 30050315	0302.01.	1						ster Vac	uum/Pre			ested A	Analyses
Sampler:		Xenia Chan, Patrick Labadie)		results th	rough Cadena	at jim.toma	alia@cadena.cor	m. Cadena				se Only	_	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Site Name	e:	12034 BREWSTER			#E20367	31. Level IV Re	porting		ļ	🧝			g payersayanaga	of the second	Z Z	i
Lab ID	s	Sample Identification	Can#	Flow C	Controller #	Start Sar Inform		Stop Sar Informa		Initial (in Hg)	Final (in Hg)	Receipt	il (psig) : N ₂ / He	TO-15 (See Special Instructions/Notes)	Do Not Analyze	
74. V		*				Date	Time	Date	Time	置	<u>ii</u>	, %	Final Gas:	Instr	8	.
OLA		2034BREWSTER-01_072220	6L1568	22	2464	7/21/2020	17:55	7/22/2020	16:56	-29	-7	preiss.		х		
0)A		2034BREWSTER-02_072220	6L0313	22	2576	7/21/2020	18:07	7/22/2020	17:17	-29.5	-7			×		
652A		2034BREWSTER-01_072220	6L2171	24	4440	7/21/2020	18:01	7/22/2020	16:59	-29.5	-5.5	1999		х		
OUX	IAG-12	2034BREWSTER-04_072220	6L1963	25	5032	7/21/2020	18:10	7/22/2020	17:05	-28	-6			X		
		***					-					3355	1950-195			_
									***						\vdash	_
		W						- 1				222/93		 		_
2222															\vdash	+
			**									22755			\vdash	

		<u></u>													 	_
									u.						\vdash	+-
							***					15 m 15 m			 +	
Mil	World	gnature/Affiliation) Arcarlis gnature/Affiliation)		Date 7/ Date	130/2	7 Time 7 Time 7 Time	3n (Received by: (S	100	4/_			Date Date	20	Time /02 Time	0
Relinquishe	ad by: (Sig	gnature/Affiliation)		Date		Time		Received by: (S	Signature/Aff	iliation)			Date		Time	
60 (S) (S) (S)						Lab Use C	Only	<u> </u>								
Shipper Nar		hal to	Custody Seals Intac		Yes	No	None	e (·	7007	Alternative de la constantive dela constantive de la constantive della constantive de la constantive d	1000 gal 1200 g		en iggi gas textus		25.052.22	
Sample	e Transp	ortation Notice: Relinquishing signature also	gnature on this docur	ment indica	ates that s	amples are shi	inned in con	mnliance with all	l applicable le	cal. State	Federa	and int	ernational	laws red	ulations	e and
ordinance	es of any	kind. Relinquishing signature also	indicates agreemen	t to hold hr	armless, d	lefend, and ind	emnify Euro	ofins Air Toxics a	against any c	laim, dem	and, or a	action, of	anv kind	related to	the cal	ilection

8/7/2020 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP

Project #:

Workorder #: 2008024

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 8/3/2020 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 2008024

Work Order Summary

CLIENT: BILL TO: Mr. Jim Tomalia Accounts Payable

> Arcadis U.S., Inc. Arcadis U.S., Inc. 28550 Cabot Dr. 630 Plaza Drive Suite 500 Suite 600

Novi, MI 48377 Highlands Ranch, CO 80129

PHONE: 517-819-0356 P.O. # 30050315.0302.01

FAX: PROJECT # Ford LTP

DATE RECEIVED: 08/03/2020 **CONTACT:** Ausha Scott DATE COMPLETED: 08/07/2020

			RECEIPT	FINAL
FRACTION#	NAME	TEST	VAC./PRES.	PRESSURE
01A	SSMP-12034BREWSTER-01_072220	TO-15	6.7 "Hg	15 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

	Meide Ray	
CERTIFIED BY:	0 00	DATE: 08/07/20

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016,

Technical Director

NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP - CA009332019-11, VA NELAP - 460197, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE EPA Method TO-15 Arcadis U.S., Inc. Workorder# 2008024

One 1 Liter Summa Canister (100% Certified) sample was received on August 03, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client ID: SSMP-12034BREWSTER-01_072220

Lab ID: 2008024-01A **Date/Time Analyzed:** 8/5/20 06:08 PM

Media: 1 Liter Summa Canister (100% Certified) Instrument/Filename: msda.i / a080515

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	1.3	3.1	5.2	Not Detected
1,4-Dioxane	123-91-1	3.0	9.4	19	Not Detected
cis-1,2-Dichloroethene	156-59-2	1.6	3.1	5.2	Not Detected
Tetrachloroethene	127-18-4	1.9	5.3	8.8	2.8 J
trans-1,2-Dichloroethene	156-60-5	1.8	3.1	5.2	Not Detected
Trichloroethene	79-01-6	1.8	4.2	7.0	Not Detected
Vinyl Chloride	75-01-4	0.86	2.0	3.3	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	106
4-Bromofluorobenzene	460-00-4	70-130	95
Toluene-d8	2037-26-5	70-130	103

Client ID: Lab Blank Lab ID: 2008024-02A

Date/Time Collected: NA - Not Applicable Dilution Factor:

Media: NA - Not Applicable Instrument/Filename: msda.i / a080505a

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.52	1.2	2.0	Not Detected
1,4-Dioxane	123-91-1	1.2	3.6	7.2	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.63	1.2	2.0	Not Detected
Tetrachloroethene	127-18-4	0.75	2.0	3.4	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.71	1.2	2.0	Not Detected
Trichloroethene	79-01-6	0.70	1.6	2.7	Not Detected
Vinyl Chloride	75-01-4	0.33	0.77	1.3	Not Detected

Date/Time Analyzed:

8/5/20 12:20 PM

1.00

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	101
4-Bromofluorobenzene	460-00-4	70-130	93
Toluene-d8	2037-26-5	70-130	102

Client ID: CCV

Lab ID: 2008024-03A **Date/Time Analyzed:** 8/5/20 09:41 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msda.i / a080502

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	103
1,4-Dioxane	123-91-1	97
cis-1,2-Dichloroethene	156-59-2	106
Tetrachloroethene	127-18-4	86
trans-1,2-Dichloroethene	156-60-5	102
Trichloroethene	79-01-6	102
Vinyl Chloride	75-01-4	102

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	104
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	104

Client ID: LCS

Lab ID: 2008024-04A **Date/Time Analyzed:** 8/5/20 10:07 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msda.i / a080503

Compound	CAS#	%Recovery
1,1-Dichloroethene		89
1, 1-Dichioroethene	75-35-4	
1,4-Dioxane	123-91-1	86
cis-1,2-Dichloroethene	156-59-2	81
Tetrachloroethene	127-18-4	78
trans-1,2-Dichloroethene	156-60-5	95
Trichloroethene	79-01-6	90
Vinyl Chloride	75-01-4	91

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	105
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	106

^{* %} Recovery is calculated using unrounded analytical results.

Client ID: LCSD

Lab ID: 2008024-04AA **Date/Time Analyzed:** 8/5/20 10:32 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msda.i / a080504

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	101
1,4-Dioxane	123-91-1	97
cis-1,2-Dichloroethene	156-59-2	95
Tetrachloroethene	127-18-4	88
trans-1,2-Dichloroethene	156-60-5	112
Trichloroethene	79-01-6	98
Vinyl Chloride	75-01-4	104

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	109
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	104

^{* %} Recovery is calculated using unrounded analytical results.

August 07, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - Soil Gas and Groundwater

Project number: 30050315.0302.01

Client project scopereference: Sample COC only was used to define project analytical requirements.

Laboratory: Eurofins Air Toxics -Folsom

Laboratory submittal: 2008024 Sample date: 2020-07-22

Report received by CADENA: 2020-08-07 Initial DataVerification completed: 2020-08-07 1 Air sample was analyzed for TO-15 parameters.

No data qualifications or sample integrity issues were observed.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #2008024

CADENA Verification Report: 2020-08-07

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #38066R Review Level: Tier III Project: 30050315.302.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2008024 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	TO-15 (Full Scan)	Analysis TO-15 (SIM)	
2008024	SSMP- 12034BREWSTER- 01_072220	2008024-01A	Air	7/22/2020		X		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted	Performance Acceptable		Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		Х		Х		
2. Requested analyses and sample results		Х		Х		
Master tracking list		Х		Х		
4. Methods of analysis		Х		Х		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8. Sample preservation verification (as applicable)		Х		Х		
9. Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
Narrative summary of Quality Assurance or sample problems provided	,	Х		Х		
12. Data Package Completeness and Compliance		Х		Х		

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of three times the RL is applied to the difference between the duplicate sample results.

A field duplicate was not performed on a sample location within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan)		ported	Performance Acceptable		Not				
	No	Yes	No	Yes	Required				
GAS CHROMATOGRAPHY/MASS SPECTROMETR	RY (GC/M	IS)							
Tier II Validation	Tier II Validation								
Canister return pressure (<-2"Hg)		Х		X					
Tier III Validation	·	·	·						
System performance and column resolution		Х		X					
Initial calibration %RSDs		Х		X					
Continuing calibration RRFs		Х		Х					
Continuing calibration %Ds		Х		Х					
Instrument tune and performance check		Х		Х					
Ion abundance criteria for each instrument used		Х		Х					
Internal standard		Х		Х					
Field Duplicate Sample RPD					X				
Compound identification and quantitation									
A. Reconstructed ion chromatograms		Х		Х					
B. Quantitation Reports		Х		Х					
C. RT of sample compounds within the established RT windows		Х		Х					
D. Transcription/calculation errors present		Х		X					
E. Reporting limits adjusted to reflect sample dilutions		Х		Х					

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: August 28, 2020

PEER REVIEW: Dennis Capria

DATE: September 2, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

EPA METHOD TO-15 GC/MS FULL SCAN Ford LTP

Client ID: SSMP-12034BREWSTER-01_072220

Lab ID: 2008024-01A **Date/Time Analyzed:** 8/5/20 06:08 PM

Media: 1 Liter Summa Canister (100% Certified) Instrument/Filename: msda.i / a080515

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	1.3	3.1	5.2	Not Detected
1,4-Dioxane	123-91-1	3.0	9.4	19	Not Detected
cis-1,2-Dichloroethene	156-59-2	1.6	3.1	5.2	Not Detected
Tetrachloroethene	127-18-4	1.9	5.3	8.8	2.8 J
trans-1,2-Dichloroethene	156-60-5	1.8	3.1	5.2	Not Detected
Trichloroethene	79-01-6	1.8	4.2	7.0	Not Detected
Vinyl Chloride	75-01-4	0.86	2.0	3.3	Not Detected

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	106
4-Bromofluorobenzene	460-00-4	70-130	95
Toluene-d8	2037-26-5	70-130	103

Analysis Request /Canister Chain of Custody

For Laboratory Use Only
Workorder #: 2008024 Click links below to view: 180 Blue Ravine Rd. Suite B, Folsom, CA 95630 Canister Sampling Guide Phone (800) 985-5955; Fax (916) 351-8279 Helium Shroud Video Special Instructions/Notes: Report ONLY: 1,1-DCE, cis-1,2-Client: PID: NA Turnaround Time (Rush surcharges may apply) Ford Project Name: Ford LTP 5 Day Turnaround Time DCE, trans-1,2-DCE, 1,4-Dioxane, PCE, TCE and VC, Submit Project Manager: P.O.# 30050315.0302.01 Kris Hinskey Canister Vacuum/Pressure Requested Analyses results through Cadena at jim.tomalia@cadena.com. Cadena Sampler: Xenia Chan, Patrick Labadie TO-15 (See Special Instructions/Notes) Lab Use Only Do Not Analyze Site Name: 12034 BREWSTER #E203631. Level IV Reporting Final (psig) Gas: N₂ / He nitial (in Hg) Final (in Hg) Start Sampling Stop Sampling Lab Receipt Flow Controller Information Information Sample Identification Can # ID Date Date Time SSMP-12034BREWSTER-01 072220 1L1582 23532 7/22/2020 17:12 7/22/2020 -29.5 -6.5 17:23 -----*** --Relinquished by: (Signature/Affiliation) Date 7/30/20 Received by: (Signature/Affiliation) Time 100 Relinguished by: (Signature/Affiliation) Date Time Received by: (Signature/Affiliation) Relinquished by: (Signature/Affiliation) Received by: (Signature/Affiliation) Date Time Date Time Lab Use Only Shipper Name: 0000 Custody Seals Intact? Yes No None Sample Transportation Notice: Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, of shipping

of samples. D.O.T Hotline (800) 467-4922

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-133902-1 Client Project/Site: Ford LTP

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 7/31/2020 11:52:59 AM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-133902-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this	report.
--	---------

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

6

8

40

13

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-133902-1

Project/Site: Ford LTP

Job ID: 240-133902-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP

Report Number: 240-133902-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 7/24/2020 9:30 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples SUMP-12034BREWSTER-01_072220 (240-133902-1) and TRIP BLANK (240-133902-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 07/29/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample SUMP-12034BREWSTER-01_072220 (240-133902-1) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 07/29/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

7

Ö

10

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP

Job ID: 240-133902-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

6

10

1 1

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP

Job ID: 240-133902-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-133902-1	SUMP-12034BREWSTER-01_072220	Water	07/22/20 17:05	07/24/20 09:30	
240-133902-2	TRIP BLANK	Water	07/22/20 00:00	07/24/20 09:30	

6

8

9

44

Detection Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-133902-1

Client Sample ID: SUMP-12034BREWSTER-01_072220 Lab Sample ID: 240-133902-1

No Detections.

Client Sample ID: TRIP BLANK Lab Sample ID: 240-133902-2

No Detections.

1

6

4

5

7

10

11

13

Client Sample Results

Job ID: 240-133902-1 Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP

Analyte

Client Sample ID: SUMP-12034BREWSTER-01_072220 Lab Sample ID: 240-133902-1

Date Collected: 07/22/20 17:05 Date Received: 07/24/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	2.0	U	2.0	0.86 ug/L			07/29/20 13:12	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	80		70 - 133		•		07/29/20 13:12	1	

RL

MDL Unit

Prepared

1,1-Dichloroethene	1.0	U	1.0	0.46	ug/L		07/29/20 13:28	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.38	ug/L		07/29/20 13:28	1
Tetrachloroethene	1.0	U	1.0	0.33	ug/L		07/29/20 13:28	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.43	ug/L		07/29/20 13:28	1
Trichloroethene	1.0	U	1.0	0.36	ug/L		07/29/20 13:28	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L		07/29/20 13:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 130				07/29/20 13:28	1
4-Bromofluorobenzene (Surr)	87		47 - 134				07/29/20 13:28	1
Toluene-d8 (Surr)	95		69 - 122				07/29/20 13:28	1
Dibromofluoromethane (Surr)	84		78 - 129				07/29/20 13:28	1

Matrix: Water

Dil Fac

Analyzed

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-133902-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK

Date Collected: 07/22/20 00:00 Date Received: 07/24/20 09:30

Lab Sample ID: 240-133902-2

Matrix: Water

Method: 8260B - Volatile O Analyte	•	unds (GC/ Qualifier	MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0		1.0		ug/L	— <u> </u>		07/29/20 13:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.38	ug/L			07/29/20 13:50	1
Tetrachloroethene	1.0	U	1.0	0.33	ug/L			07/29/20 13:50	1
trans-1,2-Dichloroethene	1.0	Ü	1.0	0.43	ug/L			07/29/20 13:50	1
Trichloroethene	1.0	U	1.0	0.36	ug/L			07/29/20 13:50	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			07/29/20 13:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 130					07/29/20 13:50	1
4-Bromofluorobenzene (Surr)	89		47 - 134					07/29/20 13:50	1
Toluene-d8 (Surr)	97		69 - 122					07/29/20 13:50	1
Dibromofluoromethane (Surr)	83		78 - 129					07/29/20 13:50	1

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-133902-1

Project/Site: Ford LTP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	Percent Surrogate Recove		
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)	
240-133718-D-3 MSD	Matrix Spike Duplicate	93	96	98	89	
240-133718-H-3 MS	Matrix Spike	96	96	100	90	
240-133902-1	SUMP-12034BREWSTER-01_0 2220	99	87	95	84	
240-133902-2	TRIP BLANK	96	89	97	83	
LCS 240-444731/4	Lab Control Sample	94	102	102	90	
MB 240-444731/7	Method Blank	100	86	96	85	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-133902-1	SUMP-12034BREWSTER-01_0	80	
240-133902-1 MS	SUMP-12034BREWSTER-01_0 2220	82	
240-133902-1 MSD	SUMP-12034BREWSTER-01_0 2220	85	
LCS 240-444738/4	Lab Control Sample	81	
MB 240-444738/5	Method Blank	81	

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins TestAmerica, Canton

7/31/2020

Job ID: 240-133902-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-444731/7

Matrix: Water

Analysis Batch: 444731

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.46	ug/L			07/29/20 12:23	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.38	ug/L			07/29/20 12:23	1
Tetrachloroethene	1.0	U	1.0	0.33	ug/L			07/29/20 12:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.43	ug/L			07/29/20 12:23	1
Trichloroethene	1.0	U	1.0	0.36	ug/L			07/29/20 12:23	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			07/29/20 12:23	1

MB MB %Recovery Qualifier Prepared Dil Fac Surrogate Limits Analyzed 100 75 - 130 07/29/20 12:23 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 47 - 134 07/29/20 12:23 86 Toluene-d8 (Surr) 96 69 - 122 07/29/20 12:23 78 - 129 Dibromofluoromethane (Surr) 85 07/29/20 12:23

Lab Sample ID: LCS 240-444731/4

Matrix: Water

Analysis Batch: 444731

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	11.1		ug/L		111	73 - 129	
cis-1,2-Dichloroethene	10.0	10.4		ug/L		104	75 - 124	
Tetrachloroethene	10.0	10.8		ug/L		108	70 - 125	
trans-1,2-Dichloroethene	10.0	9.89		ug/L		99	74 - 130	
Trichloroethene	10.0	9.66		ug/L		97	71 - 121	
Vinyl chloride	10.0	8.70		ug/L		87	61 - 134	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		75 - 130
4-Bromofluorobenzene (Surr)	102		47 - 134
Toluene-d8 (Surr)	102		69 - 122
Dibromofluoromethane (Surr)	90		78 - 129

Lab Sample ID: 240-133718-D-3 MSD

Matrix: Water

Analysis Batch: 444731

Client Sample ID:	Matrix Spike Duplicate
	Pren Type: Total/NA

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 130
4-Bromofluorobenzene (Surr)	96		47 - 134
Toluene-d8 (Surr)	98		69 - 122
Dibromofluoromethane (Surr)	89		78 - 129

Lab Sample ID: 240-133718-H-3 MS

Matrix: Water

Analysis Batch: 444731

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		75 - 130

Client Sample ID: Matrix Spike Prep Type: Total/NA

Eurofins TestAmerica, Canton

Page 11 of 17

Job ID: 240-133902-1

10

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-133718-H-3 MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total/NA**

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 444731

MS MS %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 47 - 134 100 69 - 122 Dibromofluoromethane (Surr) 90 78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-444738/5 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 444738									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			07/29/20 11:58	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		70 - 133			-		07/29/20 11:58	1

Lab Sample ID: LCS 240-444738/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 444738

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,4-Dioxane 10.0 11.4 ug/L 114 80 - 135

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 70 - 133 81

Lab Sample ID: 240-133902-1 MS Client Sample ID: SUMP-12034BREWSTER-01_072220 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 444738

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.9		ug/L		109	46 - 170	
	MS	MS								
Surrogate	%Recovery	Qualifier	l imits							

1,2-Dichloroethane-d4 (Surr) 70 - 133 82

Lab Sample ID: 240-133902-1 MSD Client Sample ID: SUMP-12034BREWSTER-01 072220 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 444738

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 1,4-Dioxane 2.0 U 10.0 12.0 ug/L 120 46 - 170 10

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 85 70 - 133

Eurofins TestAmerica, Canton

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-133902-1

GC/MS VOA

Analysis Batch: 444731

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-133902-1	SUMP-12034BREWSTER-01_072220	Total/NA	Water	8260B	_
240-133902-2	TRIP BLANK	Total/NA	Water	8260B	
MB 240-444731/7	Method Blank	Total/NA	Water	8260B	
LCS 240-444731/4	Lab Control Sample	Total/NA	Water	8260B	
240-133718-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
240-133718-H-3 MS	Matrix Spike	Total/NA	Water	8260B	

Analysis Batch: 444738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-133902-1	SUMP-12034BREWSTER-01_072220	Total/NA	Water	8260B SIM	
MB 240-444738/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-444738/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-133902-1 MS	SUMP-12034BREWSTER-01_072220	Total/NA	Water	8260B SIM	
240-133902-1 MSD	SUMP-12034BREWSTER-01_072220	Total/NA	Water	8260B SIM	

3

4

6

8

9

11

12

13

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-133902-1

Project/Site: Ford LTP

Client Sample ID: SUMP-12034BREWSTER-01_072220

Lab Sample ID: 240-133902-1 Date Collected: 07/22/20 17:05

Matrix: Water

Date Received: 07/24/20 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	444731	07/29/20 13:28	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	444738	07/29/20 13:12	SAM	TAL CAN

Lab Sample ID: 240-133902-2 **Client Sample ID: TRIP BLANK**

Date Collected: 07/22/20 00:00 **Matrix: Water**

Date Received: 07/24/20 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			444731	07/29/20 13:50	LEE	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-133902-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-20
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

-

4

6

0

9

10

12

13

7, / C Chain of Custody Record

TestAmerica Laboratory location: N.Canton --- 4101 Shuffel Street NW/ North Canton, OH 44720 / 330-497-9396

Company Name: Arcadis																								
111111111111111111111111111111111111111	Client Project	Client Project Manager: Kris Hinskey	Inskey				Site (ontact	Site Contact: Angela DeGrandis	a DeG	andis			Lab	Conta	t: Mike	Lab Contact: Mike DelMonico	onico						COC No:
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240	8-994-2240					Telep	hone:	Telephone: 734-320-0065	0-0065				Tel	phone	: 330-4	Telephone: 330-497-9396	9						1 of 1 COCs
City/State/Zip: Novi, MI, 48377	Email: kristoffe	Email: kristoffer.hinskey@arcadis.com	dis.con	-			L	Analy	esis Turi	naroun	Analysis Turnaround Time		-	H					Analyses	Si		100		For lab use only
Phone: 248-994-2240							_								_	_						-	_	Walk-in client
Project Name: Ford LTP									I.S.	5 Day				-00						1				
Project Number: 30050315.302.01	Method of Ship	Method of Shipment/Carrier:	JAKES A											ID.	_	80			80	MIS				Lab sampling
PO#30050315.302.01	Shipping/Tracking No:	ding No:					_								_	978			978	809	-	_	_	
				Ma	Matrix			Conta	iners &	Prese	Containers & Preservatives		-			CE			əpi	78 ə	_		_	Jop/SDG No:
Sample Identification	Sample Date	Sample Date Sample Time	N/A	suoeup/ fuemibed	pilos	:19dfC	12504	EONH	HCI	\2An2	Jupres	:19thC	Filtere	Compo	cis-1,2-DCE	J-S,£-2ne1T	PCE 82608	TCE 8260B	Vinyl Chlor	nexoid-4,1		-		Sample Specific Notes / Special Instructions:
SUMP-12034BREWSTER-01_072220	7/22/2020	17:05	-	-	-			-	\vdash	1			z	×	1	×	×	×	×	×	-	-	-	
Trip Blank				×					+	-	†		T	+	H	-	Ц					-	+	
				-				I														-	-	
				-																		-	+	
				-				1														-	+	
				-					24	0-133	240-133902 Chain of Custody	hain o	f Cus	tody										
				-				-		_							1							
				-					-	_				-	_	L	_							
				+										+		-						+	-	
Possibl	Possible Hazard Identification		1	+	1		1	1	1	1	1	Sampl	e Disp	Sal (A	ee ma	, be ass	essed	fsamp	les are	retaine	d longer	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)	
X Non-Hazard Flammable	Skin Irritant	oison B	Unknown										æ	Return to Client	Client	×	X Disposal By Lab	By Lat	-	Archive For	For	Months		

100

Date/ Time: 7/23120

Date/ Time:

linquished by: finguished by

Company: Arcadis

VOA Sample Preservation - Date/Time VOAs Frozen:

were further preserved in the laboratory.

19. SAMPLE PRESERVATION

Time preserved: Preservative(s) added/Lot number(s):

Sample(s)_

WI-NC-099

DATA VERIFICATION REPORT

July 31, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30050315.0302.01 off site

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 133902-1 Sample date: 2020-07-22

Report received by CADENA: 2020-07-31

Initial Data Verification completed by CADENA: 2020-07-31

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 133902-1

	Sample Name:	SUMP-12	:034BREV	VSTER-01	1_072220	TRIP BLA	ANK		
	Lab Sample ID:	2401339	021			2401339	9022		
	Sample Date:	7/22/202	20			7/22/20	20		
			Report		Valid		Report		Valid
Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
rachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
ns-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
hloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
yl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>m</u>									
-Dioxane	123-91-1	ND	2.0	ug/l					
	Analyte -Dichloroethene 1,2-Dichloroethene rachloroethene ns-1,2-Dichloroethene chloroethene yl chloride m -Dioxane	Lab Sample ID: Sample Date: Cas No. -Dichloroethene 75-35-4 1,2-Dichloroethene 156-59-2 rachloroethene 127-18-4 ns-1,2-Dichloroethene 156-60-5 chloroethene 79-01-6 yl chloride 75-01-4	Lab Sample ID: 2401339 Sample Date: 7/22/202 Analyte Cas No. Result -Dichloroethene 75-35-4 ND 1,2-Dichloroethene 156-59-2 ND rachloroethene 127-18-4 ND ns-1,2-Dichloroethene 156-60-5 ND chloroethene 79-01-6 ND yl chloride 75-01-4 ND	Lab Sample ID: 2401339021 Sample Date: 7/22/2020 Report Analyte Cas No. Result Limit -Dichloroethene 75-35-4 ND 1.0 1,2-Dichloroethene 156-59-2 ND 1.0 rachloroethene 127-18-4 ND 1.0 ns-1,2-Dichloroethene 156-60-5 ND 1.0 chloroethene 79-01-6 ND 1.0 chloroethene 75-01-4 ND 1.0	Lab Sample ID: 2401339021 Sample Date: 7/22/2020 Report Analyte Cas No. Result Limit Units -Dichloroethene 75-35-4 ND 1.0 ug/l 1,2-Dichloroethene 156-59-2 ND 1.0 ug/l rachloroethene 127-18-4 ND 1.0 ug/l ns-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l chloroethene 79-01-6 ND 1.0 ug/l cyl chloride 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401339021 Sample Date: 7/22/2020 Report Valid Analyte Cas No. Result Limit Units Qualifier -Dichloroethene 75-35-4 ND 1.0 ug/l 1,2-Dichloroethene 156-59-2 ND 1.0 ug/l rachloroethene 127-18-4 ND 1.0 ug/l ras-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l thloroethene 79-01-6 ND 1.0 ug/l tyl chloride 75-01-4 ND 1.0 ug/l tyl chloride 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401339021 2401339 Sample Date: 7/22/2020 7/22/20 Report Valid Analyte Cas No. Result Limit Units Qualifier Result -Dichloroethene 75-35-4 ND 1.0 ug/l ND 1.2-Dichloroethene 156-59-2 ND 1.0 ug/l ND 1.3-1,2-Dichloroethene 127-18-4 ND 1.0 ug/l ND 1.3-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND 1.3-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND 1.3-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND 1.0-1 nd 1.0-	Lab Sample ID: 2401339021 2401339022 7/22/2020 7/22/2020 Report Valid Report Valid Report	Lab Sample ID: Sample Date: 2401339021 2401339022 7/22/2020 7/22/2020 7/22/2020 7/22/2020 7/22/2020 7/22/2020 7/22/2020 Report Valid Report Report Units Qualifier Result Limit Units Units Published Limit Units Units

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG #240-133902-1

CADENA Verification Report: 2020-07-31

Analyses Performed By:

TestAmerica Canton, Ohio

Report #38091R Review Level: Tier III Project: 30050315.302.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-133902-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample		Į.	Analysis	
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)	MISC
240-133902-1	SUMP- 12034BREWSTER- 01_072220	240-133902-1	Water	7/22/2020		Х	Х	
	TRIP BLANK	240-133902-2	Water	7/22/2020		Х		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		X	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		X	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETE	RY (GC/N	/IS)			
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation	·	·			
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		X	
Continuing calibration RRFs		Х		X	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		X	
Ion abundance criteria for each instrument used		Х		X	
Internal standard		Х		X	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		X	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:

DATE: August 31, 2020

a Kaza

PEER REVIEW: Joseph C. Houser

DATE: September 2, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

7, / C Chain of Custody Record

TestAmerica Laboratory location: N.Canton --- 4101 Shuffel Street NW/ North Canton, OH 44720 / 330-497-9396

Company Name: Arcadis																								
	Client Project	Client Project Manager: Kris Hinskey	linskey				Site Co	ontact:	Site Contact: Angela DeGrandis	DeGra	udis			Lab	Contac	E: Mike	Lab Contact: Mike DelMonico	ojico						COC No:
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240	8-994-2240					Telepi	Tone: 7	Telephone: 734-320-0065	-0065				Tele	phone	330-45	Telephone: 330-497-9396							1 of 1 COCs
City/State/Zip: Novi, MI, 48377	Email: kristoffe	Email: kristoffer.hinskey@arcadis.com	dis.com				L	Analys	Analysis Turnaround Time	around	Time	-	1	L				A	Analyses					For lab use only
Phone: 248-994-2240						1						(1									-			Walk-in client
Project Name: Ford LTP	Γ								5 Day	AR.		4//								1	_			
Project Number: 30050315.302.01	Method of Shi	Method of Shipment/Carrier:	0.00				_					1 9				80				WIS	_			Lab sampling
PO#30050315.302.01	Shipping/Tracking No:	king No:										uut			809	978				809				
				Ma	Matrix			Contain	Containers & Preservatives	Preserv	ratives	o Pi	-		85	CE				78 ə				Job/SDG No:
Sample Identification	Sample Date	Sample Date Sample Time	N/A	suoaup/ fuamipad	pilos	:19dfC	#OSZH	HCI	HOSN	\2An3	Jupres	:nehtC	Filtere	1,1-DCE 82	cis-1,2-DCE	J-S,£-2ne1T	PCE 82608	TCE 8260B	Vinyl Chlor	nexoiQ-4,1				Sample Specific Notes / Special Instructions:
SUMP-12034BREWSTER-01_072220	7/22/2020	17:05	-	-	-		-	-	\vdash		_	Н	2	\vdash	×	×	×	×	×	×	-	L		
Trip Blank				×				-	+	1	+	+	+	+	Ц					-	-	-		
				-				T													-	-		
				-																-	-			
				-				1													-			
				-					240	-1339	240-133902 Chain of Custody	ain of	Cust	ody										
								2	-		-													
				-				-					-											
				-				+			+		+											
Possibl	Possible Hazard Identification		1	+	1		1	1	1	1	1	sample	Dispos	sal (A fe	e may	be asse	ssed if	Sample	s are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	onger th	han 1 m	nonth)	
X Non-Hazard Flammable	Skin Irritant	oison B	Unknown										Ret	Return to Client	Client	X	X Disposal By Lab	By Lab	A	Archive For	or M	Months		

100

Date/ Time: 7/23120

Date/ Time:

linquished by: finguished by

Company: Arcadis

Client Sample Results

Job ID: 240-133902-1 Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP

Analyte

Client Sample ID: SUMP-12034BREWSTER-01_072220 Lab Sample ID: 240-133902-1

Date Collected: 07/22/20 17:05 Date Received: 07/24/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Method: 8260B SIM - Volatile	Organic Co	mpounds	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86 ug/L			07/29/20 13:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		70 - 133				07/29/20 13:12	1

RL

MDL Unit

Prepared

1,1-Dichloroethene	1.0	U	1.0	0.46	ug/L		07/29/20 13:28	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.38	ug/L		07/29/20 13:28	1
Tetrachloroethene	1.0	U	1.0	0.33	ug/L		07/29/20 13:28	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.43	ug/L		07/29/20 13:28	1
Trichloroethene	1.0	U	1.0	0.36	ug/L		07/29/20 13:28	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L		07/29/20 13:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 130				07/29/20 13:28	1
4-Bromofluorobenzene (Surr)	87		47 - 134				07/29/20 13:28	1
Toluene-d8 (Surr)	95		69 - 122				07/29/20 13:28	1
Dibromofluoromethane (Surr)	84		78 - 129				07/29/20 13:28	1

Matrix: Water

Dil Fac

Analyzed

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-133902-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK

Date Collected: 07/22/20 00:00 Date Received: 07/24/20 09:30

Lab Sample ID: 240-133902-2

Matrix: Water

Method: 8260B - Volatile O Analyte	•	unds (GC/ Qualifier	MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0		1.0		ug/L			07/29/20 13:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.38	ug/L			07/29/20 13:50	1
Tetrachloroethene	1.0	U	1.0	0.33	ug/L			07/29/20 13:50	1
trans-1,2-Dichloroethene	1.0	Ü	1.0	0.43	ug/L			07/29/20 13:50	1
Trichloroethene	1.0	U	1.0	0.36	ug/L			07/29/20 13:50	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			07/29/20 13:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 130					07/29/20 13:50	1
4-Bromofluorobenzene (Surr)	89		47 - 134					07/29/20 13:50	1
Toluene-d8 (Surr)	97		69 - 122					07/29/20 13:50	1
Dibromofluoromethane (Surr)	83		78 - 129					07/29/20 13:50	1