

THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

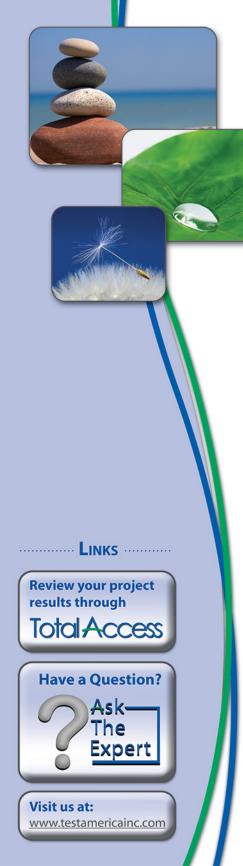
#### TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

#### TestAmerica Job ID: 240-106465-2 Client Project/Site: Ford LTP Livonia MI - E203631

### For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377


Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 1/17/2019 10:50:54 AM Michael DelMonico, Project Manager I (330)497-9396 michael.delmonico@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Method Summary         | 5  |
| Sample Summary         | 6  |
| Detection Summary      | 7  |
| Client Sample Results  | 8  |
| Surrogate Summary      | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 13 |
| Lab Chronicle          | 14 |
| Certification Summary  | 15 |
| Chain of Custody       | 16 |
|                        |    |

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

3

#### Qualifiers

#### **GC/MS VOA**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

#### Glossary

| Quaimer        |                                                                                                             |    |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
| Glossary       |                                                                                                             | 6  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        | 8  |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      | 9  |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   | 10 |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               | 11 |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                | 12 |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                | 12 |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           | 13 |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      | 14 |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
|                |                                                                                                             |    |

TEQ Toxicity Equivalent Quotient (Dioxin)

**TestAmerica** Canton

1/17/2019

#### Job ID: 240-106465-2

#### Laboratory: TestAmerica Canton

Narrative

#### CASE NARRATIVE

#### Client: ARCADIS U.S., Inc.

#### Project: Ford LTP Livonia MI - E203631

#### Report Number: 240-106465-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

#### RECEIPT

The samples were received on 1/3/2019 8:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

#### VOLATILE ORGANIC COMPOUNDS (GCMS)

Sample MW-115S\_122618 (240-106465-1) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 01/08/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-115S\_122618 (240-106465-1) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 01/08/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

| Method    | Method Description                 | Protocol | Laboratory |
|-----------|------------------------------------|----------|------------|
| 8260B     | Volatile Organic Compounds (GC/MS) | SW846    | TAL CAN    |
| 8260B SIM | Volatile Organic Compounds (GC/MS) | SW846    | TAL CAN    |
| 5030B     | Purge and Trap                     | SW846    | TAL CAN    |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

### Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-106465-2

|               |                  | / -    |                |                |
|---------------|------------------|--------|----------------|----------------|
| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
| 240-106465-1  | MW-115S_122618   | Water  | 12/26/18 11:35 | 01/03/19 08:35 |

#### **Detection Summary**

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

| Client Sample ID: MV | N-115S_122618 |     |      |        | Lab Sar   | nple ID: 2 | 240-106465-1 |
|----------------------|---------------|-----|------|--------|-----------|------------|--------------|
| Analyte              | Result Qu     |     |      | L Unit | Dil Fac [ | D Method   | Prep Type    |
| Vinyl chloride       | 2.7           | 1.0 | 0.20 | 0 ug/L | 1         | 8260B      | Total/NA     |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |
|                      |               |     |      |        |           |            |              |

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 240-106465-1

Matrix: Water

5 6

**8** 9

#### Client Sample ID: MW-115S\_122618

#### Date Collected: 12/26/18 11:35 Date Received: 01/03/19 08:35

| Method: 8260B SIM - Volat<br>Analyte | •            | mpounds<br>Qualifier | ( <mark>GC/MS)</mark><br>RL | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------------------------------|--------------|----------------------|-----------------------------|------|------|---|----------|----------------|---------|
| 1,4-Dioxane                          | 2.0          |                      | 2.0                         |      | ug/L |   | Fiepaleu | 01/08/19 18:17 | 1       |
| .,                                   | 2.0          | •                    |                             | 0.00 | ~9·= |   |          |                | •       |
| Surrogate                            | %Recovery    | Qualifier            | Limits                      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)         | 118          |                      | 63 - 125                    |      |      |   |          | 01/08/19 18:17 | 1       |
| _<br>Method: 8260B - Volatile O      | rganic Compo | unds (GC/            | MS)                         |      |      |   |          |                |         |
| Analyte                              | -            | Qualifier            | RL                          | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1-Dichloroethene                   | 1.0          | U                    | 1.0                         | 0.19 | ug/L |   |          | 01/08/19 12:46 | 1       |
| cis-1,2-Dichloroethene               | 1.0          | U                    | 1.0                         | 0.16 | ug/L |   |          | 01/08/19 12:46 | 1       |
| Tetrachloroethene                    | 1.0          | U                    | 1.0                         | 0.15 | ug/L |   |          | 01/08/19 12:46 | 1       |
| trans-1,2-Dichloroethene             | 1.0          | U                    | 1.0                         | 0.19 | ug/L |   |          | 01/08/19 12:46 | 1       |
| Trichloroethene                      | 1.0          | U                    | 1.0                         | 0.10 | ug/L |   |          | 01/08/19 12:46 | 1       |
| Vinyl chloride                       | 2.7          |                      | 1.0                         | 0.20 | ug/L |   |          | 01/08/19 12:46 | 1       |
| Surrogate                            | %Recovery    | Qualifier            | Limits                      |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)         | 100          |                      | 70 - 121                    |      |      |   |          | 01/08/19 12:46 | 1       |
| 4-Bromofluorobenzene (Surr)          | 62           |                      | 59 - 120                    |      |      |   |          | 01/08/19 12:46 | 1       |
| Toluene-d8 (Surr)                    | 83           |                      | 70 - 123                    |      |      |   |          | 01/08/19 12:46 | 1       |
| Dibromofluoromethane (Surr)          | 108          |                      | 75 - 128                    |      |      |   |          | 01/08/19 12:46 | 1       |

Prep Type: Total/NA

8 9

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

|                       |                        |          | Pe       | ercent Surro | ogate Recovery (Ad | cceptance Limits) |
|-----------------------|------------------------|----------|----------|--------------|--------------------|-------------------|
|                       |                        | DCA      | BFB      | TOL          | DBFM               |                   |
| Lab Sample ID         | Client Sample ID       | (70-121) | (59-120) | (70-123)     | (75-128)           |                   |
| 240-106456-E-1 MS     | Matrix Spike           | 83       | 85       | 93           | 88                 |                   |
| 240-106456-H-1 MSD    | Matrix Spike Duplicate | 79       | 85       | 94           | 88                 |                   |
| 240-106465-1          | MW-115S_122618         | 100      | 62       | 83           | 108                |                   |
| LCS 240-363153/4      | Lab Control Sample     | 73       | 76       | 84           | 81                 |                   |
| MB 240-363153/6       | Method Blank           | 86       | 59       | 78           | 92                 |                   |
| Surrogate Legend      |                        |          |          |              |                    |                   |
| DCA = 1,2-Dichloroeth | ane-d4 (Surr)          |          |          |              |                    |                   |
| BFB = 4-Bromofluorob  | enzene (Surr)          |          |          |              |                    |                   |
| TOL = Toluene-d8 (Su  | rr)                    |          |          |              |                    |                   |
| DBFM = Dibromofluor   | omethane (Surr)        |          |          |              |                    |                   |

#### Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Matrix: Water

|                    |                        |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|----------|------------------------------------------------|
|                    |                        | DCA      |                                                |
| Lab Sample ID      | Client Sample ID       | (63-125) |                                                |
| 240-106456-F-1 MS  | Matrix Spike           | 119      |                                                |
| 240-106456-F-1 MSD | Matrix Spike Duplicate | 117      |                                                |
| 240-106465-1       | MW-115S_122618         | 118      |                                                |
| LCS 240-363230/4   | Lab Control Sample     | 116      |                                                |
| MB 240-363230/5    | Method Blank           | 118      |                                                |

DCA = 1,2-Dichloroethane-d4 (Surr)

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Matrix Spike** 

Prep Type: Total/NA

# Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

## Method: 8260B - Volatile Organic Compounds (GC/MS)

#### Lab Sample ID: MB 240-363153/6 Matrix: Water Analysis Batch: 363153

| -                        | MB     | МВ        |     |           |   |          |                |         |
|--------------------------|--------|-----------|-----|-----------|---|----------|----------------|---------|
| Analyte                  | Result | Qualifier | RL  | MDL Unit  | D | Prepared | Analyzed       | Dil Fac |
| 1,1-Dichloroethene       | 1.0    | U         | 1.0 | 0.19 ug/L |   |          | 01/08/19 10:03 | 1       |
| cis-1,2-Dichloroethene   | 1.0    | U         | 1.0 | 0.16 ug/L |   |          | 01/08/19 10:03 | 1       |
| Tetrachloroethene        | 1.0    | U         | 1.0 | 0.15 ug/L |   |          | 01/08/19 10:03 | 1       |
| trans-1,2-Dichloroethene | 1.0    | U         | 1.0 | 0.19 ug/L |   |          | 01/08/19 10:03 | 1       |
| Trichloroethene          | 1.0    | U         | 1.0 | 0.10 ug/L |   |          | 01/08/19 10:03 | 1       |
| Vinyl chloride           | 1.0    | U         | 1.0 | 0.20 ug/L |   |          | 01/08/19 10:03 | 1       |
|                          |        |           |     |           |   |          |                |         |

|                              | MB        | МВ        |          |          |                |         |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 86        |           | 70 - 121 |          | 01/08/19 10:03 | 1       |
| 4-Bromofluorobenzene (Surr)  | 59        |           | 59 - 120 |          | 01/08/19 10:03 | 1       |
| Toluene-d8 (Surr)            | 78        |           | 70 - 123 |          | 01/08/19 10:03 | 1       |
| Dibromofluoromethane (Surr)  | 92        |           | 75 - 128 |          | 01/08/19 10:03 | 1       |

#### Lab Sample ID: LCS 240-363153/4 Matrix: Water Analysis Batch: 363153

|                          | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,1-Dichloroethene       | 10.0  | 9.92   |           | ug/L |   | 99   | 65 - 139 |  |
| cis-1,2-Dichloroethene   | 10.0  | 9.49   |           | ug/L |   | 95   | 76 - 128 |  |
| Tetrachloroethene        | 10.0  | 9.56   |           | ug/L |   | 96   | 74 - 130 |  |
| trans-1,2-Dichloroethene | 10.0  | 10.3   |           | ug/L |   | 103  | 78 - 133 |  |
| Trichloroethene          | 10.0  | 8.39   |           | ug/L |   | 84   | 76 - 125 |  |
| Vinyl chloride           | 10.0  | 10.0   |           | ug/L |   | 100  | 58 - 143 |  |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 73        |           | 70 - 121 |
| 4-Bromofluorobenzene (Surr)  | 76        |           | 59 - 120 |
| Toluene-d8 (Surr)            | 84        |           | 70 - 123 |
| Dibromofluoromethane (Surr)  | 81        |           | 75 - 128 |

93

#### Lab Sample ID: 240-106456-E-1 MS Matrix: Water Analysis Batch: 363153

Toluene-d8 (Surr)

| Analysis Baton. 000100       |           |           |          |        |           |      |   |      |                     |  |
|------------------------------|-----------|-----------|----------|--------|-----------|------|---|------|---------------------|--|
|                              | Sample    | Sample    | Spike    | MS     | MS        |      |   |      | %Rec.               |  |
| Analyte                      | Result    | Qualifier | Added    | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1-Dichloroethene           | 1.0       | U         | 10.0     | 8.56   |           | ug/L |   | 86   | 53 - 140            |  |
| cis-1,2-Dichloroethene       | 1.0       | U         | 10.0     | 8.72   |           | ug/L |   | 87   | 64 - 130            |  |
| Tetrachloroethene            | 1.0       | U         | 10.0     | 9.43   |           | ug/L |   | 94   | 51 <sub>-</sub> 136 |  |
| trans-1,2-Dichloroethene     | 1.0       | U         | 10.0     | 9.48   |           | ug/L |   | 95   | 68 - 133            |  |
| Trichloroethene              | 0.23      | J         | 10.0     | 7.83   |           | ug/L |   | 76   | 55 - 131            |  |
| Vinyl chloride               | 1.0       | U         | 10.0     | 10.3   |           | ug/L |   | 103  | 43 <sub>-</sub> 154 |  |
|                              | MS        | MS        |          |        |           |      |   |      |                     |  |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |           |      |   |      |                     |  |
| 1,2-Dichloroethane-d4 (Surr) | 83        |           | 70 - 121 |        |           |      |   |      |                     |  |
| 4-Bromofluorobenzene (Surr)  | 85        |           | 59 - 120 |        |           |      |   |      |                     |  |

**TestAmerica** Canton

70 - 123

10

Lab Sample ID: 240-106456-E-1 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA MS MS Limits 75 - 128 88 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

#### Surrogate %Recovery Qualifier Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: 240-106456-H-1 MSD Matrix: Water nalveje Ratch: 363153

**Matrix: Water** 

Analysis Batch: 363153

| Analysis Batch: 363153       |           |           |          |        |           |      |   |      |          |     |       |
|------------------------------|-----------|-----------|----------|--------|-----------|------|---|------|----------|-----|-------|
|                              | Sample    | Sample    | Spike    | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
| Analyte                      | Result    | Qualifier | Added    | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,1-Dichloroethene           | 1.0       | U         | 10.0     | 8.67   |           | ug/L |   | 87   | 53 - 140 | 1   | 35    |
| cis-1,2-Dichloroethene       | 1.0       | U         | 10.0     | 8.95   |           | ug/L |   | 90   | 64 - 130 | 3   | 21    |
| Tetrachloroethene            | 1.0       | U         | 10.0     | 9.43   |           | ug/L |   | 94   | 51 - 136 | 0   | 23    |
| trans-1,2-Dichloroethene     | 1.0       | U         | 10.0     | 9.58   |           | ug/L |   | 96   | 68 - 133 | 1   | 24    |
| Trichloroethene              | 0.23      | J         | 10.0     | 7.97   |           | ug/L |   | 77   | 55 - 131 | 2   | 23    |
| Vinyl chloride               | 1.0       | U         | 10.0     | 10.1   |           | ug/L |   | 101  | 43 - 154 | 2   | 29    |
|                              | MSD       | MSD       |          |        |           |      |   |      |          |     |       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |           |      |   |      |          |     |       |
| 1,2-Dichloroethane-d4 (Surr) | 79        |           | 70 - 121 |        |           |      |   |      |          |     |       |
| 4-Bromofluorobenzene (Surr)  | 85        |           | 59 - 120 |        |           |      |   |      |          |     |       |
| Toluene-d8 (Surr)            | 94        |           | 70 - 123 |        |           |      |   |      |          |     |       |
| Dibromofluoromethane (Surr)  | 88        |           | 75 - 128 |        |           |      |   |      |          |     |       |

#### Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

| Lab Sample ID: MB 240-3<br>Matrix: Water           | 03230/3   |           |                |                   |         |      | One     | un oum   | ple ID: Method<br>Prep Type: To  |         |
|----------------------------------------------------|-----------|-----------|----------------|-------------------|---------|------|---------|----------|----------------------------------|---------|
| Analysis Batch: 363230                             |           |           |                |                   |         |      |         |          |                                  |         |
| -                                                  | MB        | MB        |                |                   |         |      |         |          |                                  |         |
| Analyte                                            | Result    | Qualifier | RL             | M                 | DL Unit | ſ    | D P     | repared  | Analyzed                         | Dil Fac |
| 1,4-Dioxane                                        | 2.0       | U         | 2.0            | 0.                | 86 ug/L |      |         |          | 01/08/19 14:51                   | 1       |
|                                                    | MB        | МВ        |                |                   |         |      |         |          |                                  |         |
| Surrogate                                          | %Recovery | Qualifier | Limits         |                   |         |      | P       | repared  | Analyzed                         | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)                       | 118       |           | 63 - 125       |                   |         |      |         |          | 01/08/19 14:51                   | 1       |
| Lab Sample ID: LCS 240-3                           | 363230/4  |           |                |                   |         | Clie | nt Sai  |          | : Lab Control S                  |         |
|                                                    |           |           |                |                   |         |      |         | IIDIE ID |                                  | sample  |
|                                                    |           |           |                |                   |         | Unc  | int Sai |          |                                  |         |
| Matrix: Water                                      |           |           |                |                   |         | Che  | int Gai |          | Prep Type: To                    |         |
| Matrix: Water                                      |           |           | Spike          | LCS L             | .cs     |      | int Gai |          |                                  |         |
| Matrix: Water                                      |           |           | Spike<br>Added | LCS L<br>Result 0 |         | Unit | D       | %Rec     | Prep Type: To                    |         |
| Matrix: Water<br>Analysis Batch: 363230            | ·         |           | •              |                   |         |      |         | ·        | Prep Type: To<br>%Rec.           |         |
| Matrix: Water<br>Analysis Batch: 363230<br>Analyte |           | <br>S     | Added          | Result C          |         | Unit |         | %Rec     | Prep Type: To<br>%Rec.<br>Limits |         |
| Matrix: Water<br>Analysis Batch: 363230<br>Analyte |           |           | Added          | Result C          |         | Unit |         | %Rec     | Prep Type: To<br>%Rec.<br>Limits |         |

10

#### Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

| Lab Sample ID: 240-1064<br>Matrix: Water                                      | 56-F-1 MS                      |                       |                |        |                  |                        | CI   | ient Sa                 | mple ID: I<br>Prep Tyj      |         |              |
|-------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------|--------|------------------|------------------------|------|-------------------------|-----------------------------|---------|--------------|
| Analysis Batch: 363230                                                        | Sample                         | Sample                | Spike          | MS     | MS               |                        |      |                         | %Rec.                       |         |              |
| Analyte                                                                       | •                              | Qualifier             | Added          |        | Qualifier        | Unit                   | D    | %Rec                    | Limits                      |         |              |
| 1,4-Dioxane                                                                   | 2.0                            | U                     | 10.0           | 9.96   |                  | ug/L                   |      | 100                     | 52 - 129                    |         |              |
|                                                                               | MS                             | MS                    |                |        |                  |                        |      |                         |                             |         |              |
| Surrogate                                                                     | %Recovery                      | Qualifier             | Limits         |        |                  |                        |      |                         |                             |         |              |
| 1,2-Dichloroethane-d4 (Surr)                                                  | 119                            |                       | 63 - 125       |        |                  |                        |      |                         |                             |         |              |
| Lab Sample ID: 240-1064                                                       |                                |                       |                |        |                  | Client                 | Samp | le ID: N                | latrix Spil                 | ke Dup  | licate       |
| -                                                                             | 56-F-1 MSD                     | Sampla                |                | Men    | MSD              | Client                 | Samp | le ID: N                | Prep Ty                     |         | al/NA        |
| Lab Sample ID: 240-1064<br>Matrix: Water<br>Analysis Batch: 363230            | 56-F-1 MSD<br>Sample           | Sample                | Spike          | -      | MSD              |                        |      |                         | Prep Typ<br>%Rec.           | pe: Tot | al/NA        |
| Lab Sample ID: 240-1064<br>Matrix: Water                                      | 56-F-1 MSD<br>Sample           | Qualifier             |                | -      | MSD<br>Qualifier | Client<br>Unit<br>ug/L | Samp | le ID: N<br>%Rec<br>113 | Prep Ty                     |         | al/NA        |
| Lab Sample ID: 240-1064<br>Matrix: Water<br>Analysis Batch: 363230<br>Analyte | 56-F-1 MSD<br>Sample<br>Result | Qualifier             | Spike<br>Added | Result | -                | Unit                   |      | %Rec                    | Prep Typ<br>%Rec.<br>Limits | RPD     | RPD<br>Limit |
| Lab Sample ID: 240-1064<br>Matrix: Water<br>Analysis Batch: 363230<br>Analyte | Sample<br>Result<br>2.0        | Qualifier<br>U<br>MSD | Spike<br>Added | Result | -                | Unit                   |      | %Rec                    | Prep Typ<br>%Rec.<br>Limits | RPD     | RPD<br>Limit |

## **QC** Association Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-106465-2

#### GC/MS VOA

#### Analysis Batch: 363153

| Lab Sample ID                                    | Client Sample ID                                   | Prep Type             | Matrix          | Method                 | Prep Batch |
|--------------------------------------------------|----------------------------------------------------|-----------------------|-----------------|------------------------|------------|
| 240-106465-1                                     | MW-115S_122618                                     | Total/NA              | Water           | 8260B                  |            |
| MB 240-363153/6                                  | Method Blank                                       | Total/NA              | Water           | 8260B                  |            |
| LCS 240-363153/4                                 | Lab Control Sample                                 | Total/NA              | Water           | 8260B                  |            |
| 240-106456-E-1 MS                                | Matrix Spike                                       | Total/NA              | Water           | 8260B                  |            |
| 240-106456-H-1 MSD                               | Matrix Spike Duplicate                             | Total/NA              | Water           | 8260B                  |            |
| nalysis Batch: 3632                              | 230                                                |                       |                 |                        |            |
| nalysis Batch: 3632                              | 230<br>Client Sample ID                            | Ргер Туре             | Matrix          | Method                 | Prep Batch |
|                                                  |                                                    | Prep Type<br>Total/NA | Matrix<br>Water | Method<br>8260B SIM    | Prep Batch |
| Lab Sample ID                                    | Client Sample ID                                   | · · · ·               |                 |                        | Prep Batch |
| Lab Sample ID<br>240-106465-1<br>MB 240-363230/5 | Client Sample ID<br>MW-115S_122618                 | Total/NA              | Water           | 8260B SIM              | Prep Batch |
| Lab Sample ID<br>240-106465-1                    | Client Sample ID<br>MW-115S_122618<br>Method Blank | Total/NA<br>Total/NA  | Water<br>Water  | 8260B SIM<br>8260B SIM | Prep Batcl |

Lab Sample ID: 240-106465-1

Matrix: Water

#### Client Sample ID: MW-115S\_122618 Date Collected: 12/26/18 11:35 Date Received: 01/03/19 08:35

|           | Batch    | Batch     |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|-----------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method    | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B     |     | 1        | 363153 | 01/08/19 12:46 | LEE     | TAL CAN |
| Total/NA  | Analysis | 8260B SIM |     | 1        | 363230 | 01/08/19 18:17 | SAM     | TAL CAN |

#### Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-106465-2

#### Laboratory: TestAmerica Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority             | Program       | EPA Region | Identification Number | Expiration Date |     |
|-----------------------|---------------|------------|-----------------------|-----------------|-----|
| California            | State Program | 9          | 2927                  | 02-23-19 *      |     |
| Connecticut           | State Program | 1          | PH-0590               | 12-31-19        |     |
| Florida               | NELAP         | 4          | E87225                | 06-30-19        |     |
| Illinois              | NELAP         | 5          | 200004                | 07-31-19        |     |
| Kansas                | NELAP         | 7          | E-10336               | 04-30-19        |     |
| Kentucky (UST)        | State Program | 4          | 58                    | 02-23-19 *      |     |
| Kentucky (WW)         | State Program | 4          | 98016                 | 12-31-19        |     |
| Minnesota             | NELAP         | 5          | 039-999-348           | 12-31-19 *      |     |
| Minnesota (Petrofund) | State Program | 1          | 3506                  | 07-31-19        |     |
| Nevada                | State Program | 9          | OH00048               | 07-31-19        |     |
| New Jersey            | NELAP         | 2          | OH001                 | 06-30-19        |     |
| New York              | NELAP         | 2          | 10975                 | 03-31-19 *      |     |
| Ohio VAP              | State Program | 5          | CL0024                | 09-06-19        |     |
| Oregon                | NELAP         | 10         | 4062                  | 02-23-19 *      |     |
| Pennsylvania          | NELAP         | 3          | 68-00340              | 08-31-19 *      |     |
| Texas                 | NELAP         | 6          | T104704517-18-10      | 08-31-19        |     |
| JSDA                  | Federal       |            | P330-16-00404         | 12-28-19        |     |
| /irginia              | NELAP         | 3          | 460175                | 09-14-19        |     |
| Washington            | State Program | 10         | C971                  | 01-12-20 *      | - I |
| West Virginia DEP     | State Program | 3          | 210                   | 12-31-19        |     |

\* Accreditation/Certification renewal pending - accreditation/certification considered valid.

| Client Information                                      | Constant                            |               |                            | 1 - C C C                                    |                                                   |                                                 |                             | 1000                                                                                                                   |
|---------------------------------------------------------|-------------------------------------|---------------|----------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                         | sampler. Jon                        | Lust          |                            | DelMo                                        | Lab PM:<br>DelMonico, Michael                     |                                                 | Carrier Tracking No(s):     | COC No:<br>240-56713-24439.10                                                                                          |
| Client Contact:<br>Angela DeGrandis                     | Phone: 249-                         | 1             | 8495                       |                                              | l.delmonico(                                      | E-Mail:<br>michael.delmonico@testamericainc.com |                             | Page:<br>Page 10 of 13                                                                                                 |
| Company:<br>ARCADIS U.S., Inc.                          |                                     |               |                            |                                              |                                                   | Analysis Requested                              | equested                    | Job #.                                                                                                                 |
| Address:<br>28550 Cabot Drive Suite 500                 | Due Date Requested:                 | ed:           |                            |                                              | 1                                                 |                                                 |                             | 00                                                                                                                     |
| City<br>Novi<br>State, Zp:<br>MI, 48377                 | TAT Requested (days);<br>Stund a ro | ays):<br>arc) |                            |                                              | 17.5                                              |                                                 |                             | A THUL M. THRANE<br>B - NAOH N NONE<br>C - Zh Acetale O. AsNao2<br>D - Nitric Acid P - Na2O4S<br>E - NaHSO4 0 - Na2SO3 |
| Phone:                                                  | PO #:<br>MI001454.0003              |               |                            |                                              |                                                   |                                                 |                             | T                                                                                                                      |
| Email:<br>angela.degrandis@arcadis-us.com               | wo #:<br>Cadena #: E203631          | 3631          |                            | N 10 S                                       |                                                   |                                                 |                             | I - Ice<br>J - DI Water                                                                                                |
| Project Name:<br>Ford LTP Livonia MI - E203631<br>Site: | Project #:<br>24015353<br>SSOW#:    |               |                            | 10X) 9000                                    | hort List)                                        |                                                 |                             | K - EDTA<br>L - EDA<br>Other:                                                                                          |
|                                                         | Common Date                         | Sample        | Sample<br>Type<br>(C=comp, | Matrix<br>(www.s=colid, IE<br>0=waateoli, IE | 2608_SIM - Loo<br>2608 - VOCs (S<br>פרלסריה MS/MS |                                                 |                             | otal Number o                                                                                                          |
|                                                         | and and miles                       |               | 01                         | -                                            | × A ×                                             |                                                 |                             | - special instructions/Note:                                                                                           |
| 81988-1123-11-MW                                        | 13-36-18                            | 1135          | 6                          | Water N                                      | 5 3                                               |                                                 |                             | 9                                                                                                                      |
| 8 1920-19361 8                                          | 81-98-61                            | 8 1H1         | 6                          | Water N                                      | N 3 3                                             |                                                 |                             | 9                                                                                                                      |
| 412-1175-123618                                         | 19-96-18                            | 1630          | G                          | Water 2                                      | 12 3 3                                            |                                                 |                             | 6                                                                                                                      |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   | 240-106465 C                                    | 240-106465 Chain of Custody |                                                                                                                        |
|                                                         |                                     |               |                            | Water                                        |                                                   |                                                 |                             |                                                                                                                        |
| Possible Hazard Identification                          | ison B Unknown                      |               | Radiological               |                                              | Sample Di                                         | le Disposal ( A fee may be                      | assessed if samples ar      | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab  |
|                                                         |                                     |               |                            |                                              | Special Inst                                      | Special Instructions/DC Requirements            | And yse the                 | 11 DUE                                                                                                                 |
| Empty Kit Relinquished by:                              |                                     | Date:         |                            | Ŧ                                            | Time:                                             |                                                 | Method of Shiprifier        |                                                                                                                        |
| Reinquished by JOn Lus+                                 | 1                                   | 11/8          |                            | AMa dis                                      |                                                   | 1 cord                                          | Storge Date The             | Revendent 2/1750 Company                                                                                               |
| Ardinicol Storage (Mran MU                              | Date/Time:                          | = -           | 4                          | Precedis<br>company                          |                                                   | Received by: A                                  | Date/Time                   | 119 1178 -                                                                                                             |
| Custody Seals Intact Custody Seal No.:<br>A Yes A No    |                                     |               |                            |                                              |                                                   | Cooler Remperature(s) "Cand Other               | Remarks:                    | 110                                                                                                                    |

| TestAmerica Canton Sample Receipt Form/Narrative<br>Canton Facility                                     | Login # : 1012465                            |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                         | Cooler unpacked by:                          |
|                                                                                                         |                                              |
|                                                                                                         |                                              |
|                                                                                                         | nerica Courier Other                         |
|                                                                                                         | rage Location                                |
| TestAmerica Cooler # Foam Box Client Cooler Box                                                         |                                              |
| Packing material used: Bubble Wrap Foam Plastic Bag None<br>COOLANT: Wet Ice Blue Ice Dry Ice Water Non | e                                            |
| IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Com                                                  | Multiple Cooler Form<br>rected Cooler Temp°C |
| IR GUN #36 (CF +0°C) Observed Cooler Temp°C Correct                                                     |                                              |
| 2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quanti                             | ity Ves No                                   |
| -Were the seals on the outside of the cooler(s) signed & dated?                                         | Yes No NA                                    |
| -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg                                   |                                              |
| -Were tamper/custody seals intact and uncompromised?                                                    | Yes No NA                                    |
| . Shippers' packing slip attached to the cooler(s)?                                                     | Yes No                                       |
| Did custody papers accompany the sample(s)?                                                             | Ye No                                        |
| Were the custody papers relinquished & signed in the appropriate place?                                 | Yes No Tests that are not checked for pH by  |
| Was/were the person(s) who collected the samples clearly identified on the                              | ne COC? (Yes) No Receiving:                  |
| . Did all bottles arrive in good condition (Unbroken)?                                                  | Yes No                                       |
| Could all bottle labels be reconciled with the COC?                                                     | VOAs VOAs                                    |
| . Were correct bottle(s) used for the test(s) indicated?                                                | (Yes) No Oil and Grease                      |
| 0. Sufficient quantity received to perform indicated analyses?                                          | Yes No TOC                                   |
| 1. Are these work share samples?                                                                        | Yes, No                                      |
| If yes, Questions 12-16 have been checked at the originating laboratory.                                | 105 100                                      |
| <ol> <li>Were all preserved sample(s) at the correct pH upon receipt?</li> </ol>                        | Yes No (NA) pH Strip Lot# HC854592           |
| 3. Were VOAs on the COC?                                                                                | Yes No                                       |
| <ol> <li>Were air bubbles &gt;6 mm in any VOA vials?</li> <li>Larger than this.</li> </ol>              |                                              |
| <ol> <li>Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #</li> </ol>                     |                                              |
|                                                                                                         |                                              |
| 6. Was a LL Hg or Me Hg trip blank present?                                                             | 103 110                                      |
| Contacted PM Date by                                                                                    | via Verbal Voice Mail Other                  |
| Concerning                                                                                              |                                              |
| T CHARLOE CHOTODY & CAMPLE DISCREDANCIES                                                                | Samples processed by:                        |
| 7. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES                                                              | JR.                                          |
|                                                                                                         |                                              |
|                                                                                                         |                                              |
| 8. SAMPLE CONDITION                                                                                     | 1 11 11 <sup>1</sup> 1 1 1                   |
| ample(s) were received after the received                                                               | ommended holding time had expired.           |
| ample(s)                                                                                                | _ were received in a broken container.       |
| ample(s) were received with                                                                             | bubble >6 mm in diameter. (Notify PM)        |
| 9. SAMPLE PRESERVATION                                                                                  |                                              |
| ample(s)                                                                                                | were further preserved in the laboratory     |
| ime preserved: Preservative(s) added/Lot number(s):                                                     |                                              |
|                                                                                                         |                                              |
| 9. SAMPLE PRESERVATION Sample(s) Time preserved: Preservative(s) added/Lot number(s):                   | were further preserved in the laborator      |

| anton Facility<br>Cooler #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IR Gun #                                                                                                             | Observed Temp<br>°C | Corrected Temp<br>°C                                                                                             | Coola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                   | 1,4                 | 1.4                                                                                                              | ICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | 3.2                 | 3.2                                                                                                              | - su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A CONTRACTOR OF A CONTRACT |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                    |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | Law and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     | and the same first think to a series of the same                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contraction of the second                                                                                            | A                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     | and the second | nna an an an ann an an an an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngeneral men dingen die strangen werden die die die strangen die strangen die strangen die strangen die strang       |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a de la constante de la constan<br>P |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A CONTRACTOR OF A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                     |                                                                                                                  | there are been to use of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an a                                                                             |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | at a state of the state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | an transfer and the second statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Outer House which will are designed in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an a subset of the second of                                                                                         |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                     |                                                                                                                  | The local design of the lo |

X:X-Drive Document Control/SOPs/Work Instructions/Word Version Work Instructions/WI-NC-099H-071615 Cooler Receipt Form\_page 2 - Multiple Coolers.doc rls

 January 18, 2019



Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: TestAmerica - North Canton Laboratory submittal: 106465-2 Sample date: 2018-12-26 Report received by CADENA: 2019-01-17 Initial Data Verification completed by CADENA: 2019-01-18

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

1 Water sample(s) was analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

# **CADENA Valid Qualifiers**

| Valid<br>Qualifiers | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <                   | Less than the reported concentration.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| >                   | Greater than the reported concentration.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| В                   | The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration. |
| Е                   | The analyte / Compound reported exceeds the calibration range and is considered estimated.                                                                                                                                                                                                                                                                                                                                                                 |
| EMPC                | Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.                                                                                                                                                                                                                                                                                                                                                                                    |
| J                   | Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.                     |
| J-                  | The result is an estimated quantity, but the result may be biased low.                                                                                                                                                                                                                                                                                                                                                                                     |
| JB                  | NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED                                                                                                                                                                                                                                                                                                                                                                                                     |
| JH                  | The sample result is considered estimated and is potentially biased high.                                                                                                                                                                                                                                                                                                                                                                                  |
| JL                  | The sample result is considered estimated and is potentially biased low.                                                                                                                                                                                                                                                                                                                                                                                   |
| JUB                 | NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED                                                                                                                                                                                                                                                                                                                                                                                                            |
| NJ                  | Tentatively identified compound with approximated concentration.                                                                                                                                                                                                                                                                                                                                                                                           |
| R                   | Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)                                                                                                                                                                                                                                                                                                                                                |
| TNTC                | Too Numerous to Count - Asbestos and Microbiological Results.                                                                                                                                                                                                                                                                                                                                                                                              |
| U                   | Indicates that the analyte / compound was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                  |
| UB                  | The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.                                       |
| UJ                  | The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.                                                                                                                              |

# Analytical Results Summary

CADENA Project ID: E203631 Laboratory: TestAmerica - North Canton Laboratory Submittal: 106465-2

|                  |                          | Sample Name:   | MW-115S_122618<br>2401064651 |       |       |           |
|------------------|--------------------------|----------------|------------------------------|-------|-------|-----------|
|                  |                          | Lab Sample ID: |                              |       |       |           |
|                  |                          | Sample Date:   | 12/26/2018                   |       |       |           |
|                  |                          |                | Report Valid                 |       |       | Valid     |
|                  | Analyte                  | Cas No.        | Result                       | Limit | Units | Qualifier |
| GC/MS VOC        |                          |                |                              |       |       |           |
| <u>OSW-8260B</u> |                          |                |                              |       |       |           |
|                  | 1,1-Dichloroethene       | 75-35-4        | ND                           | 1.0   | ug/l  |           |
|                  | cis-1,2-Dichloroethene   | 156-59-2       | ND                           | 1.0   | ug/l  |           |
|                  | Tetrachloroethene        | 127-18-4       | ND                           | 1.0   | ug/l  |           |
|                  | trans-1,2-Dichloroethene | 156-60-5       | ND                           | 1.0   | ug/l  |           |
|                  | Trichloroethene          | 79-01-6        | ND                           | 1.0   | ug/l  |           |
|                  | Vinyl chloride           | 75-01-4        | 2.7                          | 1.0   | ug/l  |           |
| OSW-8260BBSim    |                          |                |                              |       |       |           |
|                  | 1,4-Dioxane              | 123-91-1       | ND                           | 2.0   | ug/l  |           |