🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-112911-1

Client Project/Site: Ford LTP Livonia MI - E203631

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 5/31/2019 12:19:03 PM

Michael DelMonico, Project Manager I (330)497-9396 michael.delmonico@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

Definitions/Glossary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 Job ID: 240-112911-1

3

Qualifiers

G	C/	M	3 V	'OA	

Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
Х	Surrogate is outside control limits	

Glossary

GC/MS VOA Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	_
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
U	Indicates the analyte was analyzed for but not detected.	
х	Surrogate is outside control limits	
Glossary		_
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	δ
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
тгг	Toxicity Equivalent Factor (Dioxin)	

- Toxicity Equivalent Factor (Dioxin) TEF
- TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-112911-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Case Narrative

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-112911-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The sample was received on 5/18/2019 10:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Sample MW-171S_051319 (240-112911-1) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The sample was analyzed on 05/23/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-171S_051319 (240-112911-1) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 05/21/2019.

1,4-Dioxane was detected in method blank MB 240-382312/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 240-112911-1 MW-171S_051319 Water 05/13/19 14:50 05/20/19 10:15 4							
	Lab Sample ID	Client Sample ID	Mat	ix	Collected	Received	Asset ID
	240-112911-1	MW-171S_051319	Wat	er	05/13/19 14:50	05/20/19 10:15	

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 Job ID: 240-112911-1

Client Sample ID: MW-171S_051319 Lab Sample ID: 240-112911-1							
Analyte 1,4-Dioxane	ResultQualifier1.1J B	RL	MDL 0.86		Dil Fac D	Method 8260B SIM	Prep Type Total/NA

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: MW-171S_051319 Date Collected: 05/13/19 14:50 Date Received: 05/20/19 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,4-Dioxane	1.1	JB	2.0	0.86	ug/L			05/21/19 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		63 - 125			-		05/21/19 18:43	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	-	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/23/19 13:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/23/19 13:52	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/23/19 13:52	1
rans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/23/19 13:52	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/23/19 13:52	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/23/19 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 121			-		05/23/19 13:52	1
4-Bromofluorobenzene (Surr)	104		59 - 120					05/23/19 13:52	1
Toluene-d8 (Surr)	106		70 - 123					05/23/19 13:52	1
Dibromofluoromethane (Surr)	103		75 - 128					05/23/19 13:52	1

5/31/2019

Matrix: Water

Lab Sample ID: 240-112911-1

Surrogate Summary

Job ID: 240-112911-1

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

Client Sample ID Client Sample ID (70-121) (59-120) (70-123) (75-128) 240-112528-C-2 MSD Matrix Spike Duplicate 91 123 X 117 101 240-112528-D-2 MS Matrix Spike 92 126 X 115 99 240-112911-1 MW-171S_051319 97 104 106 103 LCS 240-382711/4 Lab Control Sample 88 110 109 96 MB 240-382711/6 Method Blank 99 113 113 106							пер туре. т	otai/IIA
Lab Sample ID Client Sample ID (70-121) (59-120) (70-123) (75-128) 240-112528-C-2 MSD Matrix Spike Duplicate 91 123 X 117 101 240-112528-D-2 MS Matrix Spike 92 126 X 115 99 240-112911-1 MW-171S_051319 97 104 106 103 LCS 240-382711/4 Lab Control Sample 88 110 109 96 MB 240-382711/6 Method Blank 99 113 113 106				Pe	ercent Surro	ogate Recovery (A	Acceptance Limits)	
240-112528-C-2 MSD Matrix Spike Duplicate 91 123 X 117 101 240-112528-D-2 MS Matrix Spike 92 126 X 115 99 240-112911-1 MW-171S_051319 97 104 106 103 LCS 240-382711/4 Lab Control Sample 88 110 109 96 MB 240-382711/6 Method Blank 99 113 113 106			DCA	BFB	TOL	DBFM		
240-112528-D-2 MS Matrix Spike 92 126 X 115 99 240-112911-1 MW-171S_051319 97 104 106 103 LCS 240-382711/4 Lab Control Sample 88 110 109 96 MB 240-382711/6 Method Blank 99 113 113 106	Lab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)		
240-112911-1 MW-171S_051319 97 104 106 103 .CS 240-382711/4 Lab Control Sample 88 110 109 96 MB 240-382711/6 Method Blank 99 113 113 106 Surrogate Legend	240-112528-C-2 MSD	Matrix Spike Duplicate	91	123 X	117	101		
CS 240-382711/4 Lab Control Sample 88 110 109 96 //B 240-382711/6 Method Blank 99 113 113 106 Surrogate Legend Surrogate Legend	40-112528-D-2 MS	Matrix Spike	92	126 X	115	99		
MB 240-382711/6 Method Blank 99 113 113 106 Surrogate Legend	240-112911-1	MW-171S_051319	97	104	106	103		
Surrogate Legend	_CS 240-382711/4	Lab Control Sample	88	110	109	96		
	MB 240-382711/6	Method Blank	99	113	113	106		
	Surrogate Legend							
DCA = 1,2-Dichloroethane-d4 (Surr)	DCA = 1,2-Dichloroeth	ane-d4 (Surr)						
BFB = 4-Bromofluorobenzene (Surr)	BFB = 4-Bromofluorob	enzene (Surr)						
TOL = Toluene-d8 (Surr)	TOL = Toluene-d8 (Su	rr)						
DBFM = Dibromofluoromethane (Surr)	DBFM = Dibromofluoro	omethane (Surr)						
	3 5	IM - Volatile Organic	Compoun	ds (GC/	MS)			
lethod: 8260B SIM - Volatile Organic Compounds (GC/MS)			poun				Prep Type: T	otal/NA
Iethod: 8260B SIM - Volatile Organic Compounds (GC/MS) Iatrix: Water P				_				

			Percent Surrogate Recovery (Acceptance Limits)	
		DCA		
Lab Sample ID	Client Sample ID	(63-125)		13
240-112905-C-1 MS	Matrix Spike	91		
240-112905-C-1 MSD	Matrix Spike Duplicate	87		
240-112911-1	MW-171S_051319	88		
LCS 240-382312/4	Lab Control Sample	84		
MB 240-382312/5	Method Blank	84		
Surragata Lagand				

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-382711/6 Matrix: Water Analysis Batch: 382711

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 05/23/19 08:16 1 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 05/23/19 08:16 1 Tetrachloroethene 1.0 U 1.0 0.15 ug/L 05/23/19 08:16 1 trans-1,2-Dichloroethene 0.19 ug/L 1.0 U 1.0 05/23/19 08:16 1 Trichloroethene 0.10 ug/L 1.0 U 1.0 05/23/19 08:16 1 Vinyl chloride 1.0 U 1.0 0.20 ug/L 05/23/19 08:16 1

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 121		05/23/19 08:16	1
4-Bromofluorobenzene (Surr)	113		59 - 120		05/23/19 08:16	1
Toluene-d8 (Surr)	113		70 - 123		05/23/19 08:16	1
Dibromofluoromethane (Surr)	106		75 - 128		05/23/19 08:16	1

Lab Sample ID: LCS 240-382711/4 Matrix: Water Analysis Batch: 382711

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	10.6		ug/L		106	65 - 139	
cis-1,2-Dichloroethene	10.0	10.7		ug/L		107	76 - 128	
Tetrachloroethene	10.0	9.20		ug/L		92	74 - 130	
trans-1,2-Dichloroethene	10.0	10.6		ug/L		106	78 - 133	
Trichloroethene	10.0	8.97		ug/L		90	76 - 125	
Vinyl chloride	10.0	11.1		ug/L		111	58 - 143	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		70 - 121
4-Bromofluorobenzene (Surr)	110		59 - 120
Toluene-d8 (Surr)	109		70 - 123
Dibromofluoromethane (Surr)	96		75 - 128

Lab Sample ID: 240-112528-C-2 MSD Matrix: Water Analysis Batch: 382711

Analysis Batch. 302711	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	10.0	10.8		ug/L		108	53 - 140	14	35
cis-1,2-Dichloroethene	1.0	U	10.0	10.0		ug/L		100	64 - 130	1	21
Tetrachloroethene	1.0	U	10.0	9.19		ug/L		92	51 - 136	8	23
trans-1,2-Dichloroethene	1.0	U	10.0	9.90		ug/L		99	68 - 133	2	24
Trichloroethene	1.0	U	10.0	8.89		ug/L		89	55 - 131	3	23
Vinyl chloride	3.2		10.0	14.8		ug/L		117	43 - 154	18	29
		MSD									
Surrogate	%Recoverv	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		70 - 121
4-Bromofluorobenzene (Surr)	123	X	59 - 120
Toluene-d8 (Surr)	117		70 - 123

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Eurofins TestAmerica, Canton

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-1125 Matrix: Water Analysis Batch: 382711	28-C-2 MSD					Client	Samp	le ID: N	latrix Spike Duplicate Prep Type: Total/NA
	MSD	MSD							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane (Surr)	101		75 - 128						
Lab Sample ID: 240-1125 Matrix: Water Analysis Batch: 382711	28-D-2 MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
,, ,	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	10.0	9.43		ug/L		94	53 - 140
cis-1,2-Dichloroethene	1.0	U	10.0	10.1		ug/L		101	64 - 130
Tetrachloroethene	1.0	U	10.0	8.52		ug/L		85	51 - 136
trans-1,2-Dichloroethene	1.0	U	10.0	9.70		ug/L		97	68 - 133
Trichloroethene	1.0	U	10.0	8.60		ug/L		86	55 ₋ 131
Vinyl chloride	3.2		10.0	12.4		ug/L		92	43 - 154
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	92		70 - 121						
4-Bromofluorobenzene (Surr)	126	Х	59 - 120						
Toluene-d8 (Surr)	115		70 - 123						
Dibromofluoromethane (Surr)	99		75 - 128						
Method: 8260B SIM - \	/olatile Or	ganic Co	mpounds	(GC/M	S)				
Lab Sample ID: MB 240-3 Matrix: Water Analysis Batch: 382312	82312/5	МВ МВ					Clie	ent San	nple ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.51	J	2.0	0.86	ug/L			05/21/19 12:01	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		63 - 125					05/21/19 12:01	1

Lab Sample ID: LCS 240-382312/4 Matrix: Water Analysis Batch: 382312

Analysis Batch: 382312			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane			10.0	12.7		ug/L		127	59 - 131	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	84		63 - 125							

Lab Sample ID: 240-11290 Matrix: Water Analysis Batch: 382312	5-C-1 MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
Andiysis Dalch. 302312	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	1.1	JB	10.0	12.2		ug/L		111	52 - 129

Eurofins TestAmerica, Canton

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

10

Job ID: 240-112911-1

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	91		63 - 125								
Lab Sample ID: 240-11290	5-C-1 MSD					Client	Samn		latrix Spil		licato
Matrix: Water						onent	oamp		Prep Ty		
Analysis Batch: 382312											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	1.1	JB	10.0	12.3		ug/L		112	52 - 129	1	13
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	87		63 - 125								

0-112911-1

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

GC/MS VOA

Analysis Batch: 382312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-112911-1	MW-171S_051319	Total/NA	Water	8260B SIM	
MB 240-382312/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-382312/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-112905-C-1 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-112905-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	
Analysis Batch: 382	711				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-112911-1	MW-171S_051319	Total/NA	Water	8260B	
MB 240-382711/6	Method Blank	Total/NA	Water	8260B	
LCS 240-382711/4	Lab Control Sample	Total/NA	Water	8260B	
240-112528-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
240-112528-D-2 MS	Matrix Spike	Total/NA	Water	8260B	

Eurofins TestAmerica, Canton

1 2 3 4 5 6 7 8 9 10 11 12 13

Job ID: 240-112911-1

Client Sample ID: MW-171S_051319 Date Collected: 05/13/19 14:50 Date Received: 05/20/19 10:15

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	382711	05/23/19 13:52	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	382312	05/21/19 18:43	SAM	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Lab Sample ID: 240-112911-1 Matrix: Water

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Job ID: 240-112911-1

Laboratory: Eurofins TestAmerica, Canton

-	s TestAmerica, Canton eld by this laboratory are listed. Not		cations are applicable to this	s report.	
Authority	Program	EPA Region	Identification Number	Expiration Date	
California	State Program	9	2927	02-23-20	
Connecticut	State Program	1	PH-0590	12-31-19	
Florida	NELAP	4	E87225	06-30-19 *	
Illinois	NELAP	5	200004	07-31-19 *	
Iowa	State Program	7	421	06-01-21	
Kansas	NELAP	7	E-10336	04-30-20	
Kentucky (UST)	State Program	4	58	02-23-20	
Kentucky (WW)	State Program	4	98016	12-31-19	
Minnesota	NELAP	5	039-999-348	12-31-19 *	
Minnesota (Petrofund)	State Program	1	3506	07-31-19 *	
Nevada	State Program	9	OH00048	07-31-19	
New Jersey	NELAP	2	OH001	06-30-19 *	
New York	NELAP	2	10975	03-31-20	
Ohio VAP	State Program	5	CL0024	09-06-19	
Oregon	NELAP	10	4062	02-23-20	
Pennsylvania	NELAP	3	68-00340	08-31-19 *	
Texas	NELAP	6	T104704517-18-10	08-31-19	
USDA	Federal		P330-16-00404	12-28-19	
Virginia	NELAP	3	460175	09-14-19	
Washington	State Program	10	C971	01-12-20 *	
West Virginia DEP	State Program	3	210	12-31-19	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton. OH 4720 Phone (330) 497-9396 Fax (330) 497-0772 1900	GAN ch	iin of C	ain of Custody Record	Record			\$	Centrofins Environment Testing Testing	200
	Sampler C. (1)	POURC	Delt	Lab PM: DelMonico, Michae	hael	Carrier Tracking No(s)		COC No: 240-60548-25803.1	-
Client Contact: Catitin ONeill	Phone geg)-	619-50	DOG E-Mail	ni: nael.de!mo	E-Mail: michael.de/monico@testamericainc.com	-	Pa P.	Page: 1	1
Company ARCADIS U.S. Inc					Analysis	Analysis Requested	or	Job #:	-
Address: 28550 Cabot Drive Suite 500	Due Date Requested:			100			Pr	des:	T
City: Novi	TAT Requested (days):	6							-
State, Zip: MI, 48377		C.		1					
Phone:	PO#: MT00:454,00	20000-1000	2	(0			LŰÍ	F - MeOH K - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	
Email: Caitlin, ONeill@arcadis.com	WO#: Cadena #: E203631								-
Project Name Ford LTP Livonia MI - E203631	Project #: 24015353				(1517			- EDA X - other (specify)	
sile 12101 Brewster	SSOW#:			I) asv	-			Other:	
Samula Identification	Samolo Date T	Sample (C=comp, Time G=crap)		ield Filtered erform MS/I 2608, 82608	5208 - VOCs		iedmuN leto	Constal Instantistican Materi	-
	1	1	Preservation Code:	X	-	A CONTRACTOR OF A CONTRACT		opecial instructions/Note;	T
915130-5171-WW	SIJA H	H50 6	Water	11 N 3	-		9		I
			Water				2		1
			Water						1
			Water						1
			Water						1
			Water						1
			Water						1
			Water		240-1	240-112911 Chain of Custody	Abo		1
			Water			-			1
			Water						1
			Water						1
ant 🗌	Poison B Unknown		lical	Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client	be assessed if sampl	les are retained Ion	l longer than 1 month) For Months	T
Deliverable Requested: I, II, III(IV) Other (specify)				Specie	Requir		stinsau Iro	HENDIH	1
Empty Kit Relinquished by:	Date:	10		Time:		Method of Shipment:	nent		T
Reinquestrat of Weal	5/13/19 1	1830	Accadis	8	Received by: Cold	Storade 5	5/13/19	/1830 Binadis	1
Relinquished by Carther O'Neler	S/17/19	2921	Hicadis		Received by		Date/Time: S-C7-19	1224 Company	
Custody Seals litited: Coefody Seal No.:	5-17-5	1530	ETA		Cooler Temperature(s) "C and Other Remarks.		-18-19	1015 Company	-
A Yes A No								010C9110	

.

TestAmerica Canton Sample Receipt Form/Narrative Logis Canton Facility	n#: 1129.11
Client Arcadis Site Name	Cooler unpacked by:
Cooler Received on 5-18-19 Opened on 5-18-19	A
FedEx: 1 st Grd (Exp) UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	- Culting
1. Cooler temperature upon receipt □ See Multiple Cooler For IR GUN# IR-8 (CF -0.2 °C) IR GUN #36 (CF +0.7°C) Observed Cooler Temp. °C Corrected Cooler Temp. °C Observed Cooler Temp. °C Corrected Cooler Temp. °C	emp. <u>/_0_</u> °C
-Were the seals on the outside of the cooler(s) signed & dated?Yes-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?Yes-Were tamper/custody seals intact and uncompromised?Yes	No No NA © No NA
	No
	Tests that are not
	No checked for pH by
	No Receiving:
 Did all bottles arrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? 	VOL
9. Were correct bottle(s) used for the test(s) indicated?	Oil and Grease
10. Sufficient quantity received to perform indicated analyses?	1 100
11. Are these work share samples? Yes	
If yes, Questions 12-16 have been checked at the originating laboratory.	0
	No NA pH Strip Lot# HC984738
	No
	No NA
	No
16. Was a LL Hg or Me Hg trip blank present? Yes	NO
Contacted PM Date by via Verbal V	oice Mail Other
Concerning	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
	JR
	¥
the second s	
	······································
18. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ing time had expired.
Sample(s) were received	in a broken container.
Sample(s) were received with bubble >6 mm i	n diameter. (Notify PM)
19. SAMPLE PRESERVATION	
Sample(s)were fur Time preserved:Preservative(s) added/Lot number(s):were fur	ther preserved in the laboratory.
I ime preserved: Preservative(s) added/Lot number(s):	
VOA Sample Preservation - Date/Time VOAs Frozen:	

DATA VERIFICATION REPORT

May 31, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Event Specific Scope of Work References: Sample COC Laboratory: TestAmerica - North Canton Laboratory submittal: 112911-1 Sample date: 2019-05-13 Report received by CADENA: 2019-05-31 Initial Data Verification completed by CADENA: 2019-05-31 Number of Samples:1 Sample Matrices: Water Test Categories: GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

MBK - GCMS VOC SIM QC batch 382312 method blank had a detection below the RL for the following analyte: 1,4-DIOXANE. The following client sample results should be considered to be non-detect at the RL and qualified with UB flags: -001.

GCMS VOC non-client MS and MSD SURROGATE recoveries were outliers biased high for at least 1 surrogate. Associated client sample results were non-detect so qualification was not required based on these high bias QC outliers.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

SAMPLING AND ANALYSIS SUMMARY

CADENA Project ID: E203631 Laboratory: TestAmerica-North Canton Laboratory Submittal: 112911-1

		Collection Date	Collection Time	Volatile Organics	8260B with Single	
Lab Sample ID	Sample ID	(mm/yy/dd)	(hh:mm:ss)	by GCMS	Ion Monitoring	Comment
2401129111	MW-1715_051319	5/13/2019	2:50:00	х	Х	

Qualified Results Summary

CADENA Project ID: E203631 Laboratory: TestAmerica - North Canton Laboratory Submittal: 112911-1

		Sample Name: Lab Sample ID: Sample Date:	MW-171 2401129 5/13/20	9111	19	
An	alyte	Cas No.	Result	Report Limit	Units	Valid Qualifier
GC/MS VOC <u>OSW-8260BBSim</u> 1,4-D	ioxane	123-91-1	1.1	2.0	ug/l	UB

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631 Laboratory: TestAmerica - North Canton Laboratory Submittal: 112911-1

		Sample Name: Lab Sample ID: Sample Date:	MW-172 2401129 5/13/20	_ 9111 19	19	Volid
	Analyte	Cas No.	Result	Report Limit	Units	Valid Qualifier
GC/MS VOC						
<u>OSW-826</u>	<u>0B</u>					
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l	
<u>OSW-826</u>	<u>OBBSim</u>				-	
	1,4-Dioxane	123-91-1	1.1	2.0	ug/l	UB

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG #240-112911-1 CADENA Verification Report: 2019-05-31

Analyses Performed By: TestAmerica Canton, Ohio

Report #33143R Review Level: Tier III Project: MI001454.0004.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-112911-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC (Full Scan)	Analysis VOC (SIM)	MISC
240-112911-1	MW-171S_051319	240-112911-1	Water	5/13/2019		Х	Х	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		rmance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		X	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of Quality Assurance or sample problems provided		х		х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

CADENA Inc. qualified 1,4-dioxane as "UB" at the detected concentration in sample MW-171S_051319, indicating method blank contamination contributed to the detection. However, since the 1,4-dioxane detection was below the reporting limit, the final result should be considered non-detect at the reporting limit, not the detected concentration.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

DATA REVIEW

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

5. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

Re	ported			Not
No	Yes	No	Yes	Required
RY (GC/I	MS)			
	X		Х	
	X		Х	
	X		Х	
	Х		Х	
	X		Х	
	Х		Х	
	X		Х	
	Х		Х	
	X		Х	
	X		Х	
	X		Х	
	X		Х	
	Х		Х	
	No	RY (GC/MS) X X X X X X X X X X X X X	Reported Acc No Yes No RY (GC/MS) X X X	Acceptable No Yes No Yes RY (GC/MS) X X X Image: Second stress

Notes:

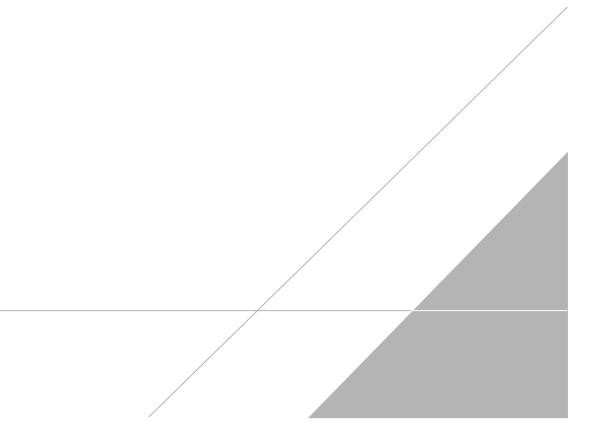
%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:


Lisa Hoston

DATE: June 14, 2019

PEER REVIEW: Dennis Capria

DATE: June 20, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

North Canton, OH 44720 INTELECTICATIN CITATIN OI CUSTOUY NECOLU	UAIN (N ANDI	- COLO						TestAmerica	0
Client Information	SamplerC, IL	pauro	Ja	Lab PI DelM	Lab PM: DelMonico, Michael	chael		Carrier Tracking No(s)	ing No(s):	COC No: 240-60548-25803.	-25803.1	-
Cient Contact Catitin ONeill	Phone geo)-610	-500	99 E-Mail	ael.deimo	nico@test:	E-Mail: michael.de/monico@testamericainc.com	E		Page: 1 of 16	-8-	T
Company ARCADIS U.S. Inc							Analysis	Analysis Requested		Job #.		-
Address 28550 Cabot Drive Suite 500	Due Date Requested:	:pe			163					Preservation Codes	les	T
City: Novi	TAT Requested (days):	iys):					_			B - NaOH C - Zn Acetate		
State. Zip: MI, 48377)			1.11					E - Narric Acid E - Narric Acid		
Phone:	PO#: MT001454	SL	20000-		(0					G - Amchlor H - Ascorbic	R - Na2S203 S - H2SO4 Acid T - TSP Dodecahydrate	
Email: Caitlin. ONeill@arcadis.com	wo #: Cadena #: E203631	3631							_			
Project Name: Ford LTP Livonia MI - E203631	Project #: 24015353					(†si-				rtaine L-EDA	W - pH 4-5 Z - other (specify)	
she 12101 Brewster	SSOW#:				J) asi					of cor		-
ta	Samule Date	Sample	Sample Type (C=comp, G=crah)	Matrix (Wewater, Sesolid, Onwasterold,	erform MS/A Perform MS/A 2608, 82608	12608 - VOCs (otal Number	ini	
		X	Preserva		X	4					opecial instructions/Note;	T
MW-1715-051319	5/13/19	150	0	Water	UN3	3				0		T
				Water								T
				Water								1
				Water								
				Water								T
				Water								T
				Water								1
				Water	_		240-	240-112911 Chain of Custody	of Custody			1
				Water			-		-			1
				Water								
				Water								1
ant	Poison B Unknown	Ц	Radiological		Samp	le Disposal (A I Return To Client	al (A fee may Client	v be assessed if san	f samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Advisoosal By Lab Archive For Mont	han 1 month) Months	T
					Specia	Instruction	ons/OC Requi	Special Instructions/OC Requirements: Suc mut	all	brough stinsau	5	T
Empty Kit Relinquished by:		Date:			Time:			Metho	Method of Shipment:			T
Relinquismed by:	5/13/19	81/-	30	Record	-0	Received by:	Cold	Stotade	5/13/	19 / 1830	SC Bradis	T
Relinquished by Carther ONER	SIN119		1200	HICOON	<u>a</u> <u>a</u>	Received by	Ar	2	Date/Time: Date/Time:	2 12.		T
Custody Seals littlect Colorody Seal No.: A Yes A No		3		2112	3	oler Tempera	Cooler Temperature(s) "C and Other Remarks	her Remarks:	- 21-5	. (7 1015	S TA	T
											Ver. 01/16/2019	٦

Client Sample ID: MW-171S_051319 Date Collected: 05/13/19 14:50 Date Received: 05/20/19 10:15

Lab Sample ID: 240-112911-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0 -1.1	JB UB	2.0	0.86	ug/L			05/21/19 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		63 - 125					05/21/19 18:43	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/M	IS)						
Analyte	· ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/23/19 13:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/23/19 13:52	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/23/19 13:52	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/23/19 13:52	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/23/19 13:52	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/23/19 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 121					05/23/19 13:52	1
4-Bromofluorobenzene (Surr)	104		59 - 120					05/23/19 13:52	1
Toluene-d8 (Surr)	106		70_123					05/23/19 13:52	1
Dibromofluoromethane (Surr)	103		75 - 128					05/23/19 13:52	1