

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-106466-1

Client Project/Site: Ford LTP Livonia MI - E203631

Revision: 1

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 1/18/2019 2:18:23 PM

Michael DelMonico, Project Manager I (330)497-9396

michael.delmonico@testamericainc.com

·····LINKS ·······

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Chain of Custody	19

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 240-106466-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Χ	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RER

RPD TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

TestAmerica Canton

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Job ID: 240-106466-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-106466-1

Revision

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Revised 1/18/2019 - Report was revised to report samples separately.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

The samples were received on 1/3/2019 8:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MW-118S 122718 (240-106466-1) and DUP-04 (240-106466-4) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 01/09/2019.

1,2-Dichloroethane-d4 (Surr) and Dibromofluoromethane (Surr) failed the surrogate recovery criteria high for MW-118S 122718 (240-106466-1) and DUP-04 (240-106466-4). Refer to the QC report for details.

Surrogate recovery for the following samples were outside the upper control limit: MW-118S 122718 (240-106466-1) and DUP-04 (240-106466-4). These samples did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 240-106466-1

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Job ID: 240-106466-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Samples MW-118S_122718 (240-106466-1) and DUP-04 (240-106466-4) were analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 01/08/2019 and 01/09/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

5

6

Ω

9

11

12

4 /

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3

4

5

0

Ω

9

11

12

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-106466-1	MW-118S_122718	Water	12/27/18 10:08	01/03/19 08:35
240-106466-4	DUP-04	Water	12/27/18 00:00	01/03/19 08:35

9

3

4

6

8

9

10

12

13

Detection Summary

Client: ARCADIS U.S., Inc.

Analyte

Vinyl chloride

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Dil Fac D Method

8260B

Client Sample ID: MW-118S_122718					Lab Sample ID: 240-106466-1				
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
0.68	J –	1.0	0.20	ug/L	1		8260B	Total/NA	
					Lab S	an	nple ID: 2	40-106466-4	
		Result Qualifier 0.68 J				0.68 J 1.0 0.20 ug/L 1	0.68 J 1.0 0.20 ug/L 1		

RL

1.0

MDL Unit

0.20 ug/L

Result Qualifier

0.74 J

7

Prep Type

Total/NA

8

10

12

13

Client Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Lab Sample ID: 240-106466-1

Matrix: Water

01/09/19 14:09

01/09/19 14:09

Client Sample ID: MW-118S 122718 Date Collected: 12/27/18 10:08

Date Received: 01/03/19 08:35

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			01/09/19 13:36	1
2	0/5	0	4.5				D	A t	D'' 5
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		63 - 125					01/09/19 13:36	1

		-•							
1,2-Dichloroethane-d4 (Surr)	86		63 - 125			-		01/09/19 13:36	1
 Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 14:09	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/09/19 14:09	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/09/19 14:09	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 14:09	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/09/19 14:09	1
Vinyl chloride	0.68	J	1.0	0.20	ug/L			01/09/19 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124	X	70 - 121			-		01/09/19 14:09	1
4-Bromofluorobenzene (Surr)	79		59 - 120					01/09/19 14:09	1

70 - 123

75 - 128

105

132 X

Client Sample Results

Client: ARCADIS U.S., Inc.

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

01/09/19 15:15

01/09/19 15:15

Lab Sample ID: 240-106466-4

Matrix: Water

Client Sample ID: DUP-04 Date Collected: 12/27/18 00:00 Date Received: 01/03/19 08:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			01/08/19 17:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		63 - 125					01/08/19 17:13	1
- Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 15:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/09/19 15:15	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/09/19 15:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 15:15	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/09/19 15:15	1
Vinyl chloride	0.74	J	1.0	0.20	ug/L			01/09/19 15:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		70 - 121					01/09/19 15:15	1
4-Bromofluorobenzene (Surr)	76		59 - 120					01/09/19 15:15	1

70 - 123

75 - 128

102

133 X

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance					
		DCA	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)			
240-106466-1	MW-118S_122718	124 X	79	105	132 X			
240-106466-4	DUP-04	121	76	102	133 X			
240-106490-C-2 MS	Matrix Spike	102	103	115	111			
240-106490-D-2 MSD	Matrix Spike Duplicate	97	102	109	111			
LCS 240-363363/4	Lab Control Sample	77	84	90	90			
MB 240-363363/6	Method Blank	90	59	76	99			
Surrogato Logond								

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

matrix. Water			Trep Type: Total/14/
_			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(63-125)	
240-106466-1	MW-118S_122718	86	
240-106466-4	DUP-04	89	
240-106466-B-3 MS	Matrix Spike	85	
240-106466-B-3 MSD	Matrix Spike Duplicate	90	
500-156985-D-2 MS	Matrix Spike	92	
500-156985-D-2 MSD	Matrix Spike Duplicate	88	
LCS 240-363200/12	Lab Control Sample	85	
LCS 240-363382/4	Lab Control Sample	85	
MB 240-363200/13	Method Blank	86	
MB 240-363382/5	Method Blank	87	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(10-150)	
MRL 240-363200/14	Lab Control Sample	87	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TestAmerica Canton

2

3

5

0

8

9

11

40

4

TestAmerica Job ID: 240-106466-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-363363/6

Matrix: Water

Analysis Batch: 363363

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 01/09/19 11:35 cis-1,2-Dichloroethene 1.0 U 1.0 01/09/19 11:35 0.16 ug/L Tetrachloroethene 1.0 U 1.0 0.15 ug/L 01/09/19 11:35 trans-1,2-Dichloroethene 1.0 U 1.0 0.19 ug/L 01/09/19 11:35 Trichloroethene 1.0 U 1.0 0.10 ug/L 01/09/19 11:35 Vinyl chloride 1.0 U 1.0 0.20 ug/L 01/09/19 11:35

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	70 - 121		01/09/19 11:35	1
4-Bromofluorobenzene (Surr)	59	59 - 120		01/09/19 11:35	1
Toluene-d8 (Surr)	76	70 - 123		01/09/19 11:35	1
Dibromofluoromethane (Surr)	99	75 - 128		01/09/19 11:35	1

Lab Sample ID: LCS 240-363363/4

Matrix: Water

Analysis Batch: 363363

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	12.5		ug/L		125	65 - 139	
cis-1,2-Dichloroethene	10.0	10.4		ug/L		104	76 - 128	
Tetrachloroethene	10.0	10.4		ug/L		104	74 - 130	
trans-1,2-Dichloroethene	10.0	11.2		ug/L		112	78 - 133	
Trichloroethene	10.0	9.41		ug/L		94	76 - 125	
Vinyl chloride	10.0	8.80		ug/L		88	58 - 143	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	77		70 - 121
4-Bromofluorobenzene (Surr)	84		59 - 120
Toluene-d8 (Surr)	90		70 - 123
Dibromofluoromethane (Surr)	90		75 - 128

Lab Sample ID: 240-106490-C-2 MS

Matrix: Water

Analysis Batch: 363363

Client Sample ID: Matrix Sp	oike
Prep Type: Total	/NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	10.0	8.22		ug/L		82	53 - 140	
cis-1,2-Dichloroethene	1.0	U	10.0	8.95		ug/L		90	64 - 130	
Tetrachloroethene	1.0	U	10.0	9.11		ug/L		91	51 - 136	
trans-1,2-Dichloroethene	1.0	U	10.0	9.19		ug/L		92	68 - 133	
Trichloroethene	0.54	J	10.0	8.43		ug/L		79	55 - 131	
Vinyl chloride	1.0	U	10.0	9.66		ug/L		97	43 - 154	

MS	MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		70 - 121
4-Bromofluorobenzene (Surr)	103		59 - 120
Toluene-d8 (Surr)	115		70 - 123

TestAmerica Canton

TestAmerica Job ID: 240-106466-1

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-106490-C-2 MS

Matrix: Water

Analysis Batch: 363363

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 75 - 128 111

Lab Sample ID: 240-106490-D-2 MSD

Matrix: Water

Analysis Batch: 363363

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier **Analyte** Added Result Qualifier Unit %Rec Limits RPD Limit 1,1-Dichloroethene 1.0 U 10.0 8.37 ug/L 84 53 - 140 2 35 10.0 87 64 - 130 21 cis-1,2-Dichloroethene 1.0 U 8.67 ug/L 3 Tetrachloroethene 1.0 U 10.0 8.99 ug/L 90 51 - 136 23 trans-1,2-Dichloroethene 1.0 U 10.0 9.33 93 24 ug/L 68 - 133Trichloroethene 0.54 J 10.0 8.30 ug/L 78 55 - 131 2 23 Vinyl chloride 1.0 U 10.0 9.31 ug/L 43 - 154 29

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 121
4-Bromofluorobenzene (Surr)	102		59 - 120
Toluene-d8 (Surr)	109		70 - 123
Dibromofluoromethane (Surr)	111		75 - 128

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-363200/13

Matrix: Water

Analysis Batch: 363200

MB	MB
INIB	MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0 U	2.0	0.86 ug/L			01/08/19 16:23	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 63 - 125 01/08/19 16:23 86

Lab Sample ID: LCS 240-363200/12

Matrix: Water

Analysis Batch: 363200

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	11.8		ug/L		118	59 ₋ 131	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		63 - 125

TestAmerica Canton

Prep Type: Total/NA

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID: MRL 240-363200/14

TestAmerica Job ID: 240-106466-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 363200

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 10 - 150 1,4-Dioxane 0.00100 0.00105 J 105 ng/uL

MRL MRL

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 10 - 150 87

Lab Sample ID: 500-156985-D-2 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 363200

Sample Sample MS MS %Rec. Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 2.0 U 125 10.0 12.5 ug/L 52 - 129

MS MS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 63 - 125 92

Client Sample ID: Matrix Spike Duplicate Lab Sample ID: 500-156985-D-2 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 363200

Spike MSD MSD %Rec. **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 2.0 U 10.0 1,4-Dioxane 11.7 ug/L 117 52 - 129

MSD MSD

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 88 63 - 125

Lab Sample ID: MB 240-363382/5 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Matrix: Water

Analysis Batch: 363382

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 01/09/19 12:46

MB MB

Surrogate %Recovery Qualifier Limits Analyzed Dil Fac Prepared 1,2-Dichloroethane-d4 (Surr) 63 - 125 01/09/19 12:46 87

Lab Sample ID: LCS 240-363382/4

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 363382

Spike LCS LCS %Rec. Added Result Qualifier Limits **Analyte** Unit D %Rec 120 1,4-Dioxane 10.0 12.0 ug/L 59 - 131

LCS LCS

Limits Surrogate %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 63 - 125 85

TestAmerica Canton

QC Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID: 240-106466-B-3 MS

Lab Sample ID: 240-106466-B-3 MSD

TestAmerica Job ID: 240-106466-1

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Matrix: Water

Surrogate

Matrix: Water

Analysis Batch: 363382

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	12.1		ug/L		121	52 - 129	

Limits

MS MS %Recovery Qualifier

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

1,2-Dichloroethane-d4 (Surr) 85 63 - 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 363382

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 1,4-Dioxane 2.0 U 10.0 115 52 - 129 5 11.5 ug/L

MSD MSD

Surrogate%RecoveryQualifierLimits1,2-Dichloroethane-d4 (Surr)9063 - 125

TestAmerica Canton

2

А

5

7

8

9

10

4.0

13

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106466-1

GC/MS VOA

Analysis Batch: 363200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106466-4	DUP-04	Total/NA	Water	8260B SIM	
MB 240-363200/13	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-363200/12	Lab Control Sample	Total/NA	Water	8260B SIM	
MRL 240-363200/14	Lab Control Sample	Total/NA	Water	8260B SIM	
500-156985-D-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
500-156985-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 363363

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106466-1	MW-118S_122718	Total/NA	Water	8260B	_
240-106466-4	DUP-04	Total/NA	Water	8260B	
MB 240-363363/6	Method Blank	Total/NA	Water	8260B	
LCS 240-363363/4	Lab Control Sample	Total/NA	Water	8260B	
240-106490-C-2 MS	Matrix Spike	Total/NA	Water	8260B	
240-106490-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

Analysis Batch: 363382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106466-1	MW-118S_122718	Total/NA	Water	8260B SIM	- <u> </u>
MB 240-363382/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-363382/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-106466-B-3 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-106466-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

ID 040 400400 4

2

4

6

_

10

<u>''</u>

4.0

Lab Chronicle

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

Analysis

TestAmerica Job ID: 240-106466-1

Date Collected: 12/27/18 10:08
Date Received: 01/03/19 08:35

8260B SIM

Matrix: Water

TAL CAN

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number Type Run or Analyzed Analyst Lab Total/NA Analysis 8260B 363363 01/09/19 14:09 LEE TAL CAN

Client Sample ID: DUP-04 Lab Sample ID: 240-106466-4

1

Date Collected: 12/27/18 00:00 Matrix: Water

363382 01/09/19 13:36 SAM

Date Received: 01/03/19 08:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	363363	01/09/19 15:15	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	363200	01/08/19 17:13	SAM	TAL CAN

Laboratory References:

Total/NA

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

9

10

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

TestAmerica Job ID: 240-106466-1

Project/Site: Ford LTP Livonia MI - E203631

Laboratory: TestAmerica Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date		
California	State Program	9	2927	02-23-19 *		
Connecticut	State Program	1	PH-0590	12-31-19		
Florida	NELAP	4	E87225	06-30-19		
Illinois	NELAP	5	200004	07-31-19		
Kansas	NELAP	7	E-10336	04-30-19		
Kentucky (UST)	State Program	4	58	02-23-19 *		
Kentucky (WW)	State Program	4	98016	12-31-19		
Minnesota	NELAP	5	039-999-348	12-31-19 *		
Minnesota (Petrofund)	State Program	1	3506	07-31-19		
Nevada	State Program	9	OH00048	07-31-19		
New Jersey	NELAP	2	OH001	06-30-19		
New York	NELAP	2	10975	03-31-19 *		
Ohio VAP	State Program	5	CL0024	09-06-19		
Oregon	NELAP	10	4062	02-23-19 *		
Pennsylvania	NELAP	3	68-00340	08-31-19 *		
Texas	NELAP	6	T104704517-18-10	08-31-19		
USDA	Federal		P330-16-00404	12-28-19		
Virginia	NELAP	3	460175	09-14-19		
Washington	State Program	10	C971	01-12-20 *		
West Virginia DEP	State Program	3	210	12-31-19		

4

5

9

10

40

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Canton

lient ACCOUNTS ooler Received on 3 edEx: 1s Grd Exp Un Receipt After-hours: Drop-			Logi	n#: 1044	44
ooler Received on \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Cita Nama		Coolee ur	packed by:
edEx: 1s Grd Exp Ul Receipt After-hours: Drop-	10	Site Name	a	X	
Receipt After-hours: Drop-	11	Opened on \ 3			
			tAmerica Courier	Other	
act Amarica Coalar #			Storage Location	a to be a section of the section of	
Packing material used: COOLANT: W Cooler temperature upon IR GUN# IR-8 (CF -0 IR GUN #36 (CF +0 Were tamper/custody se -Were the seals on the -Were tamper/custody -Were tamper/custody -Were tamper/custody Shippers' packing slip at Did custody papers acco Were the custody papers Was/were the person(s) Did all bottles arrive in g Could all bottle labels be Were correct bottle(s) us Sufficient quantity receil Are these work share san	Foam B Bubble Wrap Vet Ice Blue Ice In receipt 1.2 °C) Observed Coo eals on the outside of eals on the outside of eals on the bottle versals intact and une ttached to the cooler company the sample es relinquished & sig who collected the s good condition (Une reconciled with the sed for the test(s) in ived to perform indi imples? have been checked ple(s) at the correct C?	Dry Ice Water Cooler Temp °C Cor of the cooler(s)? If Yes Qu er(s) signed & dated? (s) or bottle kits (LLHg/Me compromised? r(s)? gned in the appropriate place amples clearly identified of abroken)? the COC? dicated? icated analyses? at the originating laborator pH upon receipt?	Box Other None Other None Other None See Multiple Cooler For Corrected Cooler Terrected Cooler Temperantity Yes Yes Yes On the COC? Yes	Mo NA NO NA NO	
. Was a VOA trip blank p				No	
6. Was a LL Hg or Me Hg			**	No	
ontacted PM	Date			oice Mail Ot	her
7. CHAIN OF CUSTODY					s processed by:
3. SAMPLE CONDITION ample(s) ample(s)			were received	l in a broken c	container.
B. SAMPLE CONDITION ample(s) ample(s)			were received	l in a broken c	container.
B. SAMPLE CONDITION ample(s) ample(s) ample(s)			were received	l in a broken c	container.
	TION	were received w	were received with bubble >6 mm i	l in a broken c in diameter. (N	container. Notify PM)

4

Cooler#	Cooler Receipt Form IR Gun #	Observed Temp °C	Corrected Temp °C	Coolant
TA	36	1,4	1.1	ICE
100		3.2	3.2	T
		DIA	012	
				and the same of th
	-XXX			
	 			
· Comment of the comment				
				V
	V			
				Majorana A Transportation of the

X:\X-Drive Document Control\SOPs\Work Instructions\Word Version Work Instructions\WI-NC-099H-071615 Cooler Receipt Form_page 2 - Multiple Coolers.doc rls

REVISED REPORT: January 18, 2019

REVISION SUMMARY: Original lab submittal was separated into location specific reports.

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: MI001454.0002/3/4.00002/2B/3B

Client project scope reference: Client project scope references (permit, SAPP, QAPP, SOW, laboratory quote) relevant to this sampling event were NOT made available through the CLMS project profile so were not utilized for

this data verification. Sample COC only was used to define project analytical requirements.

Laboratory: TestAmerica - North Canton

Laboratory submittal: 106466-1 Sample date: 2018-12-27

Report received by CADENA: 2019-01-18

Initial Data Verification completed by CADENA: 2019-01-18

The following minor QC exceptions or missing information were noted:

SUR - GCMS VOC surrogate recoveries were outside of laboratory control limits biased HIGH for at least 1 surrogate. These client sample results that were detected for the analytical fraction specified should be considered to be estimated and qualified with J flags (non-detect results do not require qualification): GCMS VOC samples -001, -004.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

2 Water sample(s) were analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 106466-1

		Sample Name:	MW-118S_122718			DUP-04				
		Lab Sample ID: 2401064661		2401064664						
		Sample Date:	12/27/2	018			12/27/2018			
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-8260	<u>OB</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	0.68	1.0	ug/l	J	0.74	1.0	ug/l	J
OSW-8260	<u>OBBSim</u>									
	1,4-Dioxane	123-91-1	ND	2.0	ug/l		ND	2.0	ug/l	