

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-109348-1 Client Project/Site: Ford LTP Livonia MI - E203631

For: ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 3/15/2019 4:23:16 PM Michael DelMonico, Project Manager I (330)497-9396 michael.delmonico@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1	1
Table of Contents 2	2
Definitions/Glossary	3
Case Narrative	1
Method Summary 5	5
Sample Summary 6	3
Detection Summary 7	7
Client Sample Results 8	3
Surrogate Summary 1	10
QC Sample Results 1	11
QC Association Summary 1	14
Lab Chronicle	15
Certification Summary 1	16
Chain of Custody 1	17

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

3

5

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 240-109348-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-109348-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 3/14/2019 8:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MW-166S_031219 (240-109348-1) and TRIP BLANK (240-109348-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 03/14/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-166S_031219 (240-109348-1) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 03/14/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-109348-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
240-109348-1	MW-166S_031219	Water	03/12/19 12:25 03/14/19 08:05
240-109348-2	TRIP BLANK	Water	03/12/19 00:00 03/14/19 08:05

TestAmerica Canton

Detection Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-109348-1

Lab Sample ID: 240-109348-1

Lab Sample ID: 240-109348-2

Client Sample ID: MW-166S_031219

No Detections.

No Detections.

Client Sample ID: TRIP BLANK

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 240-109348-1

Matrix: Water

5 6

8 9

Client Sample ID: MW-166S_031219

Date Collected: 03/12/19 12:25 Date Received: 03/14/19 08:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/14/19 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		63 - 125					03/14/19 15:21	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			03/14/19 17:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			03/14/19 17:50	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			03/14/19 17:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			03/14/19 17:50	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			03/14/19 17:50	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			03/14/19 17:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		70 - 121					03/14/19 17:50	1
4-Bromofluorobenzene (Surr)	87		59 - 120					03/14/19 17:50	1
Toluene-d8 (Surr)	96		70 - 123					03/14/19 17:50	1
Dibromofluoromethane (Surr)	101		75 - 128					03/14/19 17:50	

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: TRIP BLANK

Date Collected: 03/12/19 00:00 Date Received: 03/14/19 08:05

Lab Sample ID: 240-109348-2 Matrix: Water

8

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte **Result Qualifier** RL MDL Unit Dil Fac D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 03/14/19 18:21 1 cis-1,2-Dichloroethene 1.0 U 0.16 ug/L 03/14/19 18:21 1.0 1 Tetrachloroethene 1.0 U 1.0 0.15 ug/L 03/14/19 18:21 1 trans-1,2-Dichloroethene 1.0 U 1.0 0.19 ug/L 03/14/19 18:21 1 0.10 ug/L Trichloroethene 1.0 U 1.0 03/14/19 18:21 1 Vinyl chloride 1.0 U 1.0 0.20 ug/L 03/14/19 18:21 1 Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 113 70 - 121 03/14/19 18:21 1 4-Bromofluorobenzene (Surr) 87 59 - 120 03/14/19 18:21 1 Toluene-d8 (Surr) 95 70 - 123 03/14/19 18:21 1 Dibromofluoromethane (Surr) 102 75 - 128 03/14/19 18:21 1

5

9

Method: 8260B - Volatile Organic Compounds (GC/MS)

			Pe	ercent Surro	ogate Recoverv (A	cceptance Limits)
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)	
240-109131-J-5 MS	Matrix Spike	102	111	105	91	
240-109131-K-5 MSD	Matrix Spike Duplicate	97	106	102	88	
240-109348-1	MW-166S_031219	114	87	96	101	
240-109348-2	TRIP BLANK	113	87	95	102	
LCS 240-371552/5	Lab Control Sample	99	106	103	89	
MB 240-371552/7	Method Blank	112	87	97	98	
Surrogate Legend						
DCA = 1,2-Dichloroeth	nane-d4 (Surr)					
BFB = 4-Bromofluorob	enzene (Surr)					
TOL = Toluene-d8 (Su	ırr)					
DBFM = Dibromofluor	omethane (Surr)					

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCA Lab Sample ID **Client Sample ID** (63-125) 240-109202-C-1 MS Matrix Spike 100 240-109202-C-1 MSD Matrix Spike Duplicate 99 240-109348-1 MW-166S_031219 96 LCS 240-371600/4 Lab Control Sample 96 MB 240-371600/5 Method Blank 97 Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Γ				Percent Surrogate Recovery (Acceptance Limits)
			DCA	
Lab Sampl	e ID	Client Sample ID	(10-150)	
MRL 240-37	71600/6	Lab Control Sample	95	
Surroga	ate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Pren Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-371552/7 Matrix: Water Analysis Batch: 371552

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U –	1.0	0.19	ug/L			03/14/19 14:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			03/14/19 14:50	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			03/14/19 14:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			03/14/19 14:50	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			03/14/19 14:50	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			03/14/19 14:50	1
	MB	MB							

	NID						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	112		70 - 121		03/14/19 14:50	1	
4-Bromofluorobenzene (Surr)	87		59 - 120		03/14/19 14:50	1	
Toluene-d8 (Surr)	97		70 - 123		03/14/19 14:50	1	
Dibromofluoromethane (Surr)	98		75 - 128		03/14/19 14:50	1	

Lab Sample ID: LCS 240-371552/5 Matrix: Water Analysis Batch: 371552

	Spike	LCS L	.CS		%Rec.
Analyte	Added	Result C	Qualifier Unit	D %Rec	Limits
1,1-Dichloroethene	10.0	8.93	ug/L	89	65 - 139
cis-1,2-Dichloroethene	10.0	8.71	ug/L	87	76 - 128
Tetrachloroethene	10.0	8.86	ug/L	89	74 - 130
trans-1,2-Dichloroethene	10.0	9.41	ug/L	94	78 - 133
Trichloroethene	10.0	7.83	ug/L	78	76 - 125
Vinyl chloride	10.0	9.45	ug/L	95	58 - 143

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 121
4-Bromofluorobenzene (Surr)	106		59 - 120
Toluene-d8 (Surr)	103		70 - 123
Dibromofluoromethane (Surr)	89		75 - 128

Lab Sample ID: MRL 240-371552/6 Matrix: Water Analysis Batch: 371552

	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	 0.00100	0.00129		ng/uL		129	10 - 150	

Lab Sample ID: 240-109131-J-5 MS Matrix: Water

Analysis Batch: 371552

·		Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	10.0	9.75		ug/L		98	53 - 140
cis-1,2-Dichloroethene	1.0	U	10.0	9.57		ug/L		96	64 - 130
Tetrachloroethene	1.0	U	10.0	9.54		ug/L		95	51 - 136
trans-1,2-Dichloroethene	1.0	U	10.0	9.84		ug/L		98	68 - 133
Trichloroethene	1.0	U	10.0	8.58		ug/L		86	55 - 131

TestAmerica Canton

Prep Type: Total/NA

Prep Type: Total/NA

Page 11 of 18

5 6

10 12 13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)
--

Lab Sample ID: 240-10913 Matrix: Water	31-J-5 MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
Analysis Batch: 371552	a .		0.11						
	•	Sample	Spike	-	MS		_		%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl chloride	1.0	U	10.0	10.5		ug/L		105	43 - 154
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	102		70 - 121						
4-Bromofluorobenzene (Surr)	111		59 - 120						
Toluene-d8 (Surr)	105		70 - 123						
Dibromofluoromethane (Surr)	91		75 - 128						
Lab Sample ID: 240-1091 Matrix: Water	31-K-5 MSD					Client	Samp	le ID: N	latrix Spike Duplicate Prep Type: Total/NA

Matrix: Water Analysis Batch: 371552

Analysis Dalch. 37 1992												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1-Dichloroethene	1.0	U	10.0	10.1		ug/L		101	53 - 140	3	35	
cis-1,2-Dichloroethene	1.0	U	10.0	9.70		ug/L		97	64 - 130	1	21	
Tetrachloroethene	1.0	U	10.0	9.77		ug/L		98	51 - 136	2	23	
trans-1,2-Dichloroethene	1.0	U	10.0	10.1		ug/L		101	68 - 133	3	24	
Trichloroethene	1.0	U	10.0	8.70		ug/L		87	55 - 131	1	23	
Vinyl chloride	1.0	U	10.0	10.8		ug/L		108	43 - 154	3	29	
	MSD	MSD										
	1,1-Dichloroethenecis-1,2-DichloroetheneTetrachloroethenetrans-1,2-DichloroetheneTrichloroethene	AnalyteSample Result1,1-Dichloroethene1.0cis-1,2-Dichloroethene1.0Tetrachloroethene1.0trans-1,2-Dichloroethene1.0Trichloroethene1.0Vinyl chloride1.0MSD	SampleSampleAnalyteResultQualifier1,1-Dichloroethene1.0Ucis-1,2-Dichloroethene1.0UTetrachloroethene1.0Utrans-1,2-Dichloroethene1.0UTrichloroethene1.0UVinyl chloride1.0UMSDMSD	Sample Sample Spike Analyte Result Qualifier Added 1,1-Dichloroethene 1.0 U 10.0 cis-1,2-Dichloroethene 1.0 U 10.0 Tetrachloroethene 1.0 U 10.0 trans-1,2-Dichloroethene 1.0 U 10.0 Trichloroethene 1.0 U 10.0 Trichloroethene 1.0 U 10.0 Vinyl chloride 1.0 U 10.0	Sample Sample Spike MSD Analyte Result Qualifier Added Result 1,1-Dichloroethene 1.0 U 10.0 10.1 cis-1,2-Dichloroethene 1.0 U 10.0 9.70 Tetrachloroethene 1.0 U 10.0 9.77 trans-1,2-Dichloroethene 1.0 U 10.0 9.77 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 Trichloroethene 1.0 U 10.0 10.1 Vinyl chloride 1.0 U 10.0 10.1 MSD MSD MSD 10.8 10.8	Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier 1,1-Dichloroethene 1.0 U 10.0 10.1 Qualifier cis-1,2-Dichloroethene 1.0 U 10.0 9.70 10.1 Tetrachloroethene 1.0 U 10.0 9.77 10.1 trans-1,2-Dichloroethene 1.0 U 10.0 9.77 10.1 Trichloroethene 1.0 U 10.0 10.1 10.1 Trichloroethene 1.0 U 10.0 8.70 10.1 Vinyl chloride 1.0 U 10.0 10.8 10.8 10.8	SampleSampleSpikeMSDMSDAnalyteResultQualifierAddedResultQualifierUnit1,1-Dichloroethene1.0U10.010.1ug/Lcis-1,2-Dichloroethene1.0U10.09.70ug/LTetrachloroethene1.0U10.09.77ug/Ltrans-1,2-Dichloroethene1.0U10.010.1ug/LTrichloroethene1.0U10.08.70ug/LVinyl chloride1.0U10.08.70ug/LMSD MSD	Sample AnalyteSample ResultSample QualifierSpike AddedMSDMSD1,1-Dichloroethene1.0U10.010.1ug/LDcis-1,2-Dichloroethene1.0U10.09.70ug/LUTetrachloroethene1.0U10.09.77ug/LUtrans-1,2-Dichloroethene1.0U10.010.1ug/LUTrichloroethene1.0U10.010.1ug/LVinyl chloride1.0U10.08.70ug/LMSD MSD	Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec 101 <td>Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec. Limits cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154</td> <td>Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec Limits RPD cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 1 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 2 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 3 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 1 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154 3</td> <td>Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits RPD Limit 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec. Limits RPD Limit cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 1 21 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 2 23 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 3 24 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 1 23 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154 3 29 </td>	Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec. Limits cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154	Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec Limits RPD cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 1 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 2 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 3 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 1 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154 3	Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits RPD Limit 1,1-Dichloroethene 1.0 U 10.0 10.1 ug/L D %Rec. Limits RPD Limit cis-1,2-Dichloroethene 1.0 U 10.0 9.70 ug/L 97 64 - 130 1 21 Tetrachloroethene 1.0 U 10.0 9.77 ug/L 98 51 - 136 2 23 trans-1,2-Dichloroethene 1.0 U 10.0 10.1 ug/L 101 68 - 133 3 24 Trichloroethene 1.0 U 10.0 8.70 ug/L 87 55 - 131 1 23 Vinyl chloride 1.0 U 10.0 10.8 ug/L 108 43 - 154 3 29

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 121
4-Bromofluorobenzene (Surr)	106		59 - 120
Toluene-d8 (Surr)	102		70 - 123
Dibromofluoromethane (Surr)	88		75 - 128

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-37 Matrix: Water Analysis Batch: 371600	1600/5						Clie	ent Sam	ple ID: Method Prep Type: To	
Analysis Batch. 57 1000	МВ	MB								
Analyte	Result	Qualifier	RL		MDL Unit	D	Р	repared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0		0.86 ug/L				03/14/19 13:38	1
	МВ	MB								
Surrogate	%Recovery	Qualifier	Limits				Р	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		63 - 125						03/14/19 13:38	1
Lab Sample ID: LCS 240-3 Matrix: Water Analysis Batch: 371600	71600/4					Client	t Sai	nple ID	: Lab Control S Prep Type: To	
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane			10.0	9.20		ug/L		92	59 - 131	
	LCS LC	s								
Surrogate	%Recovery Qu	alifier	Limits							
1,2-Dichloroethane-d4 (Surr)	96		63 - 125							

TestAmerica Canton

QC Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID: MRL 240-371600/6

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water									Prep Typ	ρ <mark>e: Tot</mark> ∕	.al/NA	
Analysis Batch: 371600												
			Spike		MRL				%Rec.			
Analyte			Added		Qualifier		D		Limits			E
1,4-Dioxane			0.00100	0.000925	J	ng/uL		92	10 - 150			C
	MRL	MRL										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	95		10 - 150									
Lab Sample ID: 240-10920	02_C_1 MS						C	lient Sr	ample ID: I	Matrix	Snike	
Matrix: Water)2-0-1 mio							lent ou	Prep Typ			
Analysis Batch: 371600												
-	Sample	Sample	Spike	MS	MS				%Rec.			9
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
1,4-Dioxane	3.9		10.0	13.2		ug/L		93	52 - 129			10
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	100		63 - 125									
Lab Sample ID: 240-10920	02-C-1 MSD					Client	Samr		Matrix Spik	ke Dur	licate	
Matrix: Water)2-0-1 moe					Unone .	Jamp	10 10	Prep Typ			
Analysis Batch: 371600									110 101		A1/1373	
Analysis Batom et tere	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,4-Dioxane	3.9		10.0	11.9		ug/L		80	52 - 129	10	13	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1.2-Dichloroethane-d4 (Surr)			63 - 125									

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-109348-1

GC/MS VOA

Analysis Batch: 371552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-109348-1	MW-166S_031219	Total/NA	Water	8260B	_
240-109348-2	TRIP BLANK	Total/NA	Water	8260B	
MB 240-371552/7	Method Blank	Total/NA	Water	8260B	
LCS 240-371552/5	Lab Control Sample	Total/NA	Water	8260B	
MRL 240-371552/6	Lab Control Sample	Total/NA	Water	8260B	
240-109131-J-5 MS	Matrix Spike	Total/NA	Water	8260B	
240-109131-K-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
Analysis Batch: 371	600				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-109348-1	MW-166S_031219	Total/NA	Water	8260B SIM	
MB 240-371600/5	Method Blank	Total/NA	Water	8260B SIM	

- 1

Lab Sample ID: 240-109348-1

Lab Sample ID: 240-109348-2

Matrix: Water

Matrix: Water

-2 3 4 5 6 7 8

12

Client Sample ID: MW-166S_031219 Date Collected: 03/12/19 12:25 Date Received: 03/14/19 08:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	371552	03/14/19 17:50	LRW	TAL CAN
Total/NA	Analysis	8260B SIM		1	371600	03/14/19 15:21	SAM	TAL CAN

Lab Chronicle

Client Sample ID: TRIP BLANK Date Collected: 03/12/19 00:00 Date Received: 03/14/19 08:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	371552	03/14/19 18:21	LRW	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Canton

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 TestAmerica Job ID: 240-109348-1

Laboratory: TestAmerica Canton

I accreditations/certifications he	erica Canton eld by this laboratory are listed. No	t all accreditations/certific	itations/certifications are applicable to this report.					
Authority	Program	EPA Region	Identification Number	Expiration Date				
California	State Program	9	2927	02-23-20				
Connecticut	State Program	1	PH-0590	12-31-19				
Florida	NELAP	4	E87225	06-30-19				
Illinois	NELAP	5	200004	07-31-19				
Kansas	NELAP	7	E-10336	04-30-19 *				
Kentucky (UST)	State Program	4	58	02-23-20				
Kentucky (WW)	State Program	4	98016	12-31-19				
Minnesota	NELAP	5	039-999-348	12-31-19 *				
Minnesota (Petrofund)	State Program	1	3506	07-31-19				
Nevada	State Program	9	OH00048	07-31-19				
New Jersey	NELAP	2	OH001	06-30-19				
New York	NELAP	2	10975	03-31-19 *				
Ohio VAP	State Program	5	CL0024	09-06-19				
Oregon	NELAP	10	4062	02-23-20				
Pennsylvania	NELAP	3	68-00340	08-31-19 *				
Texas	NELAP	6	T104704517-18-10	08-31-19				
USDA	Federal		P330-16-00404	12-28-19				
Virginia	NELAP	3	460175	09-14-19				
Washington	State Program	10	C971	01-12-20 *				
West Virginia DEP	State Program	3	210	12-31-19				

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

221737 TestAmerica Laboratories, Inc. THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)	COC No:		For Lab Use Only:	Walk-in Client: Lab Sampling: Job / SDG No.:	Sample Specific Notes:	Chain to Clert Disposal by Lab.	CAT: LX0 36 01 Corid: Therm ID No.:	Company: Ar Cadis 3/13/19 / 1700 Company: 2/13/19 (1.700) 2/13/19 (1.700) Company: 3/13/19 (1.700) Date/Time:
/ Record	Date:	Carrier:			240-1093	Chain of Custody	r Temp. (°C): Obs'd: Co	Repeated by: NOVI CULL Storod C Regeived by: HC Occur HC Received in Laboratory by:
Chain of Custody Record $\gamma, 6/Cl, \gamma$	Site Contact:	Lab Contact:			Filtered Sam Perform MS Pod C D Perform MS		CULLENTICLIC	Received by: Received by: CCLL 5 th Received by: TCCL
N O			round Time WORKING DAYS		# of trix Cont.	es for the sample in the	JIM, Or well a cade land Coder Temp. (°C): Obs'd	Date/Time 3/13/19/1700 Date/Time: 3/13/16 11:10 Date/Time:
MICHIGA 190 Regulatory Program:	Project Manager:	Tel/Fax:	Analysis Turnaround Time CALENDAR DAYS UNORKING D	TAT if different from Below 2 weeks 1 week 2 days	e Sample (c	S=NaOH; 6= Other	Custody Seal No .:	
TestAmerica Michigan 10448 Citation Drive Suite 200 Brighton, MI 48116 Phone: 810.229.2763 Fax: 412.963.2470	ontact		Address: 397560 Carbot Dr, STE # 500 City/State/Zip: NOVI/mi/48377	Phone: Fax: Project Name: Ford_LTTP Site: Ljvonjc	ication	Hitle Lank Diameter Sector Diameter Sector Diameter Sector Hitle Lank Elevent Diameter Sector Diameter Sector Preservation Used: 1= [ce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Elevent Diameter Sector Preservation Used: 1= [ce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Diameter Sector Diameter Sector Reastle Hazard Cartification: Reast Lank Ender Elsen Instructions/OC Requirements & Comments: Lave L 1V Pater Sector Infinition: Sector Infinition: Elsen Instructions/OC Requirements & Comments: Lave L 1V Pater	Ves 10 No	N. D. Mail

	Login # 1 199348
CestAmerica Canton Sample Receipt Form/Narrative I Canton Facility I	Login # :
Client Arcadis Site Name	Cooler unpacked by:
	rier Other
FedEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Cour Receipt After-hours: Drop-off Date/Time Storage Locati	
 TestAmerica Cooler # Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt G ©C Corrected Cool IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp C © C Corrected Cool IR GUN #36 (CF +0.7°C) Observed Cooler Temp °C Corrected Coole Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Were the person(s) who collected the samples clearly identified on the COC? Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples? If yes, Questions 12-16 have been checked at the originating laboratory. Were VOAs on the COC? 	r her Form ler Temp°C cr Temp°C cr Temp°C ves No ves No
4. Were air bubbles >6 mm in any VOA vials? 🖤 🖨 Larger than this.	Yes No NA
15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot $\#$ N/A	Xes No
16. Was a LL Hg or Me Hg trip blank present?	_Yes No
Contacted PM Date by via Verb	bal Voice Mail Other
Concerning	
Concerning	
	Samples processed by:
	Samples processed by:
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	tholding time had expired.
	d holding time had expired. ceived in a broken container.
	d holding time had expired. ceived in a broken container.
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container.
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container.
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	A holding time had expired. ceived in a broken container. mm in diameter. (Notify PM)
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	d holding time had expired. ceived in a broken container.
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	A holding time had expired. ceived in a broken container. mm in diameter. (Notify PM)
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	A holding time had expired. ceived in a broken container. mm in diameter. (Notify PM) ere further preserved in the laboratory.

WI-NC-099

l

March 15, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: TestAmerica - North Canton Laboratory submittal: 109348-1 Sample date: 2019-03-12 Report received by CADENA: 2019-03-15 Initial Data Verification completed by CADENA: 2019-03-15

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

2 Water sample(s) were analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

SAMPLING AND ANALYSIS SUMMARY

CADENA Project ID: E203631 Laboratory: TestAmerica-North Canton Laboratory Submittal: 109348-1

		Collection Date	Collection Time	Volatile Organics	8260B with Single	
Lab Sample ID	Sample ID	(mm/yy/dd)	(hh:mm:ss)	by GCMS	Ion Monitoring	Comment
2401093481	MW-166S_031219	3/12/2019	12:25:00	х	х	
2401093482	TRIP BLANK	3/12/2019	12:00:00	х		

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton Laboratory Submittal: 109348-1

		Sample Name: Lab Sample ID: Sample Date:	MW-166 2401093 3/12/20	_ 3481	19		TRIP BLA 2401093 3/12/20	3482		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC OSW-826	מר									
0510-820		75-35-4		1.0				1.0		
	1,1-Dichloroethene		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-826</u>	<u>OBBSim</u>									
	1,4-Dioxane	123-91-1	ND	2.0	ug/l					

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG #240-109348-1 CADENA Verification Report: 2019-03-15

Analyses Performed By: TestAmerica Canton, Ohio

Report #32087R Review Level: Tier II/Plus Project: MI001454.0003.00002

SUMMARY

This data quality assessment/verification summarizes the confirmation of detected compounds (if applicable), review of the verification/Tier II validation review performed by CADENA Inc. and review of level II laboratory data package completeness for Sample Delivery Group (SDG) # 240-109348-1 for samples collected in association with the Ford – Livonia, Michigan site. Only detected compound confirmations and omitted deviations from the CADENA verification/Tier II report are documented in this report. The Tier II/Plus validation is performed in the instance when a sample location has a detection at a concentration of 5 ppb or less. The detection and the concentration are reviewed and verified based on the instrument calibration and laboratory raw data. Only analytical data associated with constituents of concern were reviewed for this verification. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample	Parent	Analysis			
SDG	Sample ID	Lab ID	ID Matrix Collectio Date		Sample	voc	VOC (SIM)	MISC	
	MW-166S_031219	240-109348-1	Water	3/12/2019		Х	Х		
240-109348-1	TRIP BLANK	240-109348-2	Water	3/12/2019		Х			

Notes:

VOC = volatile organic compound SIM = selective ion monitoring

MISC = miscellaneous

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		rmance ptable	Not	
Items Reviewed	No	Yes	No	Yes	Required	
1. Sample receipt condition		Х		X		
2. Requested analyses and sample results		Х		X		
3. Master tracking list		Х		Х		
4. Methods of analysis		Х		Х		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8. Sample preservation verification (as applicable)		Х		Х		
9. Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
11. Narrative summary of Quality Assurance or sample problems provided		х		х		
12. Data Package Completeness and Compliance		Х		Х		

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

arcadis.com

DATA REVIEW

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

1.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

1.2 Continuing Calibration

All target compounds associated with the continuing calibration verification (CCV) standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

Calibration criteria are only reviewed when detections were present in samples. No compounds were detected in the samples within this SDG; therefore, calibration criteria was not evaluated.

2. Compound Identification

Compounds are identified on the GC/MS by using the analyte's relative retention time, ion spectra, and concentration.

No compounds were detected in the samples within this SDG.

3. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in the CADENA Inc. review and this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

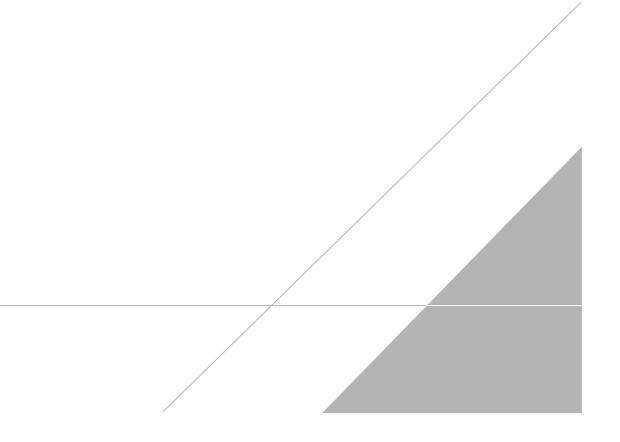
VOCs: 8260B/8260B-SIM	Re	ported		ermance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	rry (GC/N	NS)			
Tier II+ Validation					
Compound identification and quantitation					
A. Reconstructed ion chromatograms	Х				Х
B. Quantitation Reports	Х				Х
C. RT of sample compounds within the established RT windows	x				Х

Notes:

RT retention time

VERIFICATION/VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:


a Kaji

DATE: March 18, 2019

PEER REVIEW: Dennis Capria

DATE: March 18, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

221737 TestAmerica Laboratories, Inc. THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)	COC No:		For Lab Use Only:	Walk-in Client: Lab Sampling: Job / SDG No.:	Sample Specific Notes:	Chain to Clert Disposal by Lab.	CAT: LX0 36 01 Corid: Therm ID No.:	Company: Ar Cadis 3/13/19 / 1700 Company: 2/13/19 (1.700) 2/13/19 (1.700) Company: 3/13/19 (1.700) Date/Time:
/ Record	Date:	Carrier:			240-1093	Chain of Custody	r Temp. (°C): Obs'd: Co	Received by: NOVI CULL Storod C Regeived by: HC Occur HC Received in Laboratory by:
Chain of Custody Record $\gamma, 6/Cl, \gamma$	Site Contact:	Lab Contact:			Filtered Sam Perform MS Pod C D Perform MS		CULLENTICLIC	Received by: Received by: CCLL 5 th Received by: the Received in Laboratory by:
N O			round Time WORKING DAYS		# of trix Cont.	es for the sample in the	JIM, Or well a cade land Coder Temp. (°C): Obs'd	Date/Time 3/13/19/1700 Date/Time: 3/13/16 11:10 Date/Time:
MICHIGA 190 Regulatory Program:	Project Manager:	Tel/Fax:	Analysis Turnaround Time CALENDAR DAYS UNORKING D	TAT if different from Below 2 weeks 1 week 2 days	e Sample (c	S=NaOH; 6= Other	Custody Seal No .:	
TestAmerica Michigan 10448 Citation Drive Suite 200 Brighton, MI 48116 Phone: 810.229.2763 Fax: 412.963.2470	ontact		Address: 397560 Carbot Dr, STE # 500 City/State/Zip: NOVI/mi/48377	Phone: Fax: Project Name: Ford_LTTP Site: Ljvonjc	ication	Hitle Lank Diameter Sector Diameter Sector Diameter Sector Hitle Lank Elevent Diameter Sector Diameter Sector Preservation Used: 1= [ce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Elevent Diameter Sector Preservation Used: 1= [ce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Diameter Sector Diameter Sector Reastle Hazard Cartification: Reast Lank Ender Sector Elenenter Sector Diameter Sector Sector Elenenter Sector Forther Diameter Sector Diameter Sector	Ves 10 No	N. D. Mail

Lab Sample ID: 240-109348-1

Matrix: Water

5 6

8 9

Client Sample ID: MW-166S_031219

Date Collected: 03/12/19 12:25 Date Received: 03/14/19 08:05

Method: 8260B SIM - Volat Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L		•	03/14/19 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		63 - 125				•	03/14/19 15:21	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			03/14/19 17:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			03/14/19 17:50	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			03/14/19 17:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			03/14/19 17:50	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			03/14/19 17:50	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			03/14/19 17:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		70 - 121					03/14/19 17:50	1
4-Bromofluorobenzene (Surr)	87		59 - 120					03/14/19 17:50	1
Toluene-d8 (Surr)	96		70 - 123					03/14/19 17:50	1
Dibromofluoromethane (Surr)	101		75 - 128					03/14/19 17:50	1

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: TRIP BLANK

Date Collected: 03/12/19 00:00 Date Received: 03/14/19 08:05

Lab Sample ID: 240-109348-2 Matrix: Water

8

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte **Result Qualifier** RL MDL Unit Dil Fac D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 03/14/19 18:21 1 cis-1,2-Dichloroethene 1.0 U 0.16 ug/L 03/14/19 18:21 1.0 1 Tetrachloroethene 1.0 U 1.0 0.15 ug/L 03/14/19 18:21 1 trans-1,2-Dichloroethene 1.0 U 1.0 0.19 ug/L 03/14/19 18:21 1 0.10 ug/L Trichloroethene 1.0 U 1.0 03/14/19 18:21 1 Vinyl chloride 1.0 U 1.0 0.20 ug/L 03/14/19 18:21 1 Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 113 70 - 121 03/14/19 18:21 1 4-Bromofluorobenzene (Surr) 87 59 - 120 03/14/19 18:21 1 Toluene-d8 (Surr) 95 70 - 123 03/14/19 18:21 1 Dibromofluoromethane (Surr) 102 75 - 128 03/14/19 18:21 1