ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-196760-1 Client Project/Site: Ford LTP Off-Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 11/27/2019 11:38:37 AM

Michael DelMonico, Project Manager I (330)497-9396

michael.delmonico@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc.
Project/Site: Ford LTP Off-Site

Laboratory Job ID: 460-196760-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	18

12

13

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

5

Q

0

10

12

13

14

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Job ID: 460-196760-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Off-Site

Report Number: 460-196760-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Edison attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/13/2019 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (460-196760-1), MW-189_110819 (460-196760-2) and MW-189S_110819 (460-196760-3) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260C. The samples were analyzed on 11/21/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples MW-189_110819 (460-196760-2) and MW-189S_110819 (460-196760-3) were analyzed for Volatile organic compounds (GC/MS) in accordance with SW-846 Method 8260C SIM. The samples were analyzed on 11/20/2019 and 11/23/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

1

_

9

10

12

13

Ш

Detection Summary

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK Lab Sample ID: 460-196760-1

No Detections.

No Detections.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1,4-Dioxane	8.0	2.0	0.33 ug/L	1 8260C SIM	Total/NA

3

5

6

7

8

9

11

13

14

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Lab Sample ID: 460-196760-1

Matrix: Water

Job ID: 460-196760-1

Client Sample ID: TRIP BLANK

Date Collected: 11/08/19 00:00 Date Received: 11/13/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 12:37	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 12:37	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 12:37	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 12:37	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 12:37	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74 - 132					11/21/19 12:37	1
Toluene-d8 (Surr)	99		80 - 120					11/21/19 12:37	1
Dibromofluoromethane (Surr)	98		72 - 131					11/21/19 12:37	1
4-Bromofluorobenzene	96		77 - 124					11/21/19 12:37	

Client Sample ID: MW-189_110819

Date Collected: 11/08/19 12:47 Date Received: 11/13/19 10:00

Lab Sample ID: 460-196760-2

Matrix: Water

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.33 ug/L 11/20/19 19:32 Surrogate Limits Analyzed %Recovery Qualifier Prepared Dil Fac 4-Bromofluorobenzene 88 72 - 133 11/20/19 19:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 17:46	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 17:46	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 17:46	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 17:46	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 17:46	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	-	74 - 132			-		11/21/19 17:46	1
Toluene-d8 (Surr)	100		80 - 120					11/21/19 17:46	1
Dibromofluoromethane (Surr)	99		72 - 131					11/21/19 17:46	1
4-Bromofluorobenzene	103		77 - 124					11/21/19 17:46	1

Client Sample ID: MW-189S_110819

Surrogate

4-Bromofluorobenzene

Date Collected: 11/08/19 13			Matrix	: Water					
Date Received: 11/13/19 10):00								
Method: 8260C SIM - Vola	atile Organic Co	mpounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.4-Dioxane	8.0		2.0	0.33	ug/L			11/20/19 19:57	1

Limits

72 - 133

%Recovery Qualifier

87

Eurofins TestAmerica, Edison

Analyzed

11/20/19 19:57

Lab Sample ID: 460-196760-3

Prepared

Dil Fac

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Client Sample ID: MW-189S_110819

Date Collected: 11/08/19 13:42 Date Received: 11/13/19 10:00 Lab Sample ID: 460-196760-3

Matrix: Water

Method: 8260C - Volatile Org	•	•				_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 16:54	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 16:54	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 16:54	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 16:54	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 16:54	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74 - 132					11/21/19 16:54	1
Toluene-d8 (Surr)	97		80 - 120					11/21/19 16:54	1
Dibromofluoromethane (Surr)	97		72 - 131					11/21/19 16:54	1
4-Bromofluorobenzene	94		77 - 124					11/21/19 16:54	1

10

12

13

14

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1 Project/Site: Ford LTP Off-Site

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	TOL	DBFM	BFB
Lab Sample ID	Client Sample ID	(74-132)	(80-120)	(72-131)	(77-124)
460-196760-1	TRIP BLANK	93	99	98	96
460-196760-2	MW-189_110819	95	100	99	103
460-196760-3	MW-189S_110819	93	97	97	94
LCS 460-657077/3	Lab Control Sample	94	100	95	100
LCSD 460-657077/4	Lab Control Sample Dup	90	94	94	95
MB 460-657077/8	Method Blank	93	100	95	94
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(72-133)	
460-196760-2	MW-189_110819	88	
460-196760-3	MW-189S_110819	87	
LCS 460-656836/3	Lab Control Sample	92	
LCSD 460-656836/4	Lab Control Sample Dup	93	
MB 460-656836/8	Method Blank	91	

BFB = 4-Bromofluorobenzene

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-657077/8

Matrix: Water

Analysis Batch: 657077

Project/Site: Ford LTP Off-Site

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.26 ug/L 11/21/19 10:54 cis-1,2-Dichloroethene 1.0 U 1.0 0.22 ug/L 11/21/19 10:54 Tetrachloroethene 1.0 U 1.0 0.25 ug/L 11/21/19 10:54 0.24 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 11/21/19 10:54 0.31 ug/L Trichloroethene 1.0 U 1.0 11/21/19 10:54 Vinyl chloride 1.0 U 1.0 0.17 ug/L 11/21/19 10:54

MB MB Prepared Surrogate %Recovery Qualifier Limits Analyzed Dil Fac 74 - 132 1,2-Dichloroethane-d4 (Surr) 93 11/21/19 10:54 Toluene-d8 (Surr) 80 - 120 100 11/21/19 10:54 Dibromofluoromethane (Surr) 95 72 - 131 11/21/19 10:54 77 - 124 4-Bromofluorobenzene 94 11/21/19 10:54

Lab Sample ID: LCS 460-657077/3

Matrix: Water

Analysis Batch: 657077

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	18.8		ug/L		94	74 - 123	
cis-1,2-Dichloroethene	20.0	19.5		ug/L		98	80 - 120	
Tetrachloroethene	20.0	20.9		ug/L		104	78 - 122	
trans-1,2-Dichloroethene	20.0	17.4		ug/L		87	79 - 120	
Trichloroethene	20.0	20.3		ug/L		102	77 - 120	
Vinyl chloride	20.0	17.8		ug/L		89	62 - 138	

LCS	LCS	
%Recovery	Qualifier	Limits
94		74 - 132
100		80 - 120
95		72 - 131
100		77 - 124
	%Recovery 94 100 95	100 95

Lab Sample ID: LCSD 460-657077/4

Matrix: Water

Analysis Batch: 657077

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20.0	17.1		ug/L		85	74 - 123	10	30
cis-1,2-Dichloroethene	20.0	19.5		ug/L		97	80 - 120	0	30
Tetrachloroethene	20.0	19.4		ug/L		97	78 - 122	7	30
trans-1,2-Dichloroethene	20.0	16.0		ug/L		80	79 - 120	8	30
Trichloroethene	20.0	20.5		ug/L		102	77 - 120	1	30
Vinyl chloride	20.0	16.7		ug/L		84	62 - 138	6	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		74 - 132
Toluene-d8 (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	94		72 - 131

Eurofins TestAmerica, Edison

Page 9 of 18

Job ID: 460-196760-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-657077/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 657077

LCSD LCSD

Surrogate Limits %Recovery Qualifier 4-Bromofluorobenzene 77 - 124 95

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-656836/8 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 656836

MB MB Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.33 ug/L 11/20/19 15:46

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 91 72 - 133 11/20/19 15:46

Lab Sample ID: LCS 460-656836/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 656836

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits 5.00 1.4-Dioxane 5.78 ug/L 116 66 - 135

LCS LCS

%Recovery Qualifier Limits Surrogate 72 - 133 4-Bromofluorobenzene 92

Lab Sample ID: LCSD 460-656836/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 656836

Spike LCSD LCSD **RPD** %Rec. Limits Added Result Qualifier Analyte Unit D %Rec **RPD** Limit 1,4-Dioxane 5.00 5.04 ug/L 101 66 - 135 30

LCSD LCSD

Surrogate %Recovery Qualifier Limits 72 - 133 4-Bromofluorobenzene 93

Eurofins TestAmerica, Edison

11/27/2019

Prep Type: Total/NA

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1 Project/Site: Ford LTP Off-Site

GC/MS VOA

Analysis Batch: 656836

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-196760-2	MW-189_110819	Total/NA	Water	8260C SIM	
460-196760-3	MW-189S_110819	Total/NA	Water	8260C SIM	
MB 460-656836/8	Method Blank	Total/NA	Water	8260C SIM	
LCS 460-656836/3	Lab Control Sample	Total/NA	Water	8260C SIM	
LCSD 460-656836/4	Lab Control Sample Dup	Total/NA	Water	8260C SIM	

Analysis Batch: 657077

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-196760-1	TRIP BLANK	Total/NA	Water	8260C	<u> </u>
460-196760-2	MW-189_110819	Total/NA	Water	8260C	
460-196760-3	MW-189S_110819	Total/NA	Water	8260C	
MB 460-657077/8	Method Blank	Total/NA	Water	8260C	
LCS 460-657077/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 460-657077/4	Lab Control Sample Dup	Total/NA	Water	8260C	

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 460-196760-1 Date Collected: 11/08/19 00:00 **Matrix: Water**

Date Received: 11/13/19 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			657077	11/21/19 12:37	EMM	TAL EDI

Client Sample ID: MW-189_110819 Lab Sample ID: 460-196760-2

Date Collected: 11/08/19 12:47 Date Received: 11/13/19 10:00

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	657077	11/21/19 17:46	EMM	TAL EDI
Total/NA	Analysis	8260C SIM		1	656836	11/20/19 19:32	KLB	TAL EDI

Client Sample ID: MW-189S 110819 Lab Sample ID: 460-196760-3

Date Collected: 11/08/19 13:42

Date Received: 11/13/19 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	657077	11/21/19 16:54	EMM	TAL EDI
Total/NA	Analysis	8260C SIM		1	656836	11/20/19 19:57	KLB	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Matrix: Water

Matrix: Water

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Off-Site

Job ID: 460-196760-1

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21
Georgia	State	12028 (NJ)	06-30-20
Massachusetts	State Program	M-NJ312	06-30-20
New Jersey	NELAP	12028	06-30-20
New York	NELAP	11452	04-01-20
Pennsylvania	NELAP	68-00522	02-28-20
Rhode Island	State	LAO00132	12-30-19
USDA	US Federal Programs	P330-18-00135	05-03-21

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-20
Connecticut	State	PH-0590	12-31-19
Florida	NELAP	E87225	06-30-20
Georgia	State	4062	02-23-20
Illinois	NELAP	004498	07-31-20
Iowa	State	421	06-01-20
Kansas	NELAP	E-10336	04-30-20
Kentucky (UST)	State	112225	02-23-20
Kentucky (WW)	State	KY98016	12-31-19
Minnesota	NELAP	OH00048	12-31-19
Minnesota (Petrofund)	State Program	3506	07-31-21
New Jersey	NELAP	OH001	06-30-20
New York	NELAP	10975	03-31-20
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-23-20
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-16-00404	12-28-19
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-20
West Virginia DEP	State	210	12-31-19

Eurofins TestAmerica, Edison

3

4

6

ا

9

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 460-196760-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8260C SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL EDI
5030C	Purge and Trap	SW846	TAL EDI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

3

4

6

7

10

12

10

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 460-196760-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-196760-1	TRIP BLANK	Water	11/08/19 00:00	11/13/19 10:00
460-196760-2	MW-189_110819	Water	11/08/19 12:47	11/13/19 10:00
460-196760-3	MW-189S 110819	Water	11/08/19 13:42	11/13/19 10:00

6

0

9

11

12

14

Client Contact Company Name: Arcadis Address: 28350 Cabot Drive, Suite 500 Cly/State/Zip: Novi, MI, 48377 Phone: 248-594-2240 Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site TRIP BLANK MW - 189 - 110819 Sample Identification F Non-Hazard Identification F Non-Hazard Identification F Non-Hazard Identification F Non-Hazard Instructions/QC Requirements & Comments: Relinquished by: A Comments: Re	
(b)	
gram: 10 gram: 7 J. Kris Hinskey 0 0 v@arcadis.com 7 J. Aqueous 7 X Aqueous 7 J. Aqueous 8 Sediment 8 J. Aqueous 8 Sediment 8 J. Aqueous 9 J. Aqueou	Chain
Sire Contact: Rachel Bielak Telephone: 248-946-6331 To a weeks To a	Chain of Custody Record
Tab Contact: Mile Deliverico X	MIC
TestAmerica Laboratories, Inc. COC No: COC No: Gor Lab Use only Sample Specific Notes Sample Specific Notes Special Instructions: Special Instructions: Special Instructions: Page 16 of 18 Page 16 of 18 11/27/2019	TestAmerica 9

				19	118/	=	Date:	-			4	2	Initials:		Rev 4.1	EDS-WI-038, Rev 4.1 10/22/2019
	djusted. s.	ere pH a	which w	amples 24 hour	out the s	otified ab	ould be n	anager sh ompliance	artment Ma	The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. *Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.	t Manage	iate Projec	e appropr	77:		
					YF.	Expiration Date:	Expira							vative(s):	Lot # of Preservative(s):	
						used (ml	servative	Volume of Preservative used (ml):	Volur				į	ne/Conc.:	Preservative Name/Conc.:	
														adjusted:	Sample No(s). adjusted:	
								low:	mation be	If pH adjustments are required record the information below:	ed recor	are requir	stments	If pH adju		
							i									
				-												
														i		
															-	
							į								,	
	(pH<2)	(pH>12)	(pH<2) (p	1	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	TALS Sample Number	TALS
Other Other	Total Phos	Total Cyanide	Toc s		TKN	Sulfide	Phenols	EPH or QAM	Pest	Hardness	* Metals	Nitrate Nitrite	COD .	Ammonia		
a a		ದೆ ದೆ ದ	<u>a</u> a a		Cooler#7 Cooler#8 Cooler#8			අ අ අ	ජ ජ ජ	Cooler #4: Cooler #5: Cooler #6:	000		3.0°	30° c	Cooler #1: <mark>8:0 </mark>	and the second s
		RECTED	w co	P .			tures	mpera	Cooler Temperatures	ြင္ပ			CORRECTED	Paw		
									9		Gun #				Number of Coolers:	Number
						-og	nd pH I	rature a	Receipt Temperature and pH Log	Receipt			Ó	96760	ls.	Job Number:
Page of			_			3	Fdiso	America	Furofine TestAmerica Edison	Π Ξ		-				

Client: ARCADIS U.S., Inc.

Job Number: 460-196760-1

Login Number: 196760

List Source: Eurofins TestAmerica, Edison

List Number: 1 Creator: Jara, Kelly D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

DATA VERIFICATION REPORT

November 27, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30016346.0002B

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - Edison Laboratory submittal: 196760-1 Sample date: 2019-11-08

Report received by CADENA: 2019-11-27

Initial Data Verification completed by CADENA: 2019-11-27

Number of Samples:3 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, LCS/LCD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

SAMPLING AND ANALYSIS SUMMARY

CADENA Project ID: E203631 Laboratory: TestAmerica-Edison Laboratory Submittal: 196760-1

		Collection Date	Collection Time			
Lab Sample ID	Sample ID	(mm/yy/dd)	(hh:mm:ss)	GCMS VOC Volatiles	GCMS VOC SIM	Comment
4601967601	TRIP BLANK	11/8/2019	12:00:00	Х		
4601967602	MW-189_110819	11/8/2019	12:47:00	Х	Х	
4601967603	MW-189S_110819	11/8/2019	1:42:00	Х	Х	

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631 Laboratory: TestAmerica - Edison Laboratory Submittal: 196760-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 4601967 11/8/20	7601			MW-189 4601967 11/8/20	_ 7602	9		MW-189 4601967 11/8/20		19	
				Report		Valid		Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC														
OSW-826	<u>00C</u>													
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
GC/MS SVOC														
OSW-826	OCSIM													
	1,4-Dioxane	123-91-1					ND	2.0	ug/l		8.0	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 460-196760-1

CADENA Verification Report: 2019-11-27

Analyses Performed By:

TestAmerica

Edison, New Jersey

Report #35085R Review Level: Tier III Project: 30016346.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 460-196760-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC (Full Scan)	Analysis VOC (SIM)	MISC
	TRIP BLANK	460-196760-1	Water	11/8/2019		Х		
460-196760-1	MW-189_110819	460-196760-2	Water	11/8/2019		Х	Х	
	MW-189S_110819	460-196760-3	Water	11/8/2019		Х	Х	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		X	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All detected compounds met the specified criteria.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETE	RY (GC/N	/IS)			
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation	·				
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		X	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		X	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		X	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:

DATE: December 12, 2019

a Kaza

PEER REVIEW: Dennis Capria

DATE: December 18, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

Client Contact Company Name: Arcadis Address: 28350 Cabot Drive, Suite 500 Cly/State/Zip: Novi, MI, 48377 Phone: 248-594-2240 Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site Project Name: Ford LTP Off-Site TRIP BLANK MW - 189 - 110819 Sample Identification F Non-Hazard Identification F Non-Hazard Identification F Non-Hazard Identification F Non-Hazard Instructions/QC Requirements & Comments: Relinquished by: A Comments: Re	
(b)	
gram: 10 gram: 7 J. Kris Hinskey 0 0 v@arcadis.com 7 J. Aqueous 7 X Aqueous 7 J. Aqueous 8 Sediment 8 J. Aqueous 8 Sediment 8 J. Aqueous 9 J. Aqueou	Chain
Sire Contact: Rachel Bielak Telephone: 248-946-6331 To a weeks To a	Chain of Custody Record
Tab Contact: Mile Deliverico X	MIC
TestAmerica Laboratories, Inc. COC No: COC No: Gor Lab Use only Sample Specific Notes Sample Specific Notes Special Instructions: Special Instructions: Special Instructions: Page 16 of 18 Page 16 of 18 11/27/2019	TestAmerica 9

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Lab Sample ID: 460-196760-1

Matrix: Water

Job ID: 460-196760-1

Client Sample ID: TRIP BLANK

Date Collected: 11/08/19 00:00 Date Received: 11/13/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 12:37	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 12:37	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 12:37	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 12:37	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 12:37	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74 - 132					11/21/19 12:37	1
Toluene-d8 (Surr)	99		80 - 120					11/21/19 12:37	1
Dibromofluoromethane (Surr)	98		72 - 131					11/21/19 12:37	1
4-Bromofluorobenzene	96		77 - 124					11/21/19 12:37	

Client Sample ID: MW-189_110819

Date Collected: 11/08/19 12:47 Date Received: 11/13/19 10:00

Lab Sample ID: 460-196760-2

Matrix: Water

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.33 ug/L 11/20/19 19:32 Surrogate Limits Analyzed %Recovery Qualifier Prepared Dil Fac 4-Bromofluorobenzene 88 72 - 133 11/20/19 19:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 17:46	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 17:46	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 17:46	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 17:46	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 17:46	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	-	74 - 132			-		11/21/19 17:46	1
Toluene-d8 (Surr)	100		80 - 120					11/21/19 17:46	1
Dibromofluoromethane (Surr)	99		72 - 131					11/21/19 17:46	1
4-Bromofluorobenzene	103		77 - 124					11/21/19 17:46	1

Client Sample ID: MW-189S_110819

Surrogate

4-Bromofluorobenzene

Date Collected: 11/08/19 13	3:42							Matrix	: Water			
Date Received: 11/13/19 10	Date Received: 11/13/19 10:00											
Method: 8260C SIM - Vola	atile Organic Co	mpounds (G	C/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1.4-Dioxane	8.0		2.0	0.33	ug/L			11/20/19 19:57	1			

Limits

72 - 133

%Recovery Qualifier

87

Eurofins TestAmerica, Edison

Analyzed

11/20/19 19:57

Lab Sample ID: 460-196760-3

Prepared

Dil Fac

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 460-196760-1

Project/Site: Ford LTP Off-Site

Client Sample ID: MW-189S_110819

Date Collected: 11/08/19 13:42 Date Received: 11/13/19 10:00 Lab Sample ID: 460-196760-3

Matrix: Water

Method: 8260C - Volatile Org	•	•				_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/21/19 16:54	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/21/19 16:54	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/21/19 16:54	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/21/19 16:54	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/21/19 16:54	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/21/19 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74 - 132					11/21/19 16:54	1
Toluene-d8 (Surr)	97		80 - 120					11/21/19 16:54	1
Dibromofluoromethane (Surr)	97		72 - 131					11/21/19 16:54	1
4-Bromofluorobenzene	94		77 - 124					11/21/19 16:54	1

10

12

13

14