🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-119192-1

Client Project/Site: Ford LTP Livonia MI - E203631

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 10/4/2019 11:49:49 AM

Michael DelMonico, Project Manager I (330)497-9396 michael.delmonico@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

Definitions/Glossary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	9
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	13
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-119192-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Case Narrative

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-119192-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 9/20/2019 8:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MW-127S_091819 (240-119192-1) and TRIP BLANK (240-119192-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 09/30/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-127S_091819 (240-119192-1) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 09/26/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-119192-1	MW-127S_091819	Water	09/18/19 17:14	09/20/19 08:25	
240-119192-2	TRIP BLANK	Water	09/18/19 00:00	09/20/19 08:25	

Detection Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631 Job ID: 240-119192-1

Project/Site: Ford LTP Livor								
Client Sample ID: MW	/-127S_091819					Lab Sa	ample ID:	240-119192-1
Analyte		Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Vinyl chloride	2.7		1.0	0.20	ug/L	1	8260B	Total/NA
Client Sample ID: TRI	PBLANK					Lab Sa	ample ID:	240-119192-2
No Detections.								
								I

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: MW-127S_091819 Date Collected: 09/18/19 17:14 Date Received: 09/20/19 08:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			09/26/19 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	71		63 - 125			-		09/26/19 16:35	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 18:43	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			09/30/19 18:43	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			09/30/19 18:43	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 18:43	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			09/30/19 18:43	1
Vinyl chloride	2.7		1.0	0.20	ug/L			09/30/19 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 121			-		09/30/19 18:43	1
4-Bromofluorobenzene (Surr)	60		59 - 120					09/30/19 18:43	1
Toluene-d8 (Surr)	80		70 - 123					09/30/19 18:43	1
Dibromofluoromethane (Surr)	111		75 - 128					09/30/19 18:43	1

10/4/2019

Job ID: 240-119192-1

Matrix: Water

Lab Sample ID: 240-119192-1

Client Sample Results

1.0

1.0

1.0

Limits

70 - 121

59 - 120

70 - 123

75 - 128

1.0 U

1.0 U

1.0 U

%Recovery Qualifier

100

61

80

114

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: TRIP BLANK Date Collected: 09/18/19 00:00 Date Received: 09

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Received: 09/20/19 08:2	25								
Method: 8260B - Volatile O	rganic Compo	unds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 19:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			09/30/19 19:06	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			09/30/19 19:06	1

0.19 ug/L

0.10 ug/L

0.20 ug/L

Matrix: Water

Lab Sample ID: 240-119192-2

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

Analyzed

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

Prepared

8

1

1

1

1

1

1

1

Dil Fac

Eurofins TestAmerica, Canton

Surrogate Summary

Method: 8260B - Volatile Organic Compounds (GC/MS)

			Pe	ercent Surro	ogate Recovery (Ad	cceptance Limits)
		DCA	BFB	TOL	DBFM	• •
ab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)	
240-119158-A-4 MS	Matrix Spike	84	90	93	99	
240-119158-A-4 MSD	Matrix Spike Duplicate	83	87	92	97	
240-119192-1	MW-127S_091819	99	60	80	111	
240-119192-2	TRIP BLANK	100	61	80	114	
LCS 240-403153/4	Lab Control Sample	80	96	94	95	
MB 240-403153/6	Method Blank	93	70	84	101	
Surrogate Legend						
DCA = 1,2-Dichloroeth	ane-d4 (Surr)					
BFB = 4-Bromofluorob	enzene (Surr)					
TOL = Toluene-d8 (Su	rr)					
DBFM = Dibromofluor	omethane (Surr)					
lathad: 8260B S	IM - Volatile Organic	Compour	de (GC)			
atrix: Water	in - volatile Organic	compoun	us (60/	1413)		Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)	
		DCA		13
Lab Sample ID	Client Sample ID	(63-125)		
240-119192-1	MW-127S_091819	71		
240-119202-D-1 MS	Matrix Spike	73		
240-119202-D-1 MSD	Matrix Spike Duplicate	72		
LCS 240-402640/4	Lab Control Sample	72		
MB 240-402640/5	Method Blank	72		
Surrogate Legend				

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins TestAmerica, Canton

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-403153/6

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water Analysis Batch: 403153

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 11:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			09/30/19 11:45	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			09/30/19 11:45	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 11:45	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			09/30/19 11:45	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			09/30/19 11:45	1
-					-				

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 121		09/30/19 11:45	1
4-Bromofluorobenzene (Surr)	70		59 - 120		09/30/19 11:45	1
Toluene-d8 (Surr)	84		70 - 123		09/30/19 11:45	1
Dibromofluoromethane (Surr)	101		75 - 128		09/30/19 11:45	1

Lab Sample ID: LCS 240-403153/4 Matrix: Water Analysis Batch: 403153

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	10.6		ug/L		106	65 - 139	
cis-1,2-Dichloroethene	10.0	9.70		ug/L		97	76 - 128	
Tetrachloroethene	10.0	9.71		ug/L		97	74 ₋ 130	
trans-1,2-Dichloroethene	10.0	9.83		ug/L		98	78 - 133	
Trichloroethene	10.0	10.2		ug/L		102	76 ₋ 125	
Vinyl chloride	10.0	9.08		ug/L		91	58 ₋ 143	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		70 - 121
4-Bromofluorobenzene (Surr)	96		59 - 120
Toluene-d8 (Surr)	94		70 - 123
Dibromofluoromethane (Surr)	95		75 - 128

93

Lab Sample ID: 240-119158-A-4 MS **Matrix: Water** Analysis Batch: 403153

Toluene-d8 (Surr)

Analysis Datch. 403133										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	140	J	2500	2510		ug/L		95	53 - 140	
cis-1,2-Dichloroethene	2700		2500	4750		ug/L		82	64 - 130	
Tetrachloroethene	250	U	2500	2060		ug/L		82	51 ₋ 136	
trans-1,2-Dichloroethene	250	U	2500	2390		ug/L		96	68 - 133	
Trichloroethene	250	U	2500	2210		ug/L		88	55 ₋ 131	
Vinyl chloride	230	J	2500	2410		ug/L		87	43 - 154	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	84		70 - 121							
4-Bromofluorobenzene (Surr)	90		59 - 120							

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 123

QC Sample Results

Lab Sample ID: 240-119158-A-4 MS

1,4-Dioxane

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water												Prep Typ		
Analysis Batch: 403153														
	MS	ме												
Surrogate	%Recovery		lifior	Limits										
Dibromofluoromethane (Surr)		Quai		75 - 128										
Lab Sample ID: 240-1191 Matrix: Water	58-A-4 MSD							Client	Sam	nple	e ID: N	latrix Spike Prep Type		
Analysis Batch: 403153														
-	Sample	Sam	ple	Spike	MSD	MSD						%Rec.		RPD
Analyte	Result		ifier	Added	Result	Qual	ifier	Unit	!	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	140	J		2500	2540			ug/L			96	53 - 140	1	35
cis-1,2-Dichloroethene	2700			2500	4780			ug/L			83	64 - 130	1	21
Tetrachloroethene	250			2500	2210			ug/L			88	51 - 136	7	23
trans-1,2-Dichloroethene	250			2500	2380			ug/L			95	68 - 133	1	24
Trichloroethene	250			2500	2210			ug/L			89	55 - 131	0	23
Vinyl chloride	230	J		2500	2360			ug/L			85	43 - 154	2	29
	MSD	MSD)											
Surrogate	%Recovery	Qual	lifier	Limits										
1,2-Dichloroethane-d4 (Surr)	83			70 - 121										
4-Bromofluorobenzene (Surr)	87			59 - 120										
Toluene-d8 (Surr)	92			70_123										
	97			75_128										
Lab Sample ID: MB 240-4	Volatile Org	gani	ic Corr		GC/M	S)			C	lier	nt Sam	ple ID: Me Pren Typ		
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640	Volatile Org	gani	ic Com		GC/M	S)			C	lier	nt Sam	ple ID: Me Prep Typ		
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640	Volatile Org	мв	MB	npounds ((Prep Typ	e: Tof	tal/NA
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org	MB	MB Qualifier	npounds ((RL	I	MDL			C		nt Sam	Prep Type Analyze	e: To f d	tal/NA Dil Fac
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640	Volatile Org	мв	MB Qualifier	npounds ((I							Prep Typ	e: To f d	tal/NA
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org	MB	MB Qualifier U	npounds ((RL	I	MDL						Prep Type Analyze	e: To f d	tal/NA Dil Fac
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org	MB esult 2.0 MB	MB Qualifier U	npounds ((RL	I	MDL				Pre		Prep Type Analyze	e: Tot d 2:48 -	Dil Fac
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane	Volatile Org	MB esult 2.0 MB	MB Qualifier U MB	npounds (I	MDL				Pre	epared	Prep Type Analyze 09/26/19 1	e: Tot d 2:48 -	Dil Fac
Method: 8260B SIM - Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate	Volatile Org 102640/5 Re 	MB sult 2.0 MB very	MB Qualifier U MB	Providence (Marcological Content of the second seco	I	MDL		Clie	D	Pre Pre	epared epared	Analyze	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260B SIM - V Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-	Volatile Org 102640/5 Re 	MB sult 2.0 MB very	MB Qualifier U MB	RL 2.0 <u>Limits</u> 63 - 125	1	MDL 0.86		Clie	D	Pre Pre	epared epared	Prep Type Analyze 09/26/19 11 Analyze 09/26/19 1 : Lab Cont Prep Type	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640	Volatile Org 102640/5 Re 	MB sult 2.0 MB very	MB Qualifier U MB	RL 2.0 Limits 63 - 125 Spike	LCS	MDL 0.86	ug/L		D	Pre Pre	epared epared aple ID	Prep Type Analyze 09/26/19 1 Analyze 09/26/19 1 : Lab Cont Prep Type %Rec.	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org 102640/5 Re 	MB sult 2.0 MB very	MB Qualifier U MB	Ppounds (RL 2.0 Limits 63 - 125 Spike Added	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared uple ID %Rec	Analyze 09/26/19 1 Analyze 09/26/19 1 Lab Cont Prep Type %Rec. Limits	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640	Volatile Org 102640/5 Re 	MB sult 2.0 MB very	MB Qualifier U MB	RL 2.0 Limits 63 - 125 Spike	LCS	MDL 0.86	ug/L		D	Pre Pre	epared epared aple ID	Prep Type Analyze 09/26/19 1 Analyze 09/26/19 1 : Lab Cont Prep Type %Rec.	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org 102640/5 Re %Recon	MB esult 2.0 MB very 72	MB Qualifier U MB Qualifier	Ppounds (RL 2.0 Limits 63 - 125 Spike Added	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared uple ID %Rec	Analyze 09/26/19 1 Analyze 09/26/19 1 Lab Cont Prep Type %Rec. Limits	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane	Volatile Org 102640/5 Re %Recon 402640/4	MB isult 2.0 MB very 72	MB Qualifier U MB Qualifier	Ppounds (RL 2.0 Limits 63 - 125 Spike Added	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared uple ID %Rec	Analyze 09/26/19 1 Analyze 09/26/19 1 Lab Cont Prep Type %Rec. Limits	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte	Volatile Org 102640/5 Re %Recon	MB isult 2.0 MB very 72	MB Qualifier U MB Qualifier	Impounds (i RL 2.0 Limits 63 - 125 Spike Added 10.0	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared uple ID %Rec	Analyze 09/26/19 1 Analyze 09/26/19 1 Lab Cont Prep Type %Rec. Limits	d 2:48 - d 2:48 - 2:48 -	tal/NA Dil Fac 1 Dil Fac 7 ample
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr)	Volatile Org 102640/5 	MB isult 2.0 MB very 72	MB Qualifier U MB Qualifier	Pounds (RL 2.0 <u>Limits</u> 63 - 125 Spike Added 10.0 Limits	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared nple ID %Rec 115	Prep Type Analyze 09/26/19 1: Analyze 09/26/19 1: Lab Cont Prep Type %Rec. Limits 59 - 131	e: Tot d 2:48 - 2:48 - 2:48 - rol Sa e: Tot	tal/NA Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1192	Volatile Org 102640/5 	MB isult 2.0 MB very 72	MB Qualifier U MB Qualifier	Pounds (RL 2.0 <u>Limits</u> 63 - 125 Spike Added 10.0 Limits	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared nple ID %Rec 115	Prep Type Analyze 09/26/19 1: <i>Analyze</i> 09/26/19 1: Lab Cont Prep Type %Rec. Limits 59 - 131	e: Tot d 2:48 - d 2:48 - rol Sa e: Tot atrix	Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260B SIM - V Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1192 Matrix: Water	Volatile Org 102640/5 	MB isult 2.0 MB very 72	MB Qualifier U MB Qualifier	Pounds (RL 2.0 <u>Limits</u> 63 - 125 Spike Added 10.0 Limits	LCS Result	MDL 0.86	ug/L	Unit	D	Pre Pre	epared epared nple ID %Rec 115	Prep Type Analyze 09/26/19 1: Analyze 09/26/19 1: Lab Cont Prep Type %Rec. Limits 59 - 131	e: Tot d 2:48 - d 2:48 - rol Sa e: Tot atrix	Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1192	Volatile Org 102640/5 Re %Record 402640/4 LCS 72 02-D-1 MS	MB esult 2.0 MB very 72	MB Qualifier U Qualifier	RL 2.0 Limits 63 - 125 Spike Added 10.0 Limits 63 - 125	LCS Result 11.5	MDL 0.86 LCS Qual	ug/L	Unit	D	Pre Pre	epared epared nple ID %Rec 115	Prep Type Analyze 09/26/19 1: Analyze 09/26/19 1 : Lab Cont Prep Type %Rec. Limits 59 - 131 mple ID: M Prep Type	e: Tot d 2:48 - d 2:48 - rol Sa e: Tot atrix	Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260B SIM - N Lab Sample ID: MB 240-4 Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240- Matrix: Water Analysis Batch: 402640 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1192 Matrix: Water	Volatile Org 102640/5 	MB esult 2.0 MB very 72 LCS Qual	MB Qualifier U Qualifier	Pounds (RL 2.0 <u>Limits</u> 63 - 125 Spike Added 10.0 Limits	LCS Result 11.5	MDL 0.86 Qual	ifier	Unit	D	Pre am	epared epared nple ID %Rec 115	Prep Type Analyze 09/26/19 1: Analyze 09/26/19 1: Lab Cont Prep Type %Rec. Limits 59 - 131	e: Tot d 2:48 - d 2:48 - rol Sa e: Tot atrix	Dil Fac 1 Dil Fac 1 ample tal/NA

Job ID: 240-119192-1

Client Sample ID: Matrix Spike

10

Eurofins TestAmerica, Canton

52 - 129

123

12.3

ug/L

10.0

2.0 U

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	73		63 - 125									
- Lab Sample ID: 240-1192	02-D-1 MSD					Client	Samp	le ID: N	latrix Spil	ke Dup	licate	
Matrix: Water									Prep Ty			
Analysis Batch: 402640												
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,4-Dioxane	2.0	U	10.0	12.7		ug/L		127	52 _ 129	3	13	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	72		63 - 125									-

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

GC/MS VOA

Analysis Batch: 402640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-119192-1	MW-127S_091819	Total/NA	Water	8260B SIM	
MB 240-402640/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-402640/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-119202-D-1 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-119202-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 403153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-119192-1	MW-127S_091819	Total/NA	Water	8260B		
240-119192-2	TRIP BLANK	Total/NA	Water	8260B		
MB 240-403153/6	Method Blank	Total/NA	Water	8260B		
LCS 240-403153/4	Lab Control Sample	Total/NA	Water	8260B		
240-119158-A-4 MS	Matrix Spike	Total/NA	Water	8260B		
240-119158-A-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B		-

Job ID: 240-119192-1

Job ID: 240-119192-1

Matrix: Water

Matrix: Water

Lab Sample ID: 240-119192-1

Lab Sample ID: 240-119192-2

Client Sample ID: MW-127S_091819 Date Collected: 09/18/19 17:14 Date Received: 09/20/19 08:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	403153	09/30/19 18:43	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	402640	09/26/19 16:35	SAM	TAL CAN

Client Sample ID: TRIP BLANK Date Collected: 09/18/19 00:00 Date Received: 09/20/19 08:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	403153	09/30/19 19:06	LEE	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Job ID: 240-119192-1

Laboratory: Eurofins TestAmerica, Canton All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-23-20	
Connecticut	State	PH-0590	12-31-19	
Florida	NELAP	E87225	06-30-20	
Georgia	State	4062	02-23-20	
Georgia	State Program	N/A	02-23-20	
Illinois	NELAP	004498	07-31-20	
Iowa	State	421	06-01-20	
Kansas	NELAP	E-10336	04-30-20	
Kentucky (UST)	State	112225	02-23-20	
Kentucky (WW)	State	KY98016	12-31-19	
Minnesota	NELAP	OH00048	12-31-19	
Minnesota (Petrofund)	State Program	3506	07-31-21	
New Jersey	NELAP	OH001	06-30-20	
New York	NELAP	10975	03-31-20	
Ohio VAP	State	CL0024	06-05-21	
Oregon	NELAP	4062	02-23-20	
Pennsylvania	NELAP	68-00340	08-31-20	
Texas	NELAP	T104704517-18-10	08-31-20	
USDA	US Federal Programs	P330-16-00404	12-28-19	
Virginia	NELAP	010101	09-14-20	
Washington	State	C971	01-12-20	
West Virginia DEP	State	210	12-31-19	

	I CERTIFICATION LAUOUATORY IOCATION: COMMON				100110110			1 pl pl	2.044-010	-				Ę	
Client Contact Company Name: Arcadis	Regulatory program:	rogram:	L	MQ	NPDES	SEC	RCRA	0 L	Other					F	l'est America I aboratories
	Client Project Manager: Kris Hinskey	er: Kris Hins.	key		Site Con	Site Contact: Rachel Bjelak	el Bielak		F	Lab Conta	Lab Contact: Mike DelMonico	DelMonic	0	0	COC No:
Address: 28550 Cabot Drive, Suite 500 City/State/Zia: Novi: M1 48177	Telephone: 248-994-2240	240			Telephoi	Telephone: 248-946-6331	-6331			Felephone	Telephone: 330-497-9396	-9396			
(STATE 24) (111, 403/1)	Email: kristoffer.hinskey@arcadis.com	key@arcadis.	com		Ana	ysis Turna	Analysis Turnaround Time		1			Analyses	es	-	For lab use only
r none: 248-994-2240 Project Name: Ford LTP					TAT if dif	and from the	octow 3 wceks	TT						*	Walk-in client
Project Number: M1001454.0004.0002B	Method of Shipment/Carrier:	Carrier:			10 day	LL	2 weeks 1 week 7 dave		D =	80		8	WIS		ab sampling
PO# MI001454.0004.0002B	Shipping/Tracking No:	:0			T	L	1 day	COST	-			82606	8092	5	lob/SDG No:
			-			100		qm£2 bor	Dosite-C	*-1'S-DCE 8	80928	Chloride Chloride	8 enexoi		Sample Specific Notes /
Sample Identification	Sample Date Sam	Sample Time	wipoS oonby	bilo2	ONH DS7H	N [#] OI	Offici Unpr VaAD	_			PCE		J-4'L		Special Instructions:
MU-1275-ONRIG	7/8/5 1-	1714	×			×		NC	6 2	X	X	XX	X		6 Centra INGRS
TEW RIANK		1	×						×	XXX	7	×	*		1 Contrainicia
									-	+					
				-											
				-			Conception of Custody	stody		_		-			
				_	240-1-	0.4010		-	-	-		_			
							-			-		-			
Possible Hazard Identification	Γ cin Irritant Γ Poison B	Int 1	[Jnknown		Samp	le Disposal Return to	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return to Client P Disposal By Lab	be assessed Disposal	d if sample	is are reta	Archive Fi	er than 1	month) Months		
Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jim.tomalia@cadena.com. Cadena #E203631 Level IV Reporting requested.	cadena.com. Cadena #E203	531													
Relinquished by: Star Train January / R. A.	Company: ARZANS		Date/Time:		1900	Rece	Received by: MCM COUD	STORAGE	R		5	Company: APCAND	30	E	Pate/Time: 9/8/101 19.00
1.1.1	ARCA015		Date/Time:	e/Time: /(G//A	1015	Rece	wed by	6			Q.	Company:	2		-19-15
nquished by:	Company:		Date/Time:	:o:		Receiv	Ved in 1,006	THINT BY:			C	Commune		ul I	Data/Time.

10/4/2019

- 1

Eurofins TestAmerica Canton Sample Receipt Form/Narrative	Login # : 11 9192
Canton Facility	
Client Accudis Site Name	Cooler unpacked by:
Cooler Received on 9/20/19 Opened on 9/20/19	DeD
FedEx: 1 st Gree Exp UPS FAS Clipper Client Drop Off TestA	merica Courier Other
Receipt After-hours: Drop-off Date/Time Stu	orage Location
TestAmerica Cooler # TAC Foam Box Client Cooler Box	Other
Packing material used: ButhleWrap Foam Plastic Pag Nor	
COOLANT: Wet Ico Blue Ice Dry Ice Water No.	
1. Cooler temperature upon receipt IR GUN# IR-10 (CF +0.7 °C) Observed Cooler Temp. 1.0 °C C	e Multiple Cooler Form
IR GUN# IR-10 (CF +0.7 °C) Observed Cooler Temp. 110 °C C	Corrected Cooler Temp. C
IR GUN #IR-11 (CF +0.9°C) Observed Cooler Temp°C C	with (a who Ver No
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quan	Yes No NA
-Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeH	
-Were tamper/custody seals on the bottle(s) of bottle kits (LEng/Men	YES NO NA
 Shippers' packing slip attached to the cooler(s)? 	Yes No
 Shippers packing ship attached to the coord (s)? Did custody papers accompany the sample(s)? 	Ves No Tests that are not
 Were the custody papers relinquished & signed in the appropriate place' 	? Ves No checked for pH by
6. Was/were the person(s) who collected the samples clearly identified on	the COC? Yes No Receiving:
7. Did all bottles arrive in good condition (Unbroken)?	Ves No
8. Could all bottle labels be reconciled with the COC?	Yee No VOAs Oil and Grease
9. Were correct bottle(s) used for the test(s) indicated?	Yes NO TOC
10. Sufficient quantity received to perform indicated analyses?	Ve No
11. Are these work share samples?	Yes No
If yes, Questions 12-16 have been checked at the originating laboratory.	Yes No XA) pH Strip Lot# HC991818
12. Were all preserved sample(s) at the correct pH upon receipt?	Ces-No
 13. Were VOAs on the COC? 14. Were air bubbles >6 mm in any VOA vials? 	
15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	V/A Ves No
16. Was a LL Hg or Me Hg trip blank present?	Yes Xa
	V I I V i Mail Other
Contacted PM Date by	via Verbal Voice Mail Other
Concerning	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
17. CHAIN OF COSTOD'I & SAME DE DISCHEL AL COLLE	MI
18. SAMPLE CONDITION	
Sample(s) were received after the re	ecommended holding time had expired.
Sample(s)	were received in a broken container.
Sample(s) were received wit	th bubble >6 mm in diameter. (Notify PM)
19. SAMPLE PRESERVATION	
17. SAMILE I RESERVATION	
Sample(s)	were further preserved in the laboratory.
Sample(s) Time preserved: Preservative(s) added/Lot number(s):	
VOA Sample Preservation - Date/Time VOAs Frozen:	

DATA VERIFICATION REPORT

October 04, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0003 ? 30016344 - VI sampling Event Specific Scope of Work References: Sample COC Laboratory: TestAmerica - North Canton Laboratory submittal: 119192-1 Sample date: 2019-09-18 Report received by CADENA: 2019-10-04 Initial Data Verification completed by CADENA: 2019-10-04 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

SAMPLING AND ANALYSIS SUMMARY

CADENA Project ID: E203631 Laboratory: TestAmerica-North Canton Laboratory Submittal: 119192-1

		Collection Date	Collection Time	Volatile Organics	8260B with Single	
Lab Sample ID	Sample ID	(mm/yy/dd)	(hh:mm:ss)	by GCMS	Ion Monitoring	Comment
2401191921	MW-127S_091819	9/18/2019	5:14:00	х	х	
2401191922	TRIP BLANK	9/18/2019	12:00:00	х		

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton Laboratory Submittal: 119192-1

		Sample Name: Lab Sample ID: Sample Date:	MW-127 2401192 9/18/20	 1921	19		TRIP BLA 2401191 9/18/20	1922		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC OSW-826	ΩD									
0300-820	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	2.7	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-826</u>	<u>OBBSim</u>									
	1,4-Dioxane	123-91-1	ND	2.0	ug/l					

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG #240-119192-1 CADENA Verification Report: 2019-10-04

Analyses Performed By: TestAmerica Canton, Ohio

Report #34448R Review Level: Tier III Project: 30016346.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-119192-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC (Full Scan)	Analysis VOC (SIM)	MISC
	MW-127S_091819	240-119192-1	Water	9/18/2019		х	х	
240-119192-1	TRIP BLANK	240-119192-2	Water	9/18/2019		Х		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Repo	orted		mance ptable	Not
Items	Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition			Х		Х	
2. Requested analyses and s	ample results		Х		Х	
3. Master tracking list			Х		Х	
4. Methods of analysis			Х		Х	
5. Reporting limits			Х		Х	
6. Sample collection date			Х		Х	
7. Laboratory sample receive	d date		Х		Х	
8. Sample preservation verifi	cation (as applicable)		Х		Х	
9. Sample preparation/extrac	tion/analysis dates		Х		Х	
10. Fully executed Chain-of-C	ustody (COC) form		Х		Х	
11. Narrative summary of Qua problems provided	lity Assurance or sample		х		Х	
12. Data Package Completene	ess and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

arcadis.com

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

DATA REVIEW

All identified compounds met the specified criteria.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported	Performance Acceptable		Not	
	No	Yes	No	Yes	Requirec	
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/I	MS)				
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation	I	1			1	
System performance and column resolution		X		X		
Initial calibration %RSDs		X		Х		
Continuing calibration RRFs		X		Х		
Continuing calibration %Ds		X		X		
Instrument tune and performance check		X		Х		
Ion abundance criteria for each instrument used		X		Х		
Internal standard		X		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		X		Х		
B. Quantitation Reports		X		Х		
C. RT of sample compounds within the established RT windows		X		Х		
D. Transcription/calculation errors present		X		X		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

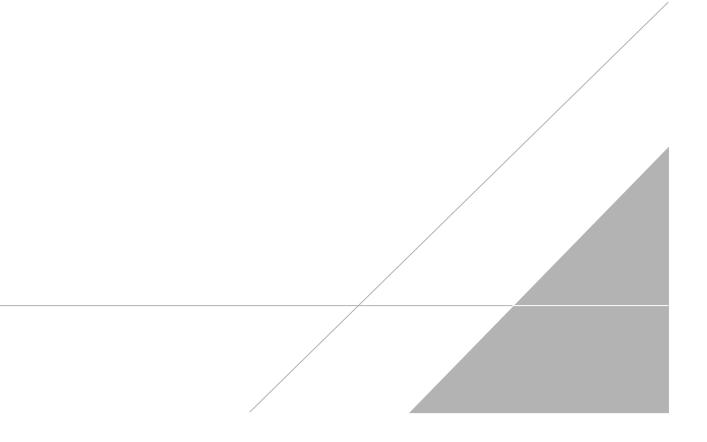
Notes:

%RSD Relative standard deviation

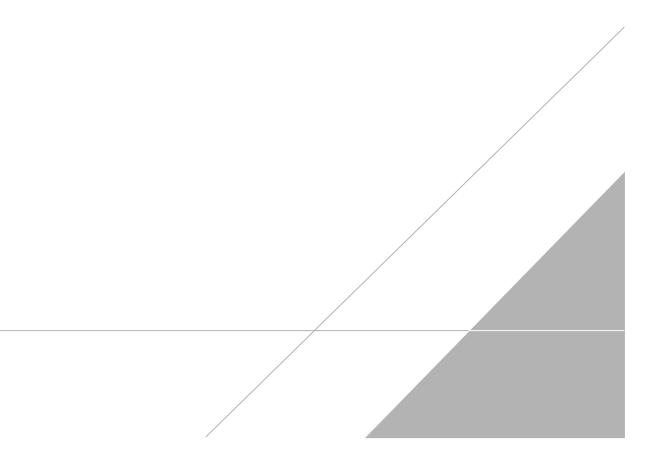
- %R Percent recovery
- RPD Relative percent difference
- %D Percent difference

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:


akor

DATE: October 16, 2019


PEER REVIEW: Joseph C. Houser

DATE: October 16, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

	I CERTIFICATION LAUOUATORY IOCATION: COMMON	HODE	L								THE REPORT IS THE LOCATED AND A LOCATED AND A LOCATED	1000 1000 1000 11000
Client Contact Company Name: Arcadis	Regulatory program:	gram:	MQ	L NPDES	S T RCRA	L	Other				Test America Laho	ratorios Inc
	Client Project Manager: Kris Hinskey	: Kris Hinskey		Site Contac	Site Contact: Rachel Bielak		La	b Contact:	Lab Contact: Mike DelMonico	onico	COC No:	and the second
Address: 28550 Cabot Drive, Suite 500 City/State/Zia: Novi: M1 48177	Telephone: 248-994-2240	0		Telephone:	Telephone: 248-946-6331		Te	lephone: 33	Telephone: 330-497-9396			-000
(2) BIC (24) (14) (20) (20) (20) (20) (20) (20) (20) (20	Email: kristoffer.hinskey@arcadis.com	y@arcadis.com		Analys	Analysis Turnaround Time	qie	l		An	Analyses	For lab use only	LUCS
r none: 248-994-224u Project Name: Ford LTP				TAT if differ	S FE	Π	-				Walk-in client	
Project Number: M1001454.0004.0002B	Method of Shipment/Carrier:	rrier:		10 day	LL	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0	80			Lab sampling	
PO# MI001454.0004.0002B	Shipping/Tracking No:			T	T 1 day	COST	8				Job/SDG No:	
		snoo	er: d ment Matrix	03 Conta	ers & Preservativ H C	er: 3 lered Samp	1,2-DCE 8260 DCE 8260	IDO-2'1-su	E 8260B	A Chloride 8 Dioxane 8	Sample Specific Notes /	c Notes /
Sample Identification		ηv	Ios	NH	naN Daw Daw	EI	1'1	Tra		11		-cinorea
MU-1275-01819	PILI 2/8/17	X			×	NC	XX	~	XX	XX	6 CONTAINERS	NETS
TRIP BLANK)	~					×	×	X	X	1 CONTAINER	XID
								_				
			+	240-1191	240-119192 Chain of Custody	Custody		1 -				
Possible Hazard Identification	C cin Irritant C Poison B	∏ Jnknown		Sample.	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) F Return to Client P Disposal by Lab	ay be assessed	if samples By Lab	are retaine	d longer th	an 1 month) Months		
s/QC Requirements & Comment through Cadena at jim.tomal g requested.	cadena.com. Cadena #E20363			-		mondern	and for	-		SHIDN		
Relinquished by: SHAN TTG. JAJUSAJ JN	Company: ARZANS	Dat	Date/Time:	1900	Received by: MCM COLD	J STORAGE	4		Company: APCA	APCADD APCADD	5	1900
Relinquished by: RACHEL BIELAK (WUL Bullal	ARCADIS	Date	Date/Time:	1015	Received by:	F			Company:	TH.	2	510,
nquished by:	Company	Dat	Date/Time:	11/10	- Received in 44	Berntory by:			Company	iny:	Date/Time:	1

10/4/2019

- 1

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: MW-127S_091819 Date Collected: 09/18/19 17:14 Date Received: 09/20/19 08:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			09/26/19 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	71		63 - 125					09/26/19 16:35	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 18:43	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			09/30/19 18:43	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			09/30/19 18:43	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 18:43	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			09/30/19 18:43	1
Vinyl chloride	2.7		1.0	0.20	ug/L			09/30/19 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 121					09/30/19 18:43	1
4-Bromofluorobenzene (Surr)	60		59 - 120					09/30/19 18:43	1
Toluene-d8 (Surr)	80		70 - 123					09/30/19 18:43	1
Dibromofluoromethane (Surr)	111		75 - 128					09/30/19 18:43	1

10/4/2019

Job ID: 240-119192-1

Matrix: Water

Lab Sample ID: 240-119192-1

Client Sample Results

1.0 U

1.0 U

1.0 U

%Recovery Qualifier

100

61

80

114

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: TRIP BLANK Date Collected: 09/18/19 00:00 Date Received:

Tetrachloroethene

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Received: 09/20/19 08:	25								
Method: 8260B - Volatile C	Organic Compo	unds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			09/30/19 19:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			09/30/19 19:06	1
Tetrachloroethene	1.0	U	1.0	0.15	ua/L			09/30/19 19:06	1

0.19 ug/L

0.10 ug/L

0.20 ug/L

1.0

1.0

1.0

Limits

70 - 121

59 - 120

70 - 123

75 - 128

Job	ID:	240-	·11	91	92-	1

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

Analyzed

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

09/30/19 19:06

Prepared

Lab Sample ID: 240-119192-2 **Matrix: Water** 1 8 Dil Fac 1 1 1 1

1