

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-139463-1 Client Project/Site: Ford LTP - Off Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 11/18/2020 11:33:05 AM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-139463-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

4

R

9

10

12

13

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

-

A

5

6

9

10

12

13

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Job ID: 240-139463-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP - Off Site

Report Number: 240-139463-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/4/2020 9:20 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-139463-1) and MW-163S_110220 (240-139463-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/13/2020.

The continuing calibration verification (CCV) associated with batch 240-460814 recovered above the upper control limit for Vinyl Chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. TRIP BLANK (240-139463-1), MW-163S_110220 (240-139463-2) and (CCVIS 240-460814/4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-163S_110220 (240-139463-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 11/09/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

7

8

10

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-139463-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

6

9

10

12

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139463-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-139463-1	TRIP BLANK	Water	11/02/20 00:00	11/04/20 09:20	
240-139463-2	MW-163S_110220	Water	11/02/20 12:50	11/04/20 09:20	

6

Q

9

11

40

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK Lab Sample ID: 240-139463-1

No Detections.

No Detections.

3

4

5

0

8

9

10

12

16

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-139463-1

Date Collected: 11/02/20 00:00 **Matrix: Water** Date Received: 11/04/20 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 12:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/13/20 12:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/13/20 12:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 12:41	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/13/20 12:41	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/13/20 12:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		75 - 130			•		11/13/20 12:41	1
4-Bromofluorobenzene (Surr)	96		47 - 134					11/13/20 12:41	1
Toluene-d8 (Surr)	94		69 - 122					11/13/20 12:41	1
Dibromofluoromethane (Surr)	103		78 - 129					11/13/20 12:41	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-163S_110220

Date Collected: 11/02/20 12:50 Date Received: 11/04/20 09:20 Lab Sample ID: 240-139463-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/20 18:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 133					11/09/20 18:58	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 13:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/13/20 13:06	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/13/20 13:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 13:06	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/13/20 13:06	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/13/20 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/13/20 13:06	1
4-Bromofluorobenzene (Surr)	96		47 - 134					11/13/20 13:06	1
Toluene-d8 (Surr)	95		69 - 122					11/13/20 13:06	1
Dibromofluoromethane (Surr)	106		78 - 129					11/13/20 13:06	1

11/18/2020

3

5

7

0

10

111

13

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)
240-139463-1	TRIP BLANK	114	96	94	103
240-139463-2	MW-163S_110220	118	96	95	106
240-139634-B-1 MS	Matrix Spike	103	103	100	92
240-139634-B-1 MSD	Matrix Spike Duplicate	107	104	102	95
LCS 240-460814/5	Lab Control Sample	103	103	100	95
MB 240-460814/8	Method Blank	114	97	94	103

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

Lab Sample ID Client Samp 240-139463-2 MW-163S_1 240-139466-C-5 MS Matrix Spike	10220 104	 	
240-139463-2 MW-163S_1	10220 104	 	
_ · · · · · · -		 	
240-139466-C-5 MS Matrix Spike			
	104		
240-139466-C-5 MSD Matrix Spike	Duplicate 106		
LCS 240-459934/4 Lab Control	Sample 100		
MB 240-459934/5 Method Blan	k 99		

DCA = 1,2-Dichloroethane-d4 (Surr)

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-460814/8

Matrix: Water

Analysis Batch: 460814

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 11/13/20 11:26 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 11/13/20 11:26 1.0 U Tetrachloroethene 1.0 0.15 ug/L 11/13/20 11:26 0.19 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 11/13/20 11:26 Trichloroethene 1.0 U 1.0 0.10 ug/L 11/13/20 11:26 Vinyl chloride 1.0 U 1.0 0.20 ug/L 11/13/20 11:26

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 75 - 130 1,2-Dichloroethane-d4 (Surr) 114 11/13/20 11:26 4-Bromofluorobenzene (Surr) 97 47 - 134 11/13/20 11:26 69 - 122 Toluene-d8 (Surr) 94 11/13/20 11:26 Dibromofluoromethane (Surr) 103 78 - 129 11/13/20 11:26

Lab Sample ID: LCS 240-460814/5

Matrix: Water

Analysis Batch: 460814

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Бріке	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	21.4		ug/L		107	73 - 129	
20.0	20.6		ug/L		103	75 - 124	
20.0	19.2		ug/L		96	70 - 125	
20.0	20.6		ug/L		103	74 - 130	
20.0	18.2		ug/L		91	71 - 121	
20.0	22.6		ug/L		113	61 - 134	
	20.0 20.0 20.0 20.0 20.0	Added Result 20.0 21.4 20.0 20.6 20.0 19.2 20.0 20.6 20.0 18.2	Added Result Qualifier 20.0 21.4 20.6 20.0 20.6 20.6 20.0 20.6 20.6 20.0 18.2 20.6	Added Result Qualifier Unit 20.0 21.4 ug/L 20.0 20.6 ug/L 20.0 19.2 ug/L 20.0 20.6 ug/L 20.0 18.2 ug/L	Added Result Qualifier Unit D 20.0 21.4 ug/L ug/L 20.0 20.6 ug/L ug/L 20.0 19.2 ug/L ug/L 20.0 20.6 ug/L ug/L 20.0 18.2 ug/L	Added Result Qualifier Unit D %Rec 20.0 21.4 ug/L 107 20.0 20.6 ug/L 103 20.0 19.2 ug/L 96 20.0 20.6 ug/L 103 20.0 18.2 ug/L 91	Added Result Qualifier Unit D %Rec Limits 20.0 21.4 ug/L 107 73 - 129 20.0 20.6 ug/L 103 75 - 124 20.0 19.2 ug/L 96 70 - 125 20.0 20.6 ug/L 103 74 - 130 20.0 18.2 ug/L 91 71 - 121

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 103 75 - 130 4-Bromofluorobenzene (Surr) 103 47 - 134 Toluene-d8 (Surr) 100 69 - 122 78 - 129 Dibromofluoromethane (Surr) 95

Lab Sample ID: 240-139634-B-1 MS

Matrix: Water

Analysis Batch: 460814

Client Sample ID: Matrix Spike
Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	3.3	U	66.6	63.9		ug/L		96	64 - 132	
cis-1,2-Dichloroethene	230	F1	66.6	266	F1	ug/L		60	68 - 121	
Tetrachloroethene	3.3	U	66.6	56.2		ug/L		84	52 - 129	
trans-1,2-Dichloroethene	3.3	U	66.6	64.0		ug/L		96	69 - 126	
Trichloroethene	59		66.6	107		ug/L		73	56 - 124	
Vinyl chloride	3.3	U	66.6	71.3		ug/L		107	49 - 136	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 130
4-Bromofluorobenzene (Surr)	103		47 - 134
Toluene-d8 (Surr)	100		69 - 122

Eurofins TestAmerica, Canton

Page 11 of 18

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-139634-B-1 MS

Matrix: Water

Analysis Batch: 460814

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 92 78 - 129

Lab Sample ID: 240-139634-B-1 MSD

Matrix: Water

Analysis Batch: 460814

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	3.3	U	66.6	69.9		ug/L		105	64 - 132	9	35
cis-1,2-Dichloroethene	230	F1	66.6	264	F1	ug/L		56	68 - 121	1	35
Tetrachloroethene	3.3	U	66.6	58.2		ug/L		87	52 - 129	4	35
trans-1,2-Dichloroethene	3.3	U	66.6	68.4		ug/L		103	69 - 126	7	35
Trichloroethene	59		66.6	108		ug/L		74	56 - 124	1	35
Vinyl chloride	3.3	U	66.6	73.1		ug/L		110	49 - 136	3	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		75 - 130
4-Bromofluorobenzene (Surr)	104		47 - 134
Toluene-d8 (Surr)	102		69 - 122
Dibromofluoromethane (Surr)	95		78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-459934/5

Matrix: Water

Analyte

1,4-Dioxane

Analysis Batch: 459934

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 U 2.0 11/09/20 13:39 0.86 ug/L

MB MB

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 70 - 133 11/09/20 13:39

Lab Sample ID: LCS 240-459934/4

Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 459934

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 10.9 ug/L 109 80 - 135

LCS LCS

%Recovery Qualifier Surrogate Limits 70 - 133 1,2-Dichloroethane-d4 (Surr) 100

Lab Sample ID: 240-139466-C-5 MS

Matrix: Water

Analysis Batch: 459934

Allalysis Datell. 400004										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	44		10.0	54.7	4	ug/L		104	46 - 170	

Eurofins TestAmerica, Canton

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 12 of 18

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery		Limits								
1,2-Dichloroethane-d4 (Surr)	104		70 - 133								
Lab Sample ID: 240-1394 Matrix: Water Analysis Batch: 459934	166-C-5 MSD					Client	Samp	le ID: N	latrix Spil Prep Ty	•	
,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	44		10.0	57.9	4	ug/L		136	46 - 170	6	26
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1 2-Dichloroethane-d4 (Surr)	106		70 - 133								

QC Association Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 459934

Lab Sample ID 240-139463-2	Client Sample ID MW-163S_110220	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-459934/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-459934/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-139466-C-5 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-139466-C-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 460814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-139463-1	TRIP BLANK	Total/NA	Water	8260B	_ <u> </u>
240-139463-2	MW-163S_110220	Total/NA	Water	8260B	
MB 240-460814/8	Method Blank	Total/NA	Water	8260B	
LCS 240-460814/5	Lab Control Sample	Total/NA	Water	8260B	
240-139634-B-1 MS	Matrix Spike	Total/NA	Water	8260B	
240-139634-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

2

6

0

9

11

12

13

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Date Received: 11/04/20 09:20

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-139463-1 Date Collected: 11/02/20 00:00

Matrix: Water

Lab TAL CAN

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type Total/NA Analysis 8260B 460814 11/13/20 12:41 HMB

Client Sample ID: MW-163S_110220 Lab Sample ID: 240-139463-2

Date Collected: 11/02/20 12:50 **Matrix: Water**

Date Received: 11/04/20 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	460814	11/13/20 13:06	HMB	TAL CAN
Total/NA	Analysis	8260B SIM		1	459934	11/09/20 18:58	SAM	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-139463-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	ority Program Identification Num		Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-21
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

3

4

5

9

10

12

13

Chain of Custody Record

MICHIGAN TestAmerica

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: DW - NPDES Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Julia McClafferty Lab Contact: Mike DelMonico COC No: Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 734-644-5131 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 COCs Analysis Turnaround Time Analyses For lab use only Email: kristoffer.hinskey@arcadis.com Phone: 248-994-2240 Walk-in client Sampler Name: Project Name: Ford LTP Off-Site 3 weeks 7 mmx ₹ 2 weeks Lab sampling Project Number: 30050315.402.04 1 week 8260B SIM Filtered Sample (Y / N) 2 days =C/Grab PO # 30050315.402.04 Shipping/Tracking No: ☐ I day Job/SDG No: /inyl Chloride Matrix Containers & Preservatives 1,4-Dioxane PCE 8260B TCE 8260B Sample Specific Notes / Solid HCI Special Instructions: Sample Identification Sample Date | Sample Time TRIP BLANK Trip blank MW-1635_110220 3 unas For \$ 76013 3 vots For 826073 5714 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than I month) ▼ Non-Hazard lammable sin Irritant Poison B Unknown Disposal By Lab Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested. Relinquished by: Storage Hrand15 Relinquished by: Received by Relinquished by: Received in Laboratory by

©2008. TestAmerica Laborationes, Inc., All rights reserved. TestAmerica & Diesign. ** are trademarks of TestAmerica Laboratories, Inc.

Page

of 18

11/18/2020

Eurofins TestAmerica Canton Sample Receipt Form/Narrative Canton Facility	Login #: 137463
Client Arcadis Site Name	Cooler uppacked by:
Cooler Received on 11-9-30 Opened on 11-9-20	
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	//
TestAmerica Cooler # H Foam Box Client Cooler Box Other	
Packing material used: Bubble Wrap Foam Plastic Bag None Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	
1. Cooler temperature upon receipt IR GUN# IR-11 (CF +0.9 °C) Observed Cooler Temp. 3.0 °C Corrected Cooler IR GUN #IR-12 (CF +0.5 °C) Observed Cooler Temp. °C Corrected Cooler	Temp. 3. 9°C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes	
	No NA lesis that are not
	s No Receiving:
	® No NA
	S No VOAs Oil and Grease
Comment of the commen	TOC
	s No
	No No
	s) No
9. For each sample, does the COC specify preservatives (VN), # of containers (VN), and s	
	s No
	s No
	s .No
If yes, Questions 13-17 have been checked at the originating laboratory.	N
	s No (NA) pH Strip Lot# <u>HC907861</u> S No
	s No NA
	s)No
	s No
Contacted PM Date by via Verbal V	Voice Mail Other
Concerning	
- Controlling	
as awar or avarance assume property warms.	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples processed by:
19. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ing time had expired.
	d in a broken container.
Sample(s) were received with bubble >6 mm	in diameter. (Notify PM)
20. SAMPLE PRESERVATION	
Sample(s) were fu	rther preserved in the laboratory.
Sample(s) were fu Time preserved: Preservative(s) added/Lot number(s):	
VOA Sample Preservation - Date/Time VOAs Frozen:	

DATA VERIFICATION REPORT

November 18, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30050315.0301.01 off site

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 139463-1 Sample date: 2020-11-02

Report received by CADENA: 2020-11-18

Initial Data Verification completed by CADENA: 2020-11-18

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

GCMS VOC QC batch CCV response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
ΠΊ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 139463-1

		Sample Name: Lab Sample ID: Sample Date:	Sample ID: 2401394631				MW-163 2401394 11/2/20			
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC OSW-8260	D.									
0344-62001	<u>□</u> 1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260I	<u>BBSim</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-139463-1

CADENA Verification Report: 2020-11-18

Analyses Performed By: TestAmerica North Canton, Ohio

Report #39141R Review Level: Tier III Project: 30050315.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-139463-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis		
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)	
TRIP BLANK	240-139463-1	Water	11/02/2020		X		
MW-163S_110220	240-139463-2	Water	11/02/2020		X	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted	Performance Acceptable		Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		X		X		
2. Requested analyses and sample results		Х		X		
Master tracking list		Х		X		
4. Methods of analysis		Х		X		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8. Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
Narrative summary of Quality Assurance or sample problems provided		Х		Х		
12. Data Package Completeness and Compliance		Х		Х		

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation (Q) Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial/Continuing	Compound	Criteria	
TRIP BLANK	CCV %D	Vinyl oblorida	+38.6%	
MW-163S_110220	GCV %D	Vinyl chloride	+30.070	

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
Initial and Continuing Calibration	RRF <0.05	Non-detect	R	
	100 50.00	Detect	J	

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.01 ¹	Non-detect	R
	KKF \0.01*	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.05 01 KKF 20.01	Detect	NO ACTION
	N/DCD > 450/ our a completion coefficient 40.00	Non-detect	UJ
Initial Calibration	%RSD > 15% or a correlation coefficient <0.99	Detect	J
	0/ DOD > 000/	Non-detect	R
	%RSD >90%	Detect	J
	0/D > 000/ (in our and in our airing)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
O and in a in a O a liberation	0(5,000(//	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	0/D > 000/ (in and a //d a	Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	eported	Performance Acceptable		Not					
	No	Yes	No	Yes	Required					
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)										
Tier II Validation										
Holding times/Preservation		X		Х						
Tier III Validation										
System performance and column resolution		X		Х						
Initial calibration %RSDs		Х		Х						
Continuing calibration RRFs		X		Х						
Continuing calibration %Ds		X	Х							
Instrument tune and performance check		X		Х						
lon abundance criteria for each instrument used		X		Х						
Field Duplicate RPD	Х				Х					
Internal standard		X		Х						
Compound identification and quantitation										
A. Reconstructed ion chromatograms		X		X						
B. Quantitation Reports		X		X						
C. RT of sample compounds within the established RT windows		Х		Х						
D. Transcription/calculation errors present		Х		X						
E. Reporting limits adjusted to reflect sample dilutions		Х		Х						

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: November 20, 2020

PEER REVIEW: Andrew Korycinski

DATE: November 24, 2020

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

MICHIGAN TestAmerico

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: DW NPDES RCRA Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Julia McClafferty Lab Contact: Mike DelMonico Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 734-644-5131 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 COCs Email: kristoffer.hinskey@arcadis.com Analysis Turnaround Time Analyses For lab use only Phone: 248-994-2240 TAT if different from below Walk-in client Project Name: Ford LTP Off-Site 7 3 weeks ₹ 2 weeks Lab sampling Project Number: 30050315.402.04 Method of Shipment/Carrier: 1 week 8260B SIM Frans-1,2-DCE 8260B 2 days /inyl Chloride 8260B Grab PO # 30050315.402.04 Shipping/Tracking No: □ 1 day Job/SDG No: Matrix Containers & Preservatives °CE 8260B Sample Specific Notes / Special Instructions: HCI Sample Identification Sample Date | Sample Time TRIP BLANK Trip blank MW-1635_110220 3 year For \$760B 1250 G 3 455 For 8260B 57m Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Tammable sin Irritant Poison B Unknown Return to Client Disposal By Lab Archive For T Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested. Relinquished by Received by Company: Storage Aradis Ascadk Relinquished by: Received by Relinquished by Company Received in Laboratory by 14/18/2020

TestAmerica Laboratories, Inc. All rights reserved. uniono à Design in me traditinario of TestAmerica Laboratories. Inc.

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139463-1 Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-139463-1 Date Collected: 11/02/20 00:00

Matrix: Water

Date Received: 11/04/20 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 12:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/13/20 12:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/13/20 12:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 12:41	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/13/20 12:41	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/13/20 12:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		75 - 130					11/13/20 12:41	1
4-Bromofluorobenzene (Surr)	96		47 - 134					11/13/20 12:41	1
Toluene-d8 (Surr)	94		69 - 122					11/13/20 12:41	1
Dibromofluoromethane (Surr)	103		78 - 129					11/13/20 12:41	1

Client Sample ID: MW-163S_110220 Lab Sample ID: 240-139463-2 **Matrix: Water**

Date Collected: 11/02/20 12:50

Method: 8260B SIM - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/20 18:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 133			-		11/09/20 18:58	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 13:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/13/20 13:06	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/13/20 13:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/13/20 13:06	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/13/20 13:06	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/13/20 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		75 - 130			-	-	11/13/20 13:06	1
4-Bromofluorobenzene (Surr)	96		47 - 134					11/13/20 13:06	1
Toluene-d8 (Surr)	95		69 - 122					11/13/20 13:06	1
Dibromofluoromethane (Surr)	106		78 - 129					11/13/20 13:06	1