

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-106463-2

Client Project/Site: Ford LTP Livonia MI - E203631

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Ade Del Your

Authorized for release by: 1/17/2019 11:03:51 AM

Michael DelMonico, Project Manager I (330)497-9396

michael.delmonico@testamericainc.com

·····LINKS ·······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Chain of Custody	15

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Ū Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
~	Listed under the "D" column to design ato that the requitie reported an admissisht basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Job ID: 240-106463-2

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Livonia MI - E203631

Report Number: 240-106463-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 1/3/2019 8:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Sample MW-130S 122818 (240-106463-2) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 01/09/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-130S 122818 (240-106463-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 01/08/2019.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

7

8

40

11

40

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-106463-2	MW-130S_122818	Water	12/28/18 12:18	01/03/19 08:35

3

4

6

R

9

11

13

Detection Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Vinyl chloride	1.1	1.0	0.20 ug/L	1 8260B	Total/NA

3

4

5

0

8

9

4 4

12

13

Client Sample Results

Client: ARCADIS U.S., Inc.

Date Collected: 12/28/18 12:18

Date Received: 01/03/19 08:35

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Project/Site: Ford LTP Livonia MI - E203631

Client Sample ID: MW-130S 122818

TestAmerica Job ID: 240-106463-2

Lab Sample ID: 240-106463-2

01/09/19 12:16

01/09/19 12:16

01/09/19 12:16

Matrix: Water

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)										
Analyte	Result	Qualifier	RL	MDL Uni	it D	Prepared	Analyzed	Dil Fac		
1,4-Dioxane	2.0	U	2.0	0.86 ug/L	L _		01/08/19 22:43	1		
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 86	Qualifier	Limits 63 - 125		-	Prepared	Analyzed 01/08/19 22:43	Dil Fac		

cui oguio	, ,	~~~~~						,u., _ c u	
1,2-Dichloroethane-d4 (Surr)	86		63 - 125			-		01/08/19 22:43	1
_ Method: 8260B - Volatile C	Organic Compo	unds (GC/	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 12:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/09/19 12:16	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/09/19 12:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 12:16	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/09/19 12:16	1
Vinyl chloride	1.1		1.0	0.20	ug/L			01/09/19 12:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		70 - 121			-		01/09/19 12:16	1

59 - 120

70 - 123

75 - 128

75

75

Surrogate Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(70-121)	(59-120)	(70-123)	(75-128)
240-106463-2	MW-130S_122818	112	75	75	112
240-106587-B-2 MS	Matrix Spike	114	85	81	115
240-106587-B-2 MSD	Matrix Spike Duplicate	113	81	76	106
LCS 240-363362/4	Lab Control Sample	109	90	81	115
MB 240-363362/6	Method Blank	117	76	78	118

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(63-125)	
240-106463-2	MW-130S_122818	86	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TestAmerica Canton

Page 9 of 17

TestAmerica Job ID: 240-106463-2

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Livonia MI - E203631

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-363362/6

Matrix: Water

Analysis Batch: 363362

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 11:10	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			01/09/19 11:10	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			01/09/19 11:10	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			01/09/19 11:10	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			01/09/19 11:10	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			01/09/19 11:10	1

MB MB

Surrogate	%Recovery Q	Qualifier Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117	70 - 121	-		01/09/19 11:10	1
4-Bromofluorobenzene (Surr)	76	59 - 120			01/09/19 11:10	1
Toluene-d8 (Surr)	78	70 - 123			01/09/19 11:10	1
Dibromofluoromethane (Surr)	118	75 - 128			01/09/19 11:10	1

Lab Sample ID: LCS 240-363362/4

Matrix: Water

Analysis Batch: 363362

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spik	e LCS	LCS		%Rec.
Analyte Adde	d Result	Qualifier Uni	t D %Rec	Limits
1,1-Dichloroethene 10	0 10.3	ug/l		65 - 139
cis-1,2-Dichloroethene 10	0 11.1	ug/l	_ 111	76 - 128
Tetrachloroethene 10	0 12.2	ug/l	_ 122	74 - 130
trans-1,2-Dichloroethene 10	0 11.3	ug/l	_ 113	78 - 133
Trichloroethene 10	0 11.6	ug/l	_ 116	76 - 125
Vinyl chloride 10	0 7.99	ug/l	_ 80	58 - 143

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		70 - 121
4-Bromofluorobenzene (Surr)	90		59 - 120
Toluene-d8 (Surr)	81		70 - 123
Dibromofluoromethane (Surr)	115		75 - 128

M

A

_ab Sample ID: 240-106587-B-2 MS	Client Sample ID: Matrix Spike
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 363362	

le Spike	MS I	MS				%Rec.	
fier Added	Result (Qualifier	Unit	D	%Rec	Limits	
66.7	56.5		ug/L		85	53 - 140	
66.7	92.0		ug/L		87	64 - 130	
66.7	58.6		ug/L		88	51 ₋ 136	
66.7	60.5		ug/L		91	68 - 133	
66.7	176		ug/L		94	55 - 131	
66.7	48.2		ug/L		72	43 - 154	
	66.7 66.7 66.7 66.7 66.7 66.7	Fier Added Result 66.7 56.5 66.7 92.0 66.7 58.6 66.7 60.5 66.7 176	Added Result Qualifier 66.7 56.5 66.7 92.0 66.7 58.6 66.7 60.5 66.7 176	Result Qualifier Unit 66.7 56.5 ug/L 66.7 92.0 ug/L 66.7 58.6 ug/L 66.7 60.5 ug/L 66.7 176 ug/L	Result Qualifier Unit D 66.7 56.5 ug/L 66.7 92.0 ug/L 66.7 58.6 ug/L 66.7 60.5 ug/L 66.7 176 ug/L	Result Qualifier Unit D %Rec 66.7 56.5 ug/L 85 66.7 92.0 ug/L 87 66.7 58.6 ug/L 88 66.7 60.5 ug/L 91 66.7 176 ug/L 94	Fier Added Result 90.0 Unit ug/L D wRec 20.0 Limits 35.3 - 140 66.7 92.0 ug/L 85 53 - 140 66.7 58.6 ug/L 87 64 - 130 66.7 60.5 ug/L 91 68 - 133 66.7 176 ug/L 94 55 - 131

MS	MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	114		70 - 121
4-Bromofluorobenzene (Surr)	85		59 - 120
Toluene-d8 (Surr)	81		70 - 123

Page 10 of 17

QC Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Lab Sample ID: 240-106587-B-2 MS

Matrix: Water

Analysis Batch: 363362

MS	MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	115		75 - 128

Client Sample ID: Matrix Spike Duplicate

Lab Sample ID: 240-106587-B-2 MSD

Matrix: Water

Analysis Batch: 363362

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	6.7	U	66.7	60.7		ug/L		91	53 - 140	7	35
cis-1,2-Dichloroethene	34		66.7	96.6		ug/L		94	64 - 130	5	21
Tetrachloroethene	6.7	U	66.7	66.3		ug/L		99	51 - 136	12	23
trans-1,2-Dichloroethene	6.7	U	66.7	66.3		ug/L		99	68 - 133	9	24
Trichloroethene	110		66.7	182		ug/L		104	55 - 131	4	23
Vinyl chloride	6.7	U	66.7	56.2		ug/L		84	43 - 154	15	29

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	113		70 - 121
4-Bromofluorobenzene (Surr)	81		59 - 120
Toluene-d8 (Surr)	76		70 - 123
Dibromofluoromethane (Surr)	106		75 - 128

Prep Type: Total/NA

9

10

12

13

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

GC/MS VOA

Analysis Batch: 363200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106463-2	MW-130S_122818	Total/NA	Water	8260B SIM	

Analysis Batch: 363362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-106463-2	MW-130S_122818	Total/NA	Water	8260B	
MB 240-363362/6	Method Blank	Total/NA	Water	8260B	
LCS 240-363362/4	Lab Control Sample	Total/NA	Water	8260B	
240-106587-B-2 MS	Matrix Spike	Total/NA	Water	8260B	
240-106587-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

9

Л

4

_

7

8

10

11

13

Lab Chronicle

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Livonia MI - E203631

TestAmerica Job ID: 240-106463-2

Lab Sample ID: 240-106463-2

Matrix: Water

Client Sample ID: MW-130S_122818 Date Collected: 12/28/18 12:18 Date Received: 01/03/19 08:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			363362	01/09/19 12:16	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	363200	01/08/19 22:43	SAM	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

TestAmerica Job ID: 240-106463-2

Project/Site: Ford LTP Livonia MI - E203631

Laboratory: TestAmerica Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
California	State Program	9	2927	02-23-19 *	
Connecticut	State Program	1	PH-0590	12-31-19	
Florida	NELAP	4	E87225	06-30-19	
Illinois	NELAP	5	200004	07-31-19	
Kansas	NELAP	7	E-10336	04-30-19	
Kentucky (UST)	State Program	4	58	02-23-19 *	
Kentucky (WW)	State Program	4	98016	12-31-19	
Minnesota	NELAP	5	039-999-348	12-31-19 *	
Minnesota (Petrofund)	State Program	1	3506	07-31-19	
Nevada	State Program	9	OH00048	07-31-19	
New Jersey	NELAP	2	OH001	06-30-19	
New York	NELAP	2	10975	03-31-19 *	
Ohio VAP	State Program	5	CL0024	09-06-19	
Oregon	NELAP	10	4062	02-23-19 *	
Pennsylvania	NELAP	3	68-00340	08-31-19 *	
Texas	NELAP	6	T104704517-18-10	08-31-19	
USDA	Federal		P330-16-00404	12-28-19	
Virginia	NELAP	3	460175	09-14-19	
Washington	State Program	10	C971	01-12-20 *	
West Virginia DEP	State Program	3	210	12-31-19	

6

0

9

10

12

13

14

TestAmerica Canton

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

actitation/ocitineation renewal pending - accitation/ocitineation considered valid.

Ver. 08:04/2016

JA!

1138

1 2 19

Cooler Temperature(s) Cand Other Remarks

Received by:

100

1320

1 2 119

Arcod is

光

Date/Time

(Mode

Poly Cold Storage

10 11

CHIGAN Chain of Custody Record

TestAmerica Canton

1101 Shuffel Street NW

TestAmerica

T - TSP Dodecahydrate Prca dis V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No: 240-56713-24439.1 Preservation Codes: G - Amchlor H - Ascorbic Acid Page of 12 1435 A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH J - DI Water K - EDTA Archive For Total Number of containers 12/28/18 Method of Shipment. 240-106463 Chain of Custody Prisposal By Lab Stomage Analysis Requested Return To Client Special Instructions/QC Requirements: michael.delmonico@testamericainc.com 98 Selved by: Lab PM: DelMonico, Michael E-Mail: S260B_SIM - Local Method 8560B - VOCs (Short List) X Perform MS/MSD (Yes or No) Time: Field Filtered Sample (Yes or No) Arccobs. (W=water, S=soli O=waste/oil, Preservation Code: Water Matrix Water Radiological (C=comp, G=grab) Sample Type M3S 0 0 0 Standaro 1623 Sample 9121 Time C. Weave wo#: Cadena #: E203631 Date: Unknown (AT Requested (days): 12/28/18 Due Date Requested: 12/18/16 MI001454.0003 31/32/2 12/28/18 Sample Date Project #: 24015353 SSOW#: Poison B Weine / Jan 1 Skin Irritant Deliverable Requested: I, II, III(IV)Other (specify) North Canton, OH 44720 Phone (330) 497-9396 Fax (330) 497-0772 MW-1305 - 1228 18 818221-SE21-MW 122818 angela.degrandis@arcadis-us.com Flammable Possible Hazard Identification Project Name: Ford LTP Livonia MI - E203631 Inquished by Chaisting 28550 Cabot Drive Suite 500 Empty Kit Relinquished by: NP-65-Client Information FORD Sample Identification Angela DeGrandis ARCADIS U.S., Inc State, Zip: MI, 48377 Hone: Novi

Custody Seal No.

Custody Seals Intact:

A Yes A No

TestAmerica Canton Sample Receipt Form/Narrative Logi Canton Facility	in#: 1064025		
	Cooler inpacked by:		
Client Associated on 1319 Opened on 1319	X		
Cooler Received on 1311			
FedEx: 1s Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other		
Receipt After-hours: Drop-off Date/Time Storage Location			
Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt IR GUN# IR-8 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Tem IR GUN#36 (CF +0°C) Observed Cooler Temp. °C Corrected Cooler Temp. °C Cooler Tem	emp°C p°C s No s N		
13. Were VOAs on the COC? 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes	s No (NA) pH Strip Lot# HC854592 s No s No s No s No voice Mail Other		
Concerning			
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:		
TO CAMPLE COMPLETON			
18. SAMPLE CONDITION Sample(s) were received after the recommended hold	ling time had evnired		
Sample(s) were received after the recommended hold	d in a broken container.		
Sample(s) were received with bubble >6 mm			
19. SAMPLE PRESERVATION			
D. DAMI DE I RESERVATION			
Sample(s) were fu	orther preserved in the laboratory.		
Sample(s) were fu Time preserved: Preservative(s) added/Lot number(s):			

This got onty

Cooler#	Cooler Receipt Form	Observed Temp	Corrected Temp	Coolan
		°C ,	°C 1	
A	36	T,U	1,4	ICE
		3.2	3.2	1
THE RESERVE THE PARTY OF THE PA		014	0.0	
	-			Francisco de la Servicio
Section and the second section is				
				TANK TO A STREET VALUE OF
COLUMN TO THE PARTY OF THE PART				

X:\X-Drive Document Control\SOPs\Work Instructions\Word Yersion Work Instructions\W1-NC-099H-071615 Cooler Receipt Form_page 2 - Multiple Coolers.doc rls

January 18, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: MI001454.0002/3/4.00002/2B/3B

Client project scope reference: Sample COC only was used to define project analytical requirements.

Laboratory: TestAmerica - North Canton

Laboratory submittal: 106463-2 Sample date: 2018-12-28

Report received by CADENA: 2019-01-17

Initial Data Verification completed by CADENA: 2019-01-18

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

1 Water sample(s) was analyzed for GCMS VOC parameter(s).

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 106463-2

Sample Name: MW-130S_122818 **Lab Sample ID:** 2401064632

Sample Date: 12/28/2018

	Janiple Date.	12/20/2	010		
			Report		Valid
Analyte	Cas No.	Result	Limit	Units	Qualifier
<u>OB</u>					
1,1-Dichloroethene	75-35-4	ND	1.0	ug/l	
cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l	
Tetrachloroethene	127-18-4	ND	1.0	ug/l	
trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l	
Trichloroethene	79-01-6	ND	1.0	ug/l	
Vinyl chloride	75-01-4	1.1	1.0	ug/l	
<u>OBBSim</u>					
1,4-Dioxane	123-91-1	ND	2.0	ug/l	
	1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride	Analyte Cas No. DB 1,1-Dichloroethene 75-35-4 cis-1,2-Dichloroethene 156-59-2 Tetrachloroethene 127-18-4 trans-1,2-Dichloroethene 156-60-5 Trichloroethene 79-01-6 Vinyl chloride 75-01-4	Analyte Cas No. Result DB	Analyte Cas No. Result Limit DB 1,1-Dichloroethene 75-35-4 ND 1.0 cis-1,2-Dichloroethene 156-59-2 ND 1.0 Tetrachloroethene 127-18-4 ND 1.0 trans-1,2-Dichloroethene 156-60-5 ND 1.0 Trichloroethene 79-01-6 ND 1.0 Vinyl chloride 75-01-4 1.1 1.0 DBBSim	Analyte Cas No. Result Limit Units 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l