🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-139794-1

Client Project/Site: Ford LTP - Off Site

For:

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 11/23/2020 11:27:48 AM

Michael DelMonico, Project Manager I (330)497-9396 Michael.DelMonico@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 240-139794-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP - Off Site

Report Number: 240-139794-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/7/2020 8:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-139794-1) and MW-116S_110420 (240-139794-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/17/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-116S_110420 (240-139794-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The samples were analyzed on 11/11/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

_					
.ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-139794-1	TRIP BLANK	Water	11/04/20 00:00	11/07/20 08:00	
240-139794-2	MW-116S_110420	Water	11/04/20 13:11	11/07/20 08:00	

Detection Sur	nmary
----------------------	-------

Client Sample ID: TRIP BLANK

No Detections.

Client Sample ID: MW-116S_110420

No Detections.

Lab Sample ID: 240-139794-1

Lab Sample ID: 240-139794-2

2 3 4 5 6 7 8 9 10 11 12 13 14

This Detection Summary does not include radiochemical test results.

Client Sample ID: TRIP BLANK Date Collected: 11/04/20 00:00 Date Received: 11/07/20 08:00

Lab Sample ID: 240-139794-1 Matrix: Water

Matrix: Water

5 6

Amaluta	Desult	O	MS)	MDI	11	_	Duomonod	A stands and a	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 12:42	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 12:42	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 12:42	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 12:42	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 12:42	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 130					11/17/20 12:42	1
4-Bromofluorobenzene (Surr)	95		47 - 134					11/17/20 12:42	1
Toluene-d8 (Surr)	88		69 - 122					11/17/20 12:42	1
Dibromofluoromethane (Surr)	102		78 - 129					11/17/20 12:42	1

Client Sample ID: MW-116S_110420 Date Collected: 11/04/20 13:11 Date Received: 11/07/20 08:00

Date Received: 11/07/20	08:00					
Method: 8260B SIM - V	/olatile Organic Compounds (GC	/MS)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/11/20 17:25	1	÷
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	105		70 - 133					11/11/20 17:25	1	
- Method: 8260B - Volatile Org	anic Compo	unds (GC/	MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 13:04	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 13:04	1	
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 13:04	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 13:04	1	
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 13:04	1	
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 13:04	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103		75 - 130					11/17/20 13:04	1	
4-Bromofluorobenzene (Surr)	100		47 - 134					11/17/20 13:04	1	
Toluene-d8 (Surr)	92		69 - 122					11/17/20 13:04	1	
Dibromofluoromethane (Surr)	106		78 - 129					11/17/20 13:04	1	

Job ID: 240-139794-1

Matrix: Water

Lab Sample ID: 240-139794-2

11/23/2020

Surrogate Summary

Lab Sample ID

240-139794-1

240-139794-2

Matrix: Water

LCS 240-461330/5

MB 240-461330/8

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

240-139665-C-3 MS

240-139665-D-3 MSD

Method: 8260B - Volatile Organic Compounds (GC/MS) **Matrix: Water**

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCA BFB DBFM TOL (78-129) **Client Sample ID** (75-130) (47-134) (69-122) Matrix Spike 107 101 97 85 Matrix Spike Duplicate 102 106 91 117 TRIP BLANK 101 95 88 102 MW-116S_110420 103 100 92 106 Lab Control Sample 101 103 93 114 Method Blank 108 99 121 116 Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits)

		Fercent Surrogate Recovery (Acceptance Linits)	
	DCA		
Client Sample ID	(70-133)		
Matrix Spike	107		
Matrix Spike Duplicate	108		
MW-116S_110420	105		
Lab Control Sample	106		
Method Blank	110		
	Matrix Spike Matrix Spike Duplicate MW-116S_110420 Lab Control Sample Method Blank	Client Sample ID(70-133)Matrix Spike107Matrix Spike Duplicate108MW-116S_110420105Lab Control Sample106Method Blank110	DCAClient Sample ID(70-133)Matrix Spike107Matrix Spike Duplicate108MW-116S_110420105Lab Control Sample106Method Blank110

DCA = 1,2-Dichloroethane-d4 (Surr)

9

11/23/2020

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-461330/8

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 461330

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 10:27	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 10:27	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 10:27	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 10:27	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 10:27	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 10:27	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		75 - 130		11/17/20 10:27	1
4-Bromofluorobenzene (Surr)	108		47 - 134		11/17/20 10:27	1
Toluene-d8 (Surr)	99		69 - 122		11/17/20 10:27	1
Dibromofluoromethane (Surr)	121		78 - 129		11/17/20 10:27	1

Lab Sample ID: LCS 240-461330/5 Matrix: Water Analysis Batch: 461330

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	20.0		ug/L		100	73 - 129	
cis-1,2-Dichloroethene	20.0	20.5		ug/L		103	75 - 124	
Tetrachloroethene	20.0	19.5		ug/L		97	70 - 125	
trans-1,2-Dichloroethene	20.0	19.0		ug/L		95	74 - 130	
Trichloroethene	20.0	22.8		ug/L		114	71 - 121	
Vinyl chloride	20.0	19.9		ug/L		99	61 - 134	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 130
4-Bromofluorobenzene (Surr)	103		47 - 134
Toluene-d8 (Surr)	93		69 - 122
Dibromofluoromethane (Surr)	114		78 - 129

85

Lab Sample ID: 240-139665-C-3 MS **Matrix: Water** Analysis Batch: 461330

Toluene-d8 (Surr)

Analysis Baten. 401000										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	20.0	20.6		ug/L		103	64 - 132	
cis-1,2-Dichloroethene	1.6		20.0	22.9		ug/L		107	68 - 121	
Tetrachloroethene	1.0	U	20.0	18.5		ug/L		92	52 - 129	
trans-1,2-Dichloroethene	1.0	U	20.0	19.4		ug/L		97	69 - 126	
Trichloroethene	1.0	U	20.0	21.7		ug/L		109	56 - 124	
Vinyl chloride	1.0	U	20.0	17.9		ug/L		89	49 - 136	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	101		75 - 130							
4-Bromofluorobenzene (Surr)	97		47 - 134							

Eurofins TestAmerica, Canton

Client Sample ID: Matrix Spike

Prep Type: Total/NA

69 - 122

QC Sample Results

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-139665-C-3 MS **Client Sample ID: Matrix Spike** Matrix: Water Prep Type: Total/NA Analysis Batch: 461330 MS MS %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 107 78 - 129 **Client Sample ID: Matrix Spike Duplicate** Lab Sample ID: 240-139665-D-3 MSD Matrix: Water Prep Type: Total/NA Analysis Batch: 461330 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added Unit Limits RPD Limit Analyte **Result Qualifier** D %Rec Ū 1,1-Dichloroethene 1.0 20.0 22 1 ug/L 111 64 - 132 7 35 cis-1,2-Dichloroethene ug/L 1.6 20.0 24 5 114 68 - 121 7 35 Tetrachloroethene 1.0 U 20.0 20.6 ug/L 103 52 - 129 11 35 trans-1.2-Dichloroethene 1.0 U 20.0 21.5 ug/L 108 69 - 126 35 11 Trichloroethene 1.0 U 20.0 24.4 ug/L 122 56 - 124 12 35 Vinyl chloride 1.0 U 20.0 19.5 ug/L 97 49 - 136 9 35 MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 106 75 - 130 4-Bromofluorobenzene (Surr) 102 47 - 134 Toluene-d8 (Surr) 91 69 - 122 Dibromofluoromethane (Surr) 117 78 - 129 Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Lab Sample ID: MB 240-460452/5 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 460452 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 11/11/20 16:36 1,4-Dioxane 2.0 U 2.0 0.86 ug/L MB MB Qualifier Limits Dil Fac Surrogate %Recoverv Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 110 70 - 133 11/11/20 16:36 1 Lab Sample ID: LCS 240-460452/4 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 460452 Spike LCS LCS %Rec. Added **Result Qualifier** Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 11.4 ug/L 114 80 - 135 LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 106 70 - 133 **Client Sample ID: Matrix Spike** Lab Sample ID: 240-139756-I-7 MS Matrix: Water Prep Type: Total/NA Analysis Batch: 460452 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Result Qualifier Unit I imits Analyte D %Rec 1,4-Dioxane 1.5 J 10.0 12.1 ug/L 106 46 - 170

Eurofins TestAmerica, Canton

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

		Limits									
107		70 - 133									5
56-I-7 MSD					Client	Samp	le ID: N				6
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1.5	J	10.0	12.8		ug/L		113	46 - 170	6	26	8
MSD	MSD										
%Recovery	Qualifier	Limits									9
108		70 - 133									
	%Recovery 107 56-I-7 MSD Sample Result 1.5 MSD %Recovery	56-I-7 MSD Sample Sample Result Qualifier 1.5 J MSD MSD %Recovery Qualifier	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Sample Sample Result Qualifier 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Sample Sample Result Qualifier Added Result 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Sample Sample Result Qualifier 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Client Sample Sample Result Qualifier Added Result Qualifier Added MSD MSD MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample Sample Spike MSD Result Qualifier Added 1.5 J 10.0 12.8 MSD MSD %Recovery Qualifier Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: N Sample Sample Result Qualifier Added Result Qualifier Added 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Client Sample ID: Matrix Spil Prep Ty Sample Sample Qualifier Spike Added MSD Result 12.8 MSD gualifier MRc. Limits Sample Sample Added Spike Result 12.8 MSD gualifier MRc. Limits MSD MSD 10.0 12.8 10.0 11.3 46 - 170 MSD MSD MSD MSD MSD MSD MSD %Recovery Qualifier Limits 11.3 46 - 170	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: Matrix Spike Dup Prep Type: Tot Sample Sample Result Qualifier Added Result Qualifier Added 1.5 J MSD MSD %Recovery Qualifier MSD MSD %Recovery Qualifier Limits RPD %Recovery Qualifier	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Sample Sample Result Qualifier 1.5 J 100 12.8 MSD MSD %Recovery Qualifier Limits RPD MSD MSD %Recovery Qualifier

GC/MS VOA

Analysis Batch: 460452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-139794-2	MW-116S_110420	Total/NA	Water	8260B SIM	
MB 240-460452/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-460452/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-139756-I-7 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-139756-I-7 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-139794-1	TRIP BLANK	Total/NA	Water	8260B		
240-139794-2	MW-116S_110420	Total/NA	Water	8260B		
MB 240-461330/8	Method Blank	Total/NA	Water	8260B		
LCS 240-461330/5	Lab Control Sample	Total/NA	Water	8260B		
240-139665-C-3 MS	Matrix Spike	Total/NA	Water	8260B		
240-139665-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B		1

Eurofins TestAmerica, Canton

Matrix: Water

Lab Sample ID: 240-139794-2

Client Sample ID: TRIP BLANK Date Collected: 11/04/20 00:00 Date Received: 11/07/20 08:00

Batch

Туре

Analysis

P BLANK					Lab Sa	ample ID:	240-139794-1
):00							Matrix: Water
:00							
Batch		Dilution	Batch	Prepared			
Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
8260B		1	461330	11/17/20 12:42	HMB	TAL CAN	

Client Sample ID: MW-116S_110420 Date Collected: 11/04/20 13:11 Date Received: 11/07/20 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	461330	11/17/20 13:04	HMB	TAL CAN
Total/NA	Analysis	8260B SIM		1	460452	11/11/20 17:25	SAM	TAL CAN

Laboratory References:

Prep Type

Total/NA

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139794-1

Laboratory: Eurofins TestAmerica, Canton

	D	Idea (Construction)	E. J. Mars Bats	
Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-23-21	
Connecticut	State	PH-0590	12-31-21	
Florida	NELAP	E87225	06-30-21	
Georgia	State	4062	02-23-21	
Illinois	NELAP	004498	07-31-21	
Iowa	State	421	06-01-21	
Kansas	NELAP	E-10336	04-30-21	
Kentucky (UST)	State	112225	02-23-21	
Kentucky (WW)	State	KY98016	12-31-20	
Minnesota	NELAP	OH00048	12-31-20	
Minnesota (Petrofund)	State	3506	08-01-21	
New Jersey	NELAP	OH001	06-30-21	
New York	NELAP	10975	03-31-21	
Ohio VAP	State	CL0024	06-05-21	
Oregon	NELAP	4062	02-24-21	
Pennsylvania	NELAP	68-00340	08-31-21	
Texas	NELAP	T104704517-18-10	08-31-21	
USDA	US Federal Programs	P330-18-00281	09-17-21	
Virginia	NELAP	010101	09-14-21	
Washington	State	C971	01-12-21	
West Virginia DEP	State	210	12-31-20	

1.4123

Chain of Custody Record

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact Company Name: Arcadis	Regula	tory program:	:	T	DW	T	NE	DES		Г	RC	RA	Г	Oth	er 🗌											
Address: 28550 Cabot Drive, Suite 500	Client Project	Manager: Kris	Hinsk	ey		Si	te Co	ntact	: Juli	ia Mc	Claf	fferty	-			Lab (ontac	et: Mil	ke Del	Monic	0			COC No:	rica Labor	atories,
	Telephone: 24	-994-2240				T	eleph	one: 7	734-6	544-51	131	-				Telep	hone:	330-4	97-93	96						
City/State/Zip: Novi, MI, 48377	Email: kristof	er.hinskey@ar	cadis.	com		-	An	alysis	Turi	narou	ind 1	ime	T	T					A	nalys	es			For lab use		COCs
Phone: 248-994-2240	Sampler Name					T	ATiti	lifferent	t from	bylow	-	-	-											Walk-in ch	ent	
Project Name: Ford LTP Off-Site	Gary	SLI	inv				10 0		F	3 we																
Project Number: 30050315.402.04		ment/Carrier:	0			-	10 0	ay	Г	1 we	eek		10	9			m				W			Lab sampli	ng	
PO # 30050315.402.04	Shipping/Trac	king No:				-				2 da 1 da			le (Y/N)	/ Grab-	8	2608	E 8260B			8260B	8260B SIM			Job/SDG N	lo:	
			H	M	atrix	-	C	ontain	ers &	Prese	rvati	ives	Samp	te=C /	8260B	CE 8	DCI	08	8	Chloride	ane 8			1000		
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Solid Other:	PUSCI	HNO3	HCI	NaOH	ZaAc/ NaOH	Unpres	Other:	Filtered :	Composite	1,1-DCE	cis-1,2-DCE 8260B	Trans-1,2-DCE	PCE 8260B	TCE 8260B	Vinyl Chło	1,4-Dioxane				ple Specific ecial Instruc	
TRIP BLANK	1/4/20		T			T	1	Ī,	1				T		X	×	X	×	X	X	x		T	-		
	11/ /			+	++	1	+	ť	+	1	-		1	to	-	~	~		-	1						·
MW-1165-110420	14/20	13:11	$\left \right $	X	++	+	+	6	-	-	-		N	G	X	X	×	x	×	x	X					
			$\left \right $	-	++	+	+	+	+	-	-	-	+	-	-	-	-	-	-	-	-					
				+	++	+	+	+	+	-	-		+	-	-	_	_	-	-	-	-		++			
			11							, 11(11)	1		+	-	-			-	-	-						
5												_	-	-			_			-				-		
												_								1						
			240-	1397	94 Chai	n of C	usto	dy	-		-	-														
			11	1	11	1	1	1	1	1																
																									Construction Carlo	
Possible Hazard Identification						+						may be								than 1						
Special Instructions/QC Requirements & Comments:	Irritant 🗆 Pois	on B	Unkr	nown				Ren	urn to	o Clier	nt		Dispo	isal By	y Lab	-	A	rchive	For		M	onths			-	
Submit all results through Cadena at jtomalia@cad Level IV Reporting requested.	enaco.com. Cadena	#E203631																								
Relinquished by: N 0 1	Company:		-	Date/I	ime/					ceived			1	-	1	-		-	Com			1.		Date/Fime		
Relinguisticity:	Company:	20	1	Date/T	5/20 ime:	1	7:1			No		00	10	5	ton	992	-		Com	pany:	reg	210		11/S D		1:16
Relinquished by:	100	HOIS		11/	6/20	10	AF	5				_/	4	100	ilf	1	1				51	A		11-6-	20	0915
Relinquistied by: Me Miley	Company:	114		Date/1	ime: 6 - 20		09	30	Ree	ceived	1 in 1	Laborat	tory h	1	11	Y	/		Com	pany	-71	R		Date/Tipe	20	80
	- C		-	// /	0 00		-1	-	1				11	1	114						-11			111		0
92008, TestAmenca Laconitories, Inc. All reinity reserved. TestAmenca & Dieson I ^{nc} are trademonts of TestAmenca Laboratories, Inc.		B.	TT.	T	IIG	AN	J						1	/												
		1V	110	1	90	I II	4					,														
				1	70																					

14

	Cooler unpacked by:
ient <u>Arcadis</u> Site Name	Cooler unpacked by
poler Received on $11^{-}7^{-}20$ Opened on $11^{-}7^{-}20$	
edEx: 1st Grd Exp) UPS FAS Clipper Client Drop Off TestAmerica Courier	
ecceipt After-hours: Drop-off Date/Time Storage Location	
Packing material used: Public Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt IR GUN# IR-11 (CF +0.9 °C) Observed Cooler Temp. ^ °C Corrected Cooler IR GUN #IR-12 (CF +0.5 °C) Observed Cooler Temp. ^ °C Corrected Cooler Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes -Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Were the custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Did all bottle labels (ID/Date/Time) be reconciled with the COC? For each sample, does the COC specify preservatives (Y/N), # of containers (YN), and Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory. Were VOAs on the COC? Were air bubbles >6 mm in any VOA vials? Were air bubbles >6 mm in any VOA vials?	er Temp. °C er Temp. °C es No es No
	es No
ontacted PM Date by via Verbal	
oncerning	
3. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples processed by:
D. SAMPLE CONDITION	
were received after the recommended ho	lding time had expired. ed in a broken container.
ample(s) were received ample(s) were received with bubble >6 mm	
. SAMPLE PRESERVATION	
	further preserved in the laboratory.

WI-NC-099

DATA VERIFICATION REPORT

November 23, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30050315.0301.01 off site Event Specific Scope of Work References: Sample COC Laboratory: TestAmerica - North Canton Laboratory submittal: 139794-1 Sample date: 2020-11-04 Report received by CADENA: 2020-11-23 Initial Data Verification completed by CADENA: 2020-11-23 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC **Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.**

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631 Laboratory: TestAmerica - North Canton

Laboratory Submittal: 139794-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2401397 11/4/20	7941			MW-116 2401397 11/4/20		20	
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
<u>OSW-8260</u>	<u>)B</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-8260</u>)BBSim									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-139794-1 CADENA Verification Report: 2020-11-23

Analyses Performed By: TestAmerica North Canton, Ohio

Report # 39251R Review Level: Tier III Project: 30050315.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-139794-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analy	/sis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)
TRIP BLANK	240-139794-1	Water	11/04/20		Х	
MW-116S_110420	240-139794-2	Water	11/04/20		Х	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

			orted		mance ptable	Not	
	Items Reviewed	No	Yes	No	Yes	Required	
1.	Sample receipt condition		Х		Х		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		х		
11.	Narrative summary of Quality Assurance or sample problems provided		х		х		
12.	Data Package Completeness and Compliance		Х		Х		

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial/Continuing	Compound	Criteria
TRIP BLANK	CCV %D	Trichloroethene	+20.2%
MW-114S_110420		Inchioroethene	±20.2 <i>%</i>

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
Initial and Continuing	RRF <0.05	Non-detect	R
Calibration		Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.01 ¹	Non-detect	R
		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF 20.05 01 RRF 20.01	Detect	NO ACION
	%RSD > 15% or a correlation coefficient <0.99	Non-detect	UJ
Initial Calibration	%RSD > 15% of a correlation coefficient <0.99	Detect	J
		Non-detect	R
	%RSD >90%	Detect	J
		Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibustion		Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
		Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

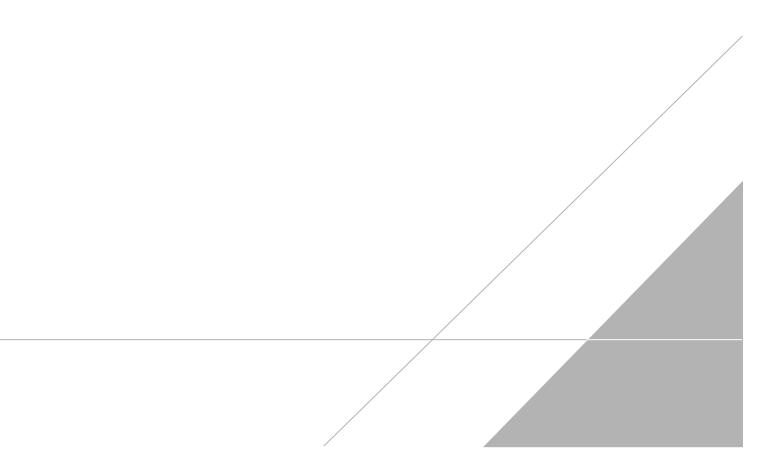
DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported	Perfe Acc	Not	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/N	IS)			1
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	X		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		X		X	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

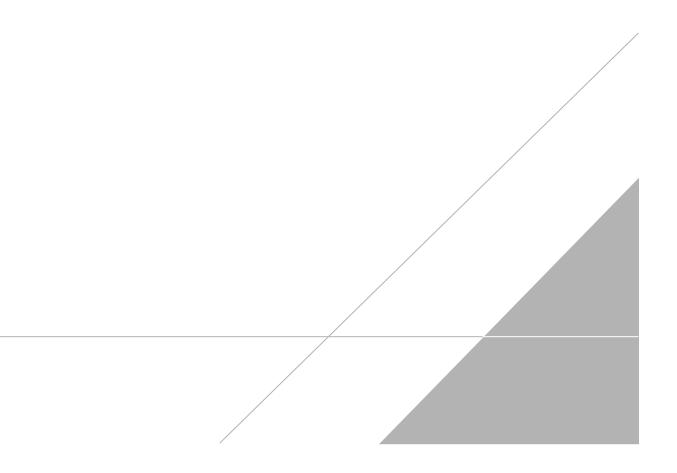
Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference


%D Percent difference

VALIDATION PERFORMED BY:	Hrishikesh Upadhyaya
SIGNATURE:	Curindialued L
DATE:	December 02, 2020


PEER REVIEW: Andrew Korycinski

DATE: December 03, 2020

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

1.4/23

Chain of Custody Record

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact ompany Name: Arcadis	Regula	tory program:	•		DW		NPD	1.0		RC	KA		Other										TestAr	nerica Labor	ratoria
ddress: 28550 Cabot Drive, Suite 500	Client Project	Manager: Kris	Hinsk	ey		Site	Cont	act: Ju	ulia M	cClaf	fferty				Lab C	ontac	t: Mik	e Del	Monio	0			COC		atorica
	Telephone: 248	8-994-2240				Tel	cphon	e: 734	1-644-5	5131				-	Telepi	hone:	330-4	97-93	96		-				
ity/State/Zip: Novi, MI, 48377	Email: kristoff	fer.hinskey@ar	cadia	iom		+	Analy	vsis Tu	urnaro	und	ime	-	-					-	nalys	PE			Forlah	of /	COCs
hone: 248-994-2240	E.Inam. Kriston	er aniskey@ar	cauls.	om		-									T	1						TT	r or mo	ise only	
oject Name: Ford LTP Off-Site	Sampler Name		1			TA	T if diffi	erent from	m below	veeks													Walk-in	client	
	Gary	Schaf	er				10 day	y R		veeks													Lab san	pling	
oject Number: 30050315.402.04	Method of Ship	ment/Carrier:				1		-	1 w	veek		2	Ŷ			B				SIM			1		
D # 30050315.402.04	Shipping/Track	king No:						T	- 1 d			Sample (Y/	/ Grab	8	2608	E 8260			8260B	8260B SIM			Job/SD	3 No:	
			H	M	atrix	Ŧ	Cont	tainers	& Pres	servati	ives	i Samp	site=C	E 8260	DCE 8	,2-DCI	608	60B	Chloride	xane 8			1.000		
Sample Identification		Sample Time	Air	Aquesus Sediment	Solid Other:	H2SO4	HN03	HCI	ZaAc	Unpres	Other	Filtered 2	Composite=C / Grab=G	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE 8260B	PCE 8260B	TCE 8260B	Vinyl Cł	1,4-Dioxane				ample Specific Special Instru	
TRIP BLANK	1/4/20		Π			Τ		,				T		X	×	×	×	×	×	x		TT			
	11/ /			-	1	+		1	-	1		t.							1	-		+-+-	-		
MW-1165-110420	14/20	13:11		X		-		6	_	-	-	N	G	X	X	×	X	×	×	X			-		
		1																							
				-	+-+	+	+	+	+	+	-	+		-	-	-			-	-					
																						11			
												T													
				_		1	1 1				-	+	\vdash	_	_					-			-		
											-	+		-	-				1	-		++			
						A Cur	stody				-														
			240-	13979	4 Chain	JI Cu	51007				-	+		-	-				-	-					
				1	11	1	11				1														
				-		1	11	1	1	+	1	+							1	-			-		
																_									
Possible Hazard Identification	tant 🗆 Poise	on B	Unk	own			Sample	e Disp Return	to Clie	A fee	may be	Dispo	sed if sal By	ampl Lab	es are	retai	ned lo	For [than 1	M) onths				
pecial Instructions/QC Requirements & Comments:			-			-			-																
ubmit all results through Cadena at jtomalia@cadena evel IV Reporting requested.	co.com. Cadena i	#E203631																							
clinquished by: N 0 1	Company:		-	Date/fi	mel		_	R	teeeiye	d hy		-		-			-	Com	anar .				[Date/Fi	ma ²	
Lang Jeholer	Nrege	sil		11/3	66	7	:15		No	SVI	CO	512	5+	on	192			Com	1	reg	dis		Date/Fi	bo .	7:16
clinquisted by:	Company:			Date/Ti	me:	1		R	Receive		1	V	1.	0	1			Com					Date/Ti	me:	
Mann Me	HKC	HUI>			170	0	95				1	21	W	4	1	2	-	-		21	A		11-6	-20	09
chounshed by all a second	Company:			Date/T			-		ceceive	ed in l	Laborat	tory b	11/	11	VI			Com	pany	-//	10		Date/L	me: 21	0
clinquished by: Mar Maley S2000. Technerica Latoratores, Inc. All restances as the second and restances and the second	5	714		1/-1	-20	1	93	11				11	//	11	//				1	11	1C		11-	160	V.

190

Client Sample ID: TRIP BLANK

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 240-139794-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 12:42	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 12:42	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 12:42	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 12:42	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 12:42	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 130			-		11/17/20 12:42	1
4-Bromofluorobenzene (Surr)	95		47 - 134					11/17/20 12:42	1
Toluene-d8 (Surr)	88		69 - 122					11/17/20 12:42	1
Dibromofluoromethane (Surr)	102		78 - 129					11/17/20 12:42	1

Client Sample ID: MW-116S_110420 Date Collected: 11/04/20 13:11 Date Received: 11/07/20 08:00

Lab Sample ID: 240-139794-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/11/20 17:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 133			-		11/11/20 17:25	1
Method: 8260B - Volatile C	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits		Prepared Analyzed	Dil Fac
Vinyl chloride	1.0 U	1.0	0.20 ug/L	11/17/20 13:04	1
Trichloroethene	1.0 U	1.0	0.10 ug/L	11/17/20 13:04	1
trans-1,2-Dichloroethene	1.0 U	1.0	0.19 ug/L	11/17/20 13:04	1
Tetrachloroethene	1.0 U	1.0	0.15 ug/L	11/17/20 13:04	1
cis-1,2-Dichloroethene	1.0 U	1.0	0.16 ug/L	11/17/20 13:04	1
1,1-Dichloroethene	1.0 U	1.0	0.19 ug/L	11/17/20 13:04	1

Surrogale	%Recovery Quaimer	Linnis	Prepared	Analyzed	DIIFac
1,2-Dichloroethane-d4 (Surr)	103	75 - 130		11/17/20 13:04	1
4-Bromofluorobenzene (Surr)	100	47 - 134		11/17/20 13:04	1
Toluene-d8 (Surr)	92	69 - 122		11/17/20 13:04	1
Dibromofluoromethane (Surr)	106	78 - 129		11/17/20 13:04	1

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-139803-1

Client Project/Site: Ford LTP - Off Site

For:

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mole Del your

Authorized for release by: 11/23/2020 11:58:56 AM

Michael DelMonico, Project Manager I (330)497-9396 Michael.DelMonico@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Table of Contents 2	
Definitions/Glossary 3	
Case Narrative 4	
Method Summary 5	
Sample Summary 6	
Detection Summary 7	
Client Sample Results 8	
Surrogate Summary 10	0
QC Sample Results 17	1
QC Association Summary 14	4
Lab Chronicle	5
Certification Summary 10	6
Chain of Custody 17	7

Qualifiers

TNTC

Too Numerous To Count

GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-139803-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP - Off Site

Report Number: 240-139803-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/7/2020 8:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-139803-1) and MW-216S_110420 (240-139803-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/17/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-216S_110420 (240-139803-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 11/11/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-139803-1	TRIP BLANK	Water	11/04/20 00:00	11/09/20 08:00	
240-139803-2	MW-216S_110420	Water	11/04/20 14:51	11/09/20 08:00	

Dete	ction	Summary	

Client Sample ID: TRIP BLANK

No Detections.

Client Sample ID: MW-216S_110420

No Detections.

Lab Sample ID: 240-139803-1

Lab Sample ID: 240-139803-2

This Detection Summary does not include radiochemical test results.

Client Sample ID: TRIP BLANK Date Collected: 11/04/20 00:00 Date Received: 11/09/20 08:00

Lab Sample ID: 240-139803-1 Matrix: Water

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 16:40	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 16:40	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 16:40	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 16:40	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 16:40	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/17/20 16:40	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/17/20 16:40	1
Toluene-d8 (Surr)	99		69 - 122					11/17/20 16:40	1
Dibromofluoromethane (Surr)	91		78 - 129					11/17/20 16:40	1

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: MW-216S_110420 Date Collected: 11/04/20 14:51 Date Received: 11/09/20 08:00

	le Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/11/20 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 133					11/11/20 18:40	1
_ Method: 8260B - Volatile Oi	ganic Compo	unds (GC/	MS)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 17:05	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 17:05	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 17:05	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 17:05	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 17:05	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/17/20 17:05	1
4-Bromofluorobenzene (Surr)	99		47 - 134					11/17/20 17:05	1

69 - 122

78 - 129

99

92

Lab Sample ID: 240-139803-2

11/17/20 17:05

11/17/20 17:05

Matrix: Water

5

8

1

1

Eurofins TestAmerica, Canton

Surrogate Summary

Lab Sample ID

240-139803-1

240-139803-2

Matrix: Water

LCS 240-461325/5

MB 240-461325/8

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr)

240-139797-E-2 MS

240-139797-F-2 MSD

Method: 8260B - Volatile Organic Compounds (GC/MS) **Matrix: Water**

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCA BFB DBFM TOL 5 (75-130) (78-129) **Client Sample ID** (47-134) (69-122) Matrix Spike 83 99 107 104 Matrix Spike Duplicate 84 98 105 101 **TRIP BLANK** 110 100 99 91 MW-216S_110420 99 99 92 111 Lab Control Sample 100 106 102 83 Method Blank 110 102 98 93 9 DBFM = Dibromofluoromethane (Surr) Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)	
		DCA		
Lab Sample ID	Client Sample ID	(70-133)		
240-139756-I-7 MS	Matrix Spike	107		
240-139756-I-7 MSD	Matrix Spike Duplicate	108		
240-139803-2	MW-216S_110420	106		
LCS 240-460452/4	Lab Control Sample	106		
MB 240-460452/5	Method Blank	110		
Surrogate Legend				

DCA = 1,2-Dichloroethane-d4 (Surr)

11/23/2020

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-461325/8

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 461325

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 11:36	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 11:36	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 11:36	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 11:36	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 11:36	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 11:36	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		75 - 130		11/17/20 11:36	1
4-Bromofluorobenzene (Surr)	102		47 - 134		11/17/20 11:36	1
Toluene-d8 (Surr)	98		69 - 122		11/17/20 11:36	1
Dibromofluoromethane (Surr)	93		78 - 129		11/17/20 11:36	1

Lab Sample ID: LCS 240-461325/5 Matrix: Water Analysis Batch: 461325

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	20.2		ug/L		101	73 - 129	
20.0	20.3		ug/L		102	75 - 124	
20.0	19.3		ug/L		96	70 - 125	
20.0	20.0		ug/L		100	74 - 130	
20.0	17.7		ug/L		88	71 - 121	
20.0	23.5		ug/L		118	61 - 134	
	Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	Added Result 20.0 20.2 20.0 20.3 20.0 19.3 20.0 20.0 20.0 20.0 20.0 17.7	Added Result Qualifier 20.0 20.2 20.0 20.0 20.3 20.3 20.0 19.3 20.0 20.0 20.0 20.0 20.0 20.0 17.7	Added Result Qualifier Unit 20.0 20.2 ug/L ug/L 20.0 20.3 ug/L ug/L 20.0 19.3 ug/L ug/L 20.0 20.0 ug/L ug/L 20.0 17.7 ug/L	Added Result Qualifier Unit D 20.0 20.2 ug/L ug/L D 20.0 20.3 ug/L ug/L D 20.0 19.3 ug/L Unit D 20.0 20.0 19.3 ug/L Unit D 20.0 17.7 ug/L Unit Unit D	Added Result Qualifier Unit D %Rec 20.0 20.2 20.2 ug/L 101 20.0 20.3 ug/L 102 20.0 19.3 ug/L 96 20.0 20.0 ug/L 100 20.0 17.7 ug/L 88	Added Result Qualifier Unit D %Rec Limits 20.0 20.2 ug/L ug/L 101 73 - 129 20.0 20.3 ug/L 102 75 - 124 20.0 19.3 ug/L 96 70 - 125 20.0 20.0 ug/L 100 74 - 130 20.0 17.7 ug/L 88 71 - 121

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 130
4-Bromofluorobenzene (Surr)	106		47 - 134
Toluene-d8 (Surr)	102		69 - 122
Dibromofluoromethane (Surr)	83		78 - 129

104

Lab Sample ID: 240-139797-E-2 MS **Matrix: Water** Analysis Batch: 461325

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	20.0	19.1		ug/L		95	64 - 132
cis-1,2-Dichloroethene	1.0	U	20.0	19.2		ug/L		96	68 - 121
Tetrachloroethene	1.0	U	20.0	17.6		ug/L		88	52 - 129
trans-1,2-Dichloroethene	1.0	U	20.0	18.8		ug/L		94	69 - 126
Trichloroethene	1.0	U	20.0	15.8		ug/L		79	56 - 124
Vinyl chloride	1.0	U	20.0	22.8		ug/L		114	49 - 136
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	99		75 - 130						
4-Bromofluorobenzene (Surr)	107		47 - 134						

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA

Eurofins TestAmerica, Canton

69 - 122

5 10

QC Sample Results

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-139797-E-2 MS **Client Sample ID: Matrix Spike** Matrix: Water Prep Type: Total/NA Analysis Batch: 461325 MS MS %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 83 78 - 129 **Client Sample ID: Matrix Spike Duplicate** Lab Sample ID: 240-139797-F-2 MSD Matrix: Water Prep Type: Total/NA Analysis Batch: 461325 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added Unit Limits RPD Limit Analyte **Result Qualifier** D %Rec 1.0 U 1,1-Dichloroethene 20.0 20.6 ug/L 103 64 - 132 8 35 cis-1,2-Dichloroethene ug/L 1.0 U 20.0 20.0 100 68 - 121 35 4 Tetrachloroethene 1.0 U 20.0 17.8 ug/L 89 52 - 129 35 1 trans-1.2-Dichloroethene 1.0 U 20.0 19.9 100 35 ug/L 69 - 126 6 Trichloroethene 1.0 U 20.0 16.8 ug/L 84 56 - 124 6 35 Vinyl chloride 1.0 U 20.0 22.0 ug/L 110 49 - 136 4 35 MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 98 75 - 130 4-Bromofluorobenzene (Surr) 105 47 - 134 Toluene-d8 (Surr) 101 69 - 122 Dibromofluoromethane (Surr) 84 78 - 129 Method: 8260B SIM - Volatile Organic Compounds (GC/MS) Lab Sample ID: MB 240-460452/5 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 460452 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 11/11/20 16:36 1,4-Dioxane 2.0 U 2.0 0.86 ug/L MB MB Qualifier Limits Dil Fac Surrogate %Recoverv Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 110 70 - 133 11/11/20 16:36 1 Lab Sample ID: LCS 240-460452/4 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 460452 Spike LCS LCS %Rec. Added **Result Qualifier** Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 11.4 ug/L 114 80 - 135 LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 106 70 - 133 **Client Sample ID: Matrix Spike** Lab Sample ID: 240-139756-I-7 MS Matrix: Water Prep Type: Total/NA Analysis Batch: 460452 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Result Qualifier Unit I imits Analyte D %Rec 1,4-Dioxane 1.5 J 10.0 12.1 ug/L 106 46 - 170

Eurofins TestAmerica, Canton

10

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

		Limits									
107		70 - 133									5
56-I-7 MSD					Client	Samp	le ID: N				6
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1.5	J	10.0	12.8		ug/L		113	46 - 170	6	26	8
MSD	MSD										
%Recovery	Qualifier	Limits									9
108		70 - 133									
	%Recovery 107 56-I-7 MSD Sample Result 1.5 MSD %Recovery	56-I-7 MSD Sample Sample Result Qualifier 1.5 J MSD MSD %Recovery Qualifier	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Sample Sample Result Qualifier 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Sample Sample Result Qualifier Added Result 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Sample Sample Result Qualifier Added Result Qualifier Added MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Client Sample Sample Result Qualifier Added Result Qualifier Added MSD MSD MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample Sample Spike MSD Result Qualifier Added 1.5 J 10.0 12.8 MSD MSD %Recovery Qualifier Limits	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: N Sample Sample Result Qualifier Added Result Qualifier Added 1.5 J MSD MSD %Recovery Qualifier Limits Limits	%Recovery Qualifier Limits 107 70 - 133 56-I-7 MSD Client Sample ID: Matrix Spil Prep Ty Sample Sample Qualifier Spike Added MSD Result 12.8 MSD gualifier MRc. Limits Sample Sample Qualifier Spike Added MSD Result Qualifier MSD gualifier MSD ug/L MRc. descovery MSD MSD %Recovery MSD Qualifier Limits 46 - 170	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: Matrix Spike Dup Prep Type: Tot Sample Sample Result Qualifier Added Result Qualifier Added 1.5 J MSD MSD %Recovery Qualifier MSD MSD %Recovery Qualifier Limits RPD %Recovery Qualifier	%Recovery Qualifier Limits 107 70-133 56-I-7 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Sample Sample Result Qualifier 1.5 J 100 12.8 MSD MSD %Recovery Qualifier Limits RPD MSD MSD %Recovery Qualifier

Eurofins TestAmerica, Canton

GC/MS VOA

Analysis Batch: 460452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-139803-2	MW-216S_110420	Total/NA	Water	8260B SIM	
MB 240-460452/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-460452/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-139756-I-7 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-139756-I-7 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-139803-1	TRIP BLANK	Total/NA	Water	8260B	
240-139803-2	MW-216S_110420	Total/NA	Water	8260B	
MB 240-461325/8	Method Blank	Total/NA	Water	8260B	
LCS 240-461325/5	Lab Control Sample	Total/NA	Water	8260B	
240-139797-E-2 MS	Matrix Spike	Total/NA	Water	8260B	
240-139797-F-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

11/23/2020

Matrix: Water

Lab Sample ID: 240-139803-2

Client Sample ID: TRIP BLANK Date Collected: 11/04/20 00:00 Date Received: 11/09/20 08:00

Batch

Туре

Analysis

BLANK					Lab Sa	mple ID:	240-139803-1
:00							Matrix: Water
:00							
Batch		Dilution	Batch	Prepared			
Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
8260B		1	461325	11/17/20 16:40	HMB	TAL CAN	

Client Sample ID: MW-216S_110420 Date Collected: 11/04/20 14:51 Date Received: 11/09/20 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	461325	11/17/20 17:05	HMB	TAL CAN
Total/NA	Analysis	8260B SIM		1	460452	11/11/20 18:40	SAM	TAL CAN

Laboratory References:

Prep Type

Total/NA

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139803-1

Laboratory: Eurofins TestAmerica, Canton

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-23-21	
Connecticut	State	PH-0590	12-31-21	
Florida	NELAP	E87225	06-30-21	
Georgia	State	4062	02-23-21	
llinois	NELAP	004498	07-31-21	
owa	State	421	06-01-21	
Kansas	NELAP	E-10336	04-30-21	
Kentucky (UST)	State	112225	02-23-21	
Kentucky (WW)	State	KY98016	12-31-20	
Vinnesota	NELAP	OH00048	12-31-20	
Minnesota (Petrofund)	State	3506	08-01-21	
New Jersey	NELAP	OH001	06-30-21	
New York	NELAP	10975	03-31-21	
Ohio VAP	State	CL0024	06-05-21	
Oregon	NELAP	4062	02-24-21	
Pennsylvania	NELAP	68-00340	08-31-21	
Texas	NELAP	T104704517-18-10	08-31-21	
USDA	US Federal Programs	P330-18-00281	09-17-21	
Virginia	NELAP	010101	09-14-21	
Washington	State	C971	01-12-21	
West Virginia DEP	State	210	12-31-20	

1-412.3

Chain of Custody Record

(J)

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	tory program:			DW		L V	PDES	5	F	RCI	RA	T I	Other										
ompany Name: Arcadis	Client Project	Manager: Kris H	linskey	-		5	site C	ontac	t: Jul	lia Mc	Claf	ferty	-		L	ab Co	ontact	: Mik	e Dell	Monic	,	_	TestA COC	nerica Laboratories No:
ddress: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240	-		_		Telep	hone:	734-6	644-51	131				T	eleph	none: 3	130-49	97-930	26				
ity/State/Zip: Novi, MI, 48377						-		nalysi				Texas 1	_	_	ľ	encpi	ione						1	of COCs
hone: 248-994-2240	Email: kristoff	er.hinskey@arc	adis.co	m		H	A	naiysi	stur	narou	ma i	Ine		H	Т	1	1	1	A	nalys			For lab	use only
roject Name: Ford LTP Off-Site	Sampler Name					1	TAT is	differen		below 3 we	orks												Walk-i	n client
	Gary	Schate	r				10	day	10	2 w	ceks								11				Lab sat	npling
roject Number: 30050315.402.04	Method of Ship	ment/Carrier:								1 we 2 da			2	9			OB			8	SIM		18.0.5	
D # 30050315.402.04	Shipping/Track	ting No:								I da		_	mple (Y)	/ Grab	B	8260B	E 826			8260	8260B SIM		Job/SD	G No:
			T	Ma	trix		(Contair	ners &	k Prese	ervati	ves	Sa	site=C	E 826	DCE	1,2-DC	2608	8260B	Vinyl Chloride 8260B	xane {		1100	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Sample Identification	Sample Date	Sample Time	Air	Sedimen	Solid	Other:	H2SO4	HN03	NaOH	ZnAc/	Unpres	Other:	Filtered	Compo	1,1-DCE 8260B	cis-1,2-DCE	Trans-1,2-DCE 8260B	PCE 8260B	TCE 82	Vinyl C	1,4-Dioxane			ample Specific Notes / Special Instructions:
TRIP BLANK	4/4/20				TT			,		T						T	*	×	+	T	x		-	
	14/20		-	+	++	-	-	+1	+	+	-			-	1	X	~	~	7	1	×			
WW-2165_110420	14/20	14:51	×			_	+	4	0	-				_	X	×	X	X	×	×	X		-	
	- Internet																							
	1.000	-							1					1										
	-		-	+	1										+	+	-	-	-				-	
	-		-	+											+	-	-	_	_	-			-	
						240-13	9803	3 Chi	ain o	of Cu	stod	iy			-									
					11	1	1	1	1	1														
			-	1		+	-	-	1	1				-		-								
Possible Hazard Identification						-								116										
🔽 Non-Hazard 🗆 🗆 dammable 👘 cin Irrita	int 🗆 🗆 Poise	on B 🛛 🖓	Unknow	wn			Sat			o Clier		may be a				sare		chive		nan i	Months			
pecial Instructions/QC Requirements & Comments:																								
ubmit all results through Cadena at jtomalia@cadenad evel IV Reporting requested.	co.com. Cadena #	E203631																						
elinquished by:	Company:	1-	Da	ite/Tir	me: /				Ree	ceived	by:				.1	-	_		Comp		1.		Date/T	me: /
elinquished to Ather	Company	UIS	D	110 nte/Tir	5/2		7:1			Ceived		, 0	0/1		stor Qu	59	L		Comp		1023		Date/T	5/20 7:1
Martin Ul	Company Company	CHOIS	(116	120	10	915	5	1	cerveu	roy.	14	21	li	01.	1	1	1	com		TA			-2020 OPI
elinquished by:	ernepang.		ID:	ite/Tir	ne:	1				ceived	d in L	aborato			11	V	1	L	Comp		AC		Date/I	ime: 7A
Me fully	2	TA-	VI	-6	-20	/	07	30	/	-	-		1	14	1	4	1			F	- 101	-		- 1-20
2008 TestAmerica Laboratories, Inc. All rights reserved. IestAmerica & Design ** are trademarks of TestAmerica Laboratories, Inc.													/	1	/									
M	IICHIC	JAN											4	/										
	190																							

14 13 12 14 6

client Arca	Canton Sample Rece		1	
11	dis		Cooler unpac	ked by
Cooler Received on /	1-7-20	Opened on //-7-20	1111	//
FedEx: 1 st Grd Exp	UPS FAS Clipper	Client Drop Off TestAmerica Courier	Other	
Receipt After-hours: D		Storage Location		
COOLANT: 1. Cooler temperature IR GUN# IR-11 (C IR GUN # IR-12 (C 2. Were tamper/custod -Were the seals on -Were tamper/custo 3. Shippers' packing sli 4. Did custody papers a 5. Were the custody papers 6. Was/were the person 7. Did all bottles arrive 8. Could all bottle label 9. For each sample, doe 10. Were correct bottle(state) 11. Sufficient quantity ref 12. Are these work share If yes, Questions 13 13. Were all preserved states 14. Were VOAs on the 15. Were air bubbles >6	ted: Bubble Wrap Wet Ice Blue Ice upon receipt CF +0.9 °C) Observed CF +0.5 °C) Observed by seals on the outside of the outside of the coole tody seals on the bottle(s tody seals intact and unce p attached to the cooler(accompany the sample(s) pers relinquished & sign (s) who collected the sam in good condition (Unbu- tes the COC specify prese- s) used for the test(s) ind exceived to perform indica- e samples and all listed o -17 have been checked a ample(s) at the correct pi COC?	Foam Plastic Bag None Other Dry Ice Water None Cooler Temp. C Corrected Cooler Cooler Temp. C Corrected Cooler C Corrected Cooler Cooler Temp. C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You ompromised? You conciled with the COC? C Corrected Cooler Cooler Temp. C Corrected Cooler Cooler Temp. C Corrected Cooler Cooler Temp. C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You compromised? You conciled with the COC? C Corrected Cooler C Corrected Cooler C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You conciled with the COC? C Corrected Cooler C Corrected Cooler C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You C C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You conciled with the COC? C Corrected Cooler C C Corrected Cooler C C Corrected Cooler C C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You C C C Corrected Cooler C C Corrected Cooler C C Corrected Cooler C C Corrected Cooler C C Corrected Cooler Sol or bottle kits (LLHg/MeHg)? You C C C Corrected Cooler C C C Corrected Cooler C C C Corrected Cooler C C C Corrected Cooler C C Corrected Cooler C C C Corrected Cooler C C C C C C C C C C C C C C C C C C C	r Temp. 2 °C r Temp. °C r Te	Fests that are not checked for pH by Receiving: VOAs Dil and Grease FOC
7. Was a LL Hg or Me			es No	
Contacted PM	Date	by via Verbal	Voice Mail Other	
Concerning	ODY & SAMPLE DISC			sed hv:
18. CHAIN OF CUST		CREPANCIES U additional next page	Samples proces	
19. SAMPLE CONDIT	TION	were received after the recommended hol- were received	ding time had expired in a broken conta	red. ainer.
19. SAMPLE CONDIT Sample(s) Sample(s)	TION	were received after the recommended hol- were received	ding time had expired in a broken conta	red. ainer.
19. SAMPLE CONDIT Sample(s) Sample(s) Sample(s)	TION	were received after the recommended hol were received were received with bubble >6 mm	ding time had expired in a broken conta	red. ainer. fy PM)

WI-NC-099

DATA VERIFICATION REPORT

November 23, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30050315.0301.01 off site Event Specific Scope of Work References: Sample COC Laboratory: TestAmerica - North Canton Laboratory submittal: 139803-1 Sample date: 2020-11-04 Report received by CADENA: 2020-11-23 Initial Data Verification completed by CADENA: 2020-11-23 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton Laboratory Submittal: 139803-1

		Sample Name: Lab Sample ID: Sample Date:	ple ID: 2401398031 Date: 11/4/2020				MW-216 2401398 11/4/20	20		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
<u>OSW-8260</u>	<u>)B</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-8260</u>)BBSim									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-139803-1 CADENA Verification Report: 2020-11-23

Analyses Performed By: TestAmerica North Canton, Ohio

Report #39255R Review Level: Tier III Project: 30050315.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-139803-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)			
TRIP BLANK	240-139803-1	Water	11/04/20		Х				
MW-216S_110420	240-139803-2	Water	11/04/20		Х	Х			

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

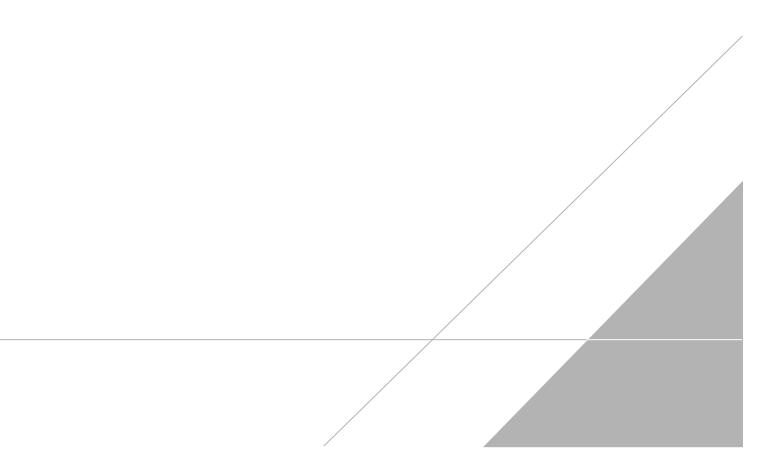
DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported		ormance eptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/N	IS)				
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation					1	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	X				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		X		Х		
C. RT of sample compounds within the established RT windows		X		X		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

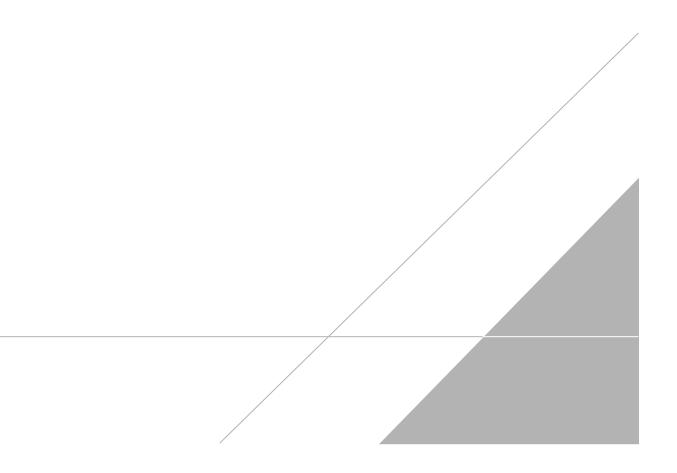
Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference


%D Percent difference

VALIDATION PERFORMED BY:	Hrishikesh Upadhyaya
SIGNATURE:	Curindialued [
DATE:	December 03, 2020


PEER REVIEW: Andrew Korycinski

DATE: December 04, 2020

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

	122
14	12)
1-1	10

Chain of Custody Record

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regula	tory program:	:		D/	W	F N	PDE	s	1	RCR	A	F .	Other	1								
Company Name: Arcadis	Client Project	Manager: Kris	Uinch				Cite C	·		U. M.	Claff		_		Tr	ah C			Del				TestAmerica Laboratorie
dress: 28550 Cabot Drive, Suite 500			FIINSK	ey						lia Mc		erty						Sector 2 - A		Monic	0		COC No:
ty/State/Zip: Novi, MI, 48377	Telephone: 248	3-994-2240					Telep	hone:	734-6	644-5	131				T	elept	hone:	330-4	97-93	96			/ of / COCs
	Email: kristof	fer.hinskey@ar	cadis.	om			A	nalysi	is Tur	rnarou	ind Ti	me		F	-	_	_		A	nalys	es		For lab use only
ione: 248-994-2240	Sampler Name	*	-	-	-		TAT	f differe	nt from	h below	-	-											Walk-in client
oject Name: Ford LTP Off-Site	Gary	Schaf	01-				10	day		3 wa 2 wa													1.4
oject Number: 30050315.402.04		ment/Carrier:	er	-			10	uay	F	1 we	cek			0			-				2		Lab sampling
0 # 30050315.402.04	Shipping/Trac	king No:	-			-				2 da 1 da			mple (Y / N)	Grab=G		560B	8260			Chloride 8260B	260B S		Job/SDG No:
		1		N	latrix		(Contai	ners ő	& Press	ervativ			e=C /	3260	CE 8	-DCE	8	8	oride	ne 8		and the second
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Sediment Solid	Other:	H2SO4	HCI HCI	NaOH	ZaAc	Unpres	Other:	Filtered Sa	Composite	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE 8260B	PCE 8260B	TCE 8260B	Vinyl Chlo	1,4-Dioxane 8260B SIM		Sample Specific Notes Special Instructions:
TRIP BLANK	4/4/20				T			1	,						×	x	+	×	+	T	x		
	11/ 1									1													
NW-2165_110420	14/20	14:51	+	X	+	-	_	-14	0	-			-	_	X	×	X	×	×	×	X	_	
					1				-	1	Ħ		1									1	
				_	-			_	-					-		_							
										1		1	1										
				+		HUUHH	1 11111								+	-	-		-			+	
																	_						
															1								
			+	+	-						istod)					-	-	-	-	-			
						240-1	3980	3 Ch	ain c	JI Cu	3104	-			1								
					1	1 1	1	T	1	1	11	T											
				-	-	-	_	-	-	-			-	-	_	_	_						
Possible Hazard Identification				-	-	-	Sa					ay be as				s are				han 1			
✓ Non-Hazard	Irritant 🗆 Poise	on B	Unkr	own			-	Re	turn t	o Clici	nt	Di	sposa	al By I	Lab	Г	A	rchive	For		Months		
ibmit all results through Cadena at jtomalia@cad vel IV Reporting requested.	enaco.com, Gadena i	#E203031																					
linguished by:	Company:	1.	-	Date/	Time:	1		-	Re	ceived	by:		1	_					Com	namic	1	_	Date/Time:)
den dehalen	Arcs	dis	_	111	051	20	7:1	5		A	101,	C	010) <	star	59	1				25025		11/05/20 7:1
linguished by	Company	MATS		Date/	Time:	n 10	1915	-	Re	ceived	f by:	Ve	2	1.*		J	~		Com		- 10		Date/Time:
linguisted by:	Company:	(HUL)		Date/	6/ C	010	115	,	Re	ceiver	dint	aborator	-1	11	4	V	+	7-	Com	2	TH		11-6-2020 091. Date/Time: 7
Me fulle		724		11-	6.9	20	09	730					1	1	11	1	1	1	Com	pany	THC		11-7-20
1 - 110	1 0	1.01		1	0	~	(-	-	-			14	1	-	6		-	1	1.01		
12008: TestAmerica Laboratories, Inc. All rights reserved. estAmerica & Design ¹⁰ are trademarks of TestAmerica Laboratories, Inc.													/	1	/								
	MICHIC	AN											1	/									
	190	PT TT A																					
	190																						

Client Sample ID: TRIP BLANK

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 11/04/20 00:00 Date Received: 11/09/20 08:00

Lab Sample ID: 240-139803-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 16:40	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/17/20 16:40	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/17/20 16:40	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/17/20 16:40	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/17/20 16:40	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/17/20 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		75 - 130			-		11/17/20 16:40	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/17/20 16:40	1
Toluene-d8 (Surr)	99		69 - 122					11/17/20 16:40	1
Dibromofluoromethane (Surr)	91		78 - 129					11/17/20 16:40	1

Client Sample ID: MW-216S_110420 Date Collected: 11/04/20 14:51 Date Received: 11/09/20 08:00

Lab Sample ID: 240-139803-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/11/20 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 133					11/11/20 18:40	1
_ Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	•	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4.4.51.11			1.0						-

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Vinyl chloride	1.0	U	1.0	0.20 ug/L		11/17/20 17:05	1
Trichloroethene	1.0	U	1.0	0.10 ug/L		11/17/20 17:05	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19 ug/L		11/17/20 17:05	1
Tetrachloroethene	1.0	U	1.0	0.15 ug/L		11/17/20 17:05	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16 ug/L		11/17/20 17:05	1
1,1-Dichloroethene	1.0	U	1.0	0.19 ug/L		11/17/20 17:05	1

1,2-Dichloroethane-d4 (Surr)	111	75 - 130	11/17/20 17:05	1
4-Bromofluorobenzene (Surr)	99	47 - 134	11/17/20 17:05	1
Toluene-d8 (Surr)	99	69 - 122	11/17/20 17:05	1
Dibromofluoromethane (Surr)	92	78 - 129	11/17/20 17:05	1