

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-139971-1 Client Project/Site: Ford LTP - Off Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 11/25/2020 8:58:53 AM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-139971-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

4

6

8

10

10

13

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

J

6

9

10

12

13

Case Narrative

Client: ARCADIS U.S., Inc.
Project/Site: Ford LTP - Off Site

Job ID: 240-139971-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP - Off Site

Report Number: 240-139971-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/11/2020 9:15 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.8° C and 2.9° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-139971-1) and MW-89S_110920 (240-139971-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/20/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-89S_110920 (240-139971-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 11/17/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Job ID: 240-139971-1

4

4

5

7

8

10

12

13

Method Summary

Client: ARCADIS U.S., Inc.
Project/Site: Ford LTP - Off Site

Job ID: 240-139971-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3

4

5

7

8

4.0

11

12

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139971-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-139971-1	TRIP BLANK	Water	11/09/20 00:00	11/11/20 09:15	
240-139971-2	MW-89S_110920	Water	11/09/20 11:55	11/11/20 09:15	

3

6

9

11

12

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK Lab Sample ID: 240-139971-1

No Detections.

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.96	J	1.0	0.16	ug/L	1	_	8260B	Total/NA
Vinyl chloride	0.65	J	1.0	0.20	ug/L	1		8260B	Total/NA

4

5

7

9

10

12

<u> 13</u>

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-139971-1

Date Collected: 11/09/20 00:00 **Matrix: Water** Date Received: 11/11/20 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/20/20 19:16	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/20/20 19:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:16	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/20/20 19:16	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/20/20 19:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/20/20 19:16	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/20/20 19:16	1
Toluene-d8 (Surr)	98		69 - 122					11/20/20 19:16	1
Dibromofluoromethane (Surr)	92		78 - 129					11/20/20 19:16	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-89S_110920

Date Collected: 11/09/20 11:55 Date Received: 11/11/20 09:15 Lab Sample ID: 240-139971-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/17/20 23:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	129		70 - 133					11/17/20 23:01	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:41	1
cis-1,2-Dichloroethene	0.96	J	1.0	0.16	ug/L			11/20/20 19:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/20/20 19:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:41	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/20/20 19:41	1
Vinyl chloride	0.65	J	1.0	0.20	ug/L			11/20/20 19:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/20/20 19:41	1
4-Bromofluorobenzene (Surr)	101		47 - 134					11/20/20 19:41	1
Toluene-d8 (Surr)	99		69 - 122					11/20/20 19:41	1
Dibromofluoromethane (Surr)	91		78 - 129					11/20/20 19:41	1

11/25/2020

3

5

7

8

10

11

13

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)
240-139968-B-7 MS	Matrix Spike	97	106	101	80
240-139968-B-7 MSD	Matrix Spike Duplicate	99	108	101	82
240-139971-1	TRIP BLANK	113	100	98	92
240-139971-2	MW-89S_110920	113	101	99	91
LCS 240-462021/5	Lab Control Sample	98	107	103	83
MB 240-462021/8	Method Blank	110	100	97	90

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-139957-C-2 MS	Matrix Spike	122	
240-139957-C-2 MSD	Matrix Spike Duplicate	121	
240-139971-2	MW-89S_110920	129	
LCS 240-461393/3	Lab Control Sample	109	
MB 240-461393/5	Method Blank	116	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins TestAmerica, Canton

11/25/2020

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-462021/8

Matrix: Water

Analysis Batch: 462021

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 11/20/20 11:50 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 11/20/20 11:50 1.0 U Tetrachloroethene 1.0 0.15 ug/L 11/20/20 11:50 0.19 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 11/20/20 11:50 Trichloroethene 10 U 1.0 0.10 ug/L 11/20/20 11:50 Vinyl chloride 1.0 U 1.0 0.20 ug/L 11/20/20 11:50

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 75 - 130 1,2-Dichloroethane-d4 (Surr) 110 11/20/20 11:50 4-Bromofluorobenzene (Surr) 100 47 - 134 11/20/20 11:50 97 69 - 122 11/20/20 11:50 Toluene-d8 (Surr) Dibromofluoromethane (Surr) 90 78 - 129 11/20/20 11:50

Lab Sample ID: LCS 240-462021/5

Matrix: Water

Analysis Batch: 462021

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec 20.0 18.6 93 73 - 129 1,1-Dichloroethene ug/L cis-1,2-Dichloroethene 20.0 18.8 ug/L 94 75 - 124 Tetrachloroethene 20.0 88 70 - 125 17.7 ug/L 74 - 130 trans-1.2-Dichloroethene 20.0 18.6 ug/L 93 Trichloroethene 20.0 15.8 ug/L 79 71 - 121 Vinyl chloride 20.0 22.0 ug/L 110 61 - 134

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 75 - 130 4-Bromofluorobenzene (Surr) 107 47 - 134 69 - 122 Toluene-d8 (Surr) 103 78 - 129 Dibromofluoromethane (Surr) 83

Lab Sample ID: 240-139968-B-7 MS

Matrix: Water

Analysis Batch: 462021

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	10	U	200	174		ug/L		87	64 - 132
cis-1,2-Dichloroethene	1.6	J	200	183		ug/L		92	68 - 121
Tetrachloroethene	10	U	200	159		ug/L		79	52 - 129
trans-1,2-Dichloroethene	10	U	200	177		ug/L		89	69 - 126
Trichloroethene	10	U	200	148		ug/L		74	56 - 124
Vinyl chloride	30		200	213		ug/L		91	49 - 136

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 130
4-Bromofluorobenzene (Surr)	106		47 - 134
Toluene-d8 (Surr)	101		69 - 122

Eurofins TestAmerica, Canton

Page 11 of 19

9

3

<u>+</u>

7

8

10

12

13

14

....., 2

11/25/2020

Spike

Added

200

200

200

200

200

200

191

201

176

198

165

223

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-139971-1

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-139968-B-7 MS

Matrix: Water

Analysis Batch: 462021

MS MS

Sample Sample

10 U

1.6 J

10 U

10 U

10 U

30

Result Qualifier

%Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 80 78 - 129

Lab Sample ID: 240-139968-B-7 MSD

Matrix: Water

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Vinyl chloride

cis-1,2-Dichloroethene

trans-1.2-Dichloroethene

Analyte

Analysis Batch: 462021

ug/L

ug/L

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

MSD MSD %Rec. **RPD** Limits RPD Limit Result Qualifier Unit %Rec ug/L 96 64 - 132 10 35 ug/L 101 68 - 121 10 35 ug/L 88 52 - 129 10 35 ug/L 99 69 - 12635 11

82

56 - 124

49 - 136

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

11

MSD MSD

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 99 75 - 130 4-Bromofluorobenzene (Surr) 108 47 - 134 Toluene-d8 (Surr) 101 69 - 122 Dibromofluoromethane (Surr) 82 78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-461393/5

Matrix: Water

Analysis Batch: 461393

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 11/17/20 13:36 1,4-Dioxane 2.0 U 0.86 ug/L

MB MB

%Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 116 70 - 133 11/17/20 13:36

Lab Sample ID: LCS 240-461393/3

Matrix: Water

Analysis Batch: 461393

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 11.0 ug/L 110 80 - 135

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 109 70 - 133

Lab Sample ID: 240-139957-C-2 MS

Matrix: Water

Analysis Batch: 461393

Analysis Baton: 401000	Sample Sam	ple Spike	MS	MS				%Rec.	
Analyte	Result Qual	lifier Added		Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane		10.0	12.0		ug/L		120	46 - 170	

Eurofins TestAmerica, Canton

Client Sample ID: Matrix Spike

Page 12 of 19

11/25/2020

35

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	122		70 - 133								
Lab Sample ID: 240-1399 Matrix: Water Analysis Batch: 461393	957-C-2 MSD					Client	Samp	ole ID: N	latrix Spil Prep Ty	•	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	12.0	-	ug/L		120	46 - 170	0	26
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	121		70 - 133								

QC Association Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 461393

Lab Sample ID 240-139971-2	Client Sample ID MW-89S 110920	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-461393/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-461393/3	Lab Control Sample	Total/NA	Water	8260B SIM	
240-139957-C-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-139957-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 462021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-139971-1	TRIP BLANK	Total/NA	Water	8260B	_ <u> </u>
240-139971-2	MW-89S_110920	Total/NA	Water	8260B	
MB 240-462021/8	Method Blank	Total/NA	Water	8260B	
LCS 240-462021/5	Lab Control Sample	Total/NA	Water	8260B	
240-139968-B-7 MS	Matrix Spike	Total/NA	Water	8260B	
240-139968-B-7 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

2

A

4

e

9

10

11

4.6

Lab Chronicle

Client: ARCADIS U.S., Inc.

Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Oliver Overvier ID. TDID DI ANI

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-139971-1

Date Collected: 11/09/20 00:00 Matrix: Water Date Received: 11/11/20 09:15

Prepared Batch Batch Dilution Batch **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type Lab TAL CAN Total/NA Analysis 8260B 462021 11/20/20 19:16 HMB

Date Collected: 11/09/20 11:55 Matrix: Water

Date Received: 11/11/20 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	462021	11/20/20 19:41	HMB	TAL CAN
Total/NA	Analysis	8260B SIM		1	461393	11/17/20 23:01	SAM	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

7

9

10

12

13

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-21
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

-

6

8

9

10

12

Chain of Custody Record

<u>TestAmerica</u>

Client Contact Company Name: Arcadis	Regulat	ory program:			DW		NPDE	S	Г	RCR/	Α.		Other						1	90	GA	TA	Т	estAmerica Laborat	ories,
San 14 00 1 00 1 00 1 00 1 00 1 00 1 00 1	Client Project	Manager: Kris I	finske	v		Site	Conta	ct: Ju	lia Me	Claffe	rty			L	ab Co	ntact:	Mike	DelN	1onice				_	OC No:	.,,,,
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240	-			Tel	ephone	: 734-	644-51	31	-	-	-	7	eleph	one: 3	30-497	-939	6				-		
City/State/Zip: Novi, MI, 48377	Fmail: kristoff	er.hinskey@arc	adir o	·m	-		Analys				me T	-	_		_		_	An	alyse	25			Fo	of 1 C	OCs
Phone: 248-994-2240			2015.00	m										T	T	T	T	T		T	T	TT		Editor of the Tex	
Project Name: Ford LTP Off-Site	Sampler Name	15cm +1	av	te			l of day	Γ	3 we															alk-in client ab sampling	
roject Number: 30050315.402.04	Method of Ship							Ţ	1 we		- 1	2	9			8			_	N N		11			
O # 30050315.402.04	Shipping/Track	ding No:				1			1 da		- 1	Sample (Y / N)	Grab=G		560B	82608		1	8260E	260B			Jo	bb/SDG No;	
	1			Ma	trix		Conta	iners o	& Prese	rvative	es	Sampl	te=C/	8260	CE 87	S-DCE	98	80	oride	ane 8		1 1			
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Solid Other:	H2SO4	HNO3	HC!	ZaAci	Unpres	Other:	Filtered	Composite	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE	PCE 8260B	TCE 8260B	Vinyl Chloride 8260B	1,4-Dioxane 8260B SIM				Sample Specific N Special Instructi	
TRIP BLANK		_		1			П	1	T			7	6	X	x	X.	*	×	*	X	T			1 trip blar	IK
MW-895_110920	11/9/20	11:55	(-				4				7	6	٨	1	X	1	X	×	+			3	VOATED BLE	0B
						240-13	39971	Cha	ain of	Cust	ody														_
	1		1	+	+	+	\vdash	+	+	1			T	1	1	1									_
Possible Hazard Identification Non-Hazard Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenace.evel IV Reporting requested.			Unkno	own					osal (A to Clie		nay be a				es are		ed Ion		han 1	month) Mor			_		
Relinquished by:	Company:	11	E	ate/Tir	ne: 1/20	16	:30	R	eccived	l by:	11 80	10	st	cro	29€		-	Comp	any:	id s				Date/Time:	1:3
Julia 1119 lofferty	Aradi	3			1/20 ne: 0/20	4	地							(3	N				2	A		D	Date/Time:	14
Relinquished by:	Company:	TA		Date/Tir	10/	20/	70	20	eceive	l in La	borato	ry by			//	_	- (Comp	any:	=7/	AC		D	nate/Time: 11-20	9
©2008. TestAmenica Laboratones, Inc., All rights reserved. TestAmenica & Literagn ¹⁰ are trademarks of TestAmenica Laboratones, Inc.		, ,		17	1-1-						1														

11/0 /	t			Cooler u	nnacked by:
lient Hradi		Site Name	11 12 20	Cooler II	npacked by:
Cooler Received on /	1-11-20		1-12-20		11//
	UPS FAS Clipper	Client Drop Off	TestAmerica Cou		
Receipt After-hours: Dr		G1: G 1	Storage Locat		
Packing material use COOLANT: COULANT:	Foam Boy But Ice But Ice Blue Ice Ipon receipt F +0.9 °C) Observed F +0.5°C) Observed y seals on the outside of the cooler ody seals intact and unce of attached to the cooler company the sample(s) who collected the sample in good condition (Unb. s (ID/Date/Time) be received to perform indices the COC specify presect y used for the test(s) inductived to perform indices ample(s) at the correct performing the company in any VOA vials? The present in the cooler of the present in the cooler of the cooler of the correct performing in any VOA vials? The present in the cooler of the cooler o	Cooler Temp. Cooler Temp. Cooler Temp. The cooler(s)? If Yer(s) signed & dated so or bottle kits (LL compromised? (s)? (s)? (s)? (s)? (s)? (s)? (s)? (s)	Box Othe g None Othe er None See Multiple Coo °C Corrected Co °C Corrected Co res Quantity Hg/MeHg)? the place? ified on the COC? of containers Ø/N), a boratory.	oler Form coler Temp. coler Temp. coler Temp. Ves No NA Ves No NA Ves No	pH Strip Lot# <u>HC907861</u>
Contacted PM	NSO 1 W. 19	by			ther
~ .					
8. CHAIN OF CUSTO	DDY & SAMPLE DISC	CREPANCIES	additional next pa	Samples pr	ocessed by:
9. SAMPLE CONDIT	ION				
9. SAMPLE CONDIT		were received after	er the recommended	holding time had	expired.
Sample(s)				holding time had derived in a broken	
ample(s)				eived in a broken	container.
Sample(s)Sample(s)			were rec	eived in a broken	container.
Sample(s)			were rec	eived in a broken	container.
Sample(s) Sample(s) Sample(s) CO. SAMPLE PRESER	VATION	were rece	were received with bubble >6	eived in a broken mm in diameter. (container.
Sample(s)Sample(s)	VATION	were rece	were received with bubble >6	eived in a broken mm in diameter. (container. Notify PM)

Login #: 139971

Cooler D	escription	IR Gun #	Observed	pt Multiple Cooler Fo Corrected	Coolant
	ircle)	(Circle)	Temp °C	Temp °C	(Circle)
1A Client	Box Other	IR-11IR-12	2.0	2.9	Wetter Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12	1.9	2.8	Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet ice Blue ice Dry ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12		**************************************	Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic Water None
TA Client	Box Other	IR-11 IR-12			Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet ice Blue ice Dry ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ic
TA Client		IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ice
TA Client	Box Other	IR-11 IR-12			Water None Wet Ice Blue Ice Dry Ice
TA Client	Box Other				Water None Wet Ice Blue Ice Dry Ice
TA Client	Box Other	IR-11 IR-12		☐ See Te	Water None mperature Excursion Form

DATA VERIFICATION REPORT

November 25, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30050315.0301.01 off site

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 139971-1 Sample date: 2020-11-09

Report received by CADENA: 2020-11-25

Initial Data Verification completed by CADENA: 2020-11-25

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 139971-1

Sample Name:	TRIP BLA	ANK			MW-899	5_11092	0	
Lab Sample ID:	2401399	9711			2401399	9712		
Sample Date:	11/9/20	20			11/9/20	20		
		Report		Valid		Report		Valid
Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
156-59-2	ND	1.0	ug/l		0.96	1.0	ug/l	J
127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
75-01-4	ND	1.0	ug/l		0.65	1.0	ug/l	J
123-91-1					ND	2.0	ug/l	
	Tab Sample ID: Sample Date: Cas No. 75-35-4 156-59-2 127-18-4 156-60-5 79-01-6 75-01-4	Cas No. Result 75-35-4 ND 127-18-4 ND 156-60-5 ND 79-01-6 ND 75-01-4 ND	Lab Sample ID: 2401399711 Sample Date: 11/9/2020 Report Cas No. Result Limit 75-35-4 ND 1.0 156-59-2 ND 1.0 127-18-4 ND 1.0 156-60-5 ND 1.0 79-01-6 ND 1.0 75-01-4 ND 1.0	Lab Sample ID: 2401399711 Sample Date: 11/9/2020 Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 156-60-5 ND 1.0 ug/l 79-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401399711 Sample Date: 11/9/2020 Report Valid Cas No. Result Limit Units Qualifier 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 156-60-5 ND 1.0 ug/l 79-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401399711 2401399 Sample Date: 11/9/2020 Report Valid Cas No. Result Units Qualifier Result 75-35-4 ND 1.0 ug/l ND 156-59-2 ND 1.0 ug/l ND 127-18-4 ND 1.0 ug/l ND 156-60-5 ND 1.0 ug/l ND 79-01-6 ND 1.0 ug/l ND 75-01-4 ND 1.0 ug/l ND	Lab Sample ID: 2401399711 2401399712 Sample Date: 11/9/2∪2∪ Teport Valid Report Cas No. Result Limit Units Qualifier Result Limit 75-35-4 ND 1.0 ug/l ND 1.0 156-59-2 ND 1.0 ug/l ND 1.0 127-18-4 ND 1.0 ug/l ND 1.0 156-60-5 ND 1.0 ug/l ND 1.0 79-01-6 ND 1.0 ug/l ND 1.0 75-01-4 ND 1.0 ug/l 0.65 1.0	Lab Sample ID: 2401399712 Sample Date: 11/9/20∪2 Table port 11/9/20∪2 Report Valid Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l ND 1.0 ug/l 156-59-2 ND 1.0 ug/l ND 1.0 ug/l 127-18-4 ND 1.0 ug/l ND 1.0 ug/l 79-01-6 ND 1.0 ug/l ND 1.0 ug/l 75-01-4 ND 1.0 ug/l ND 1.0 ug/l

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-139971-1

CADENA Verification Report: 2020-11-25

Analyses Performed By: TestAmerica

North Canton, Ohio

Report # 39375R Review Level: Tier III Project: 30050315.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-139971-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analy	/sis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)
TRIP BLANK	240-139971-1	Water	11/09/20		X	
MW-89S_110920	240-139971-2	Water	11/09/20		Х	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		X		X	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		X	
4. Methods of analysis		Х		X	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation (Q) Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial/Continuing	Compound	Criteria	
TRIP BLANK	CCV %D	Trichloroethene	-23.1%	
MW-89S_110920	33 V 70D	THORIOTOEUTETTE	-23.170	

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	nitial/Continuing Criteria		Qualification
Initial and Continuing Calibration	RRF <0.05	Non-detect	R
	100 50.03	Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.01 ¹	Non-detect	R
	KKF \0.01*	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.05 01 KKF 20.01	Detect	NO ACTION
Initial Calibration	N/DCD > 450/ our a completion coefficient 40.00	Non-detect	UJ
	%RSD > 15% or a correlation coefficient <0.99	Detect	J
	0/ DOD > 000/	Non-detect	R
	%RSD >90%	Detect	J
	0/D > 000/ (in our and in our airing)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	0(5,000(//	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	0/D > 000/ (in and a //d a	Non-detect	R
	%D >90% (increase/decrease in sensitivity)	Detect	J

Note:

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	eported	Performance Acceptable		Not	
	No Yes		No Yes		Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETI	RY (GC/I	VIS)				
Tier II Validation						
Holding times/Preservation		X		Х		
Tier III Validation						
System performance and column resolution		X		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		X		Х		
Continuing calibration %Ds		X	Х			
Instrument tune and performance check		X		Х		
lon abundance criteria for each instrument used		X		Х		
Field Duplicate RPD					Х	
Internal standard		X		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		X		X		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		X		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: December 04, 2020

PEER REVIEW: Andrew Korycinski

DATE: December 07, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton - 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

<u>TestAmerica</u>

Client Contact Regulatory program: - DW NPDES Other Company Name: Arcadis TestAmerica Laboratories, Inc. Lab Contact: Mike DelMonico Client Project Manager: Kris Hinskey Site Contact: Julia McClafferty Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 734-644-5131 Telephone: 330-497-9396 COCs City/State/Zip: Novi, MI, 48377 of Email: kristoffer.hinskey@arcadis.com Analysis Turnaround Time Analyses For lab use only Phone: 248-994-2240 Walk-in client Sampler Name: TAT if different from below Project Name: Ford LTP Off-Site Allyson Hartz 7 3 weeks ₹ 2 weeks Lab sampling Project Number: 30050315.402.04 Method of Shipment/Carrier: 1 week 1,4-Dioxane 8260B SIM Composite=C/Grab=G Sample (Y / N) 2 days PO # 30050315,402.04 Shipping/Tracking No: Job/SDG No: 1 day 1,1-DCE 8260B Vinyl Chloride Matrix Containers & Preservatives TCE 8260B Sample Specific Notes / H2S04 HNO3 NaOH Solid Special Instructions: Sample Date | Sample Time Sample Identification 1 trip blank TRIP BLANK X × X 3 VOAI FOI ELEOB x MW-895_110920 11/9/20 x X 11:55 1 L X 6 3 VOAG FOR ELLEUBSIM of 304 240-139971 Chain of Custody Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard lammable Poison B Unknown Return to Client Disposal By Lab Archive For Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested. Relinquished by: Date/Time: Received by: Company: Arcordis 11/9/20 16:30 Noul fold storage Troad.s 11/0/120 Relinquished by: Date/Time: Received by: 11/10/20 Relinquished by:

Noos, TestAmerica Laboratones, Inc. All rayles reserved.

Notification of the Communication of t Received in Laboratory by Company:

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-139971-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Date Collected: 11/09/20 00:00 Date Received: 11/11/20 09:15 Lab Sample ID: 240-139971-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/20/20 19:16	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/20/20 19:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:16	1
Trichloroethene	1.0	N NI	1.0	0.10	ug/L			11/20/20 19:16	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/20/20 19:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		75 - 130			-		11/20/20 19:16	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/20/20 19:16	1
Toluene-d8 (Surr)	98		69 - 122					11/20/20 19:16	1
Dibromofluoromethane (Surr)	92		78 - 129					11/20/20 19:16	1

Client Sample ID: MW-89S_110920

Date Collected: 11/09/20 11:55

Date Received: 11/11/20 09:15

Lab Sample ID: 240-139971-2

Matrix: Water

Method: 8260B SIM - Volatil	e Organic Coi	mpounds (GC/MS)					
Analyte	Result	Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86 ug/	ı/L		11/17/20 23:01	1
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 129	Qualifier	Limits 70 - 133		-	Prepared	Analyzed 11/17/20 23:01	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:41	1
cis-1,2-Dichloroethene	0.96	J	1.0	0.16	ug/L			11/20/20 19:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/20/20 19:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/20/20 19:41	1
Trichloroethene	1.0	Ø m	1.0	0.10	ug/L			11/20/20 19:41	1
Vinyl chloride	0.65	J`	1.0	0.20	ug/L			11/20/20 19:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	75 - 130		11/20/20 19:41	1
4-Bromofluorobenzene (Surr)	101	47 - 134		11/20/20 19:41	1
Toluene-d8 (Surr)	99	69 - 122		11/20/20 19:41	1
Dibromofluoromethane (Surr)	91	78 - 129		11/20/20 19:41	1

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-140101-1 Client Project/Site: Ford LTP - Off Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 11/27/2020 9:56:52 AM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-140101-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Method Summary	5
Sample Summary	
Detection Summary	7
Client Sample Results	8
	10
	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

2

4

9

10

12

13

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Canton

11/27/2020

Case Narrative

Client: ARCADIS U.S., Inc.
Project/Site: Ford LTP - Off Site

Job ID: 240-140101-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP - Off Site

Report Number: 240-140101-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 11/12/2020 9:15 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.7° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-140101-1) and MW-193S_111020 (240-140101-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/21/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-193S_111020 (240-140101-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 11/19/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

- 2

Job ID: 240-140101-1

4

5

6

9

11

40

14

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-140101-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

6

0

9

11

12

4 /

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-140101-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-140101-1	TRIP BLANK	Water	11/10/20 00:00	11/12/20 09:15	
240-140101-2	MW-193S_111020	Water	11/10/20 09:25	11/12/20 09:15	

6

8

9

11

11)

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-140101-1

No Detections.

No Detections.

3

4

5

_

8

10

13

14

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-140101-1

Date Collected: 11/10/20 00:00 **Matrix: Water** Date Received: 11/12/20 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 15:47	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/21/20 15:47	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/21/20 15:47	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 15:47	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/21/20 15:47	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/21/20 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/21/20 15:47	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/21/20 15:47	1
Toluene-d8 (Surr)	99		69 - 122					11/21/20 15:47	1
Dibromofluoromethane (Surr)	91		78 - 129					11/21/20 15:47	1

Client Sample Results

Client: ARCADIS U.S., Inc.

Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-193S_111020

Date Collected: 11/10/20 09:25
Date Received: 11/12/20 09:15

Lab Sample ID: 240-140101-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/19/20 19:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 133					11/19/20 19:42	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 16:12	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/21/20 16:12	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/21/20 16:12	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 16:12	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/21/20 16:12	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/21/20 16:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		75 - 130					11/21/20 16:12	1
4-Bromofluorobenzene (Surr)	101		47 - 134					11/21/20 16:12	1
Toluene-d8 (Surr)	99		69 - 122					11/21/20 16:12	1
Dibromofluoromethane (Surr)	93		78 - 129					11/21/20 16:12	1

5

7

9

10

12

13

Ш

11/27/2020

Job ID: 240-140101-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acce				
		DCA	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)		
240-140101-1	TRIP BLANK	111	100	99	91		
240-140101-2	MW-193S_111020	113	101	99	93		
240-140141-C-3 MS	Matrix Spike	102	109	105	82		
240-140141-C-3 MSD	Matrix Spike Duplicate	101	108	105	81		
LCS 240-462197/5	Lab Control Sample	99	108	103	82		
MB 240-462197/8	Method Blank	113	104	102	93		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-140101-2	MW-193S_111020	91	
240-140111-D-3 MS	Matrix Spike	89	
240-140111-D-3 MSD	Matrix Spike Duplicate	91	
LCS 240-461808/14	Lab Control Sample	86	
MB 240-461808/15	Method Blank	85	
Surrogate Legend			

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(10-150)	
MRL 240-461808/16	Lab Control Sample	85	
Surrogate Legend			
DCA = 1,2-Dichloroeth	nane-d4 (Surr)		

Eurofins TestAmerica, Canton

11/27/2020

Client: ARCADIS U.S., Inc. Job ID: 240-140101-1 Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-462197/8

Matrix: Water

Analysis Batch: 462197

Client Sample ID: M	ethod Blank
Prep Ty	pe: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyte Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 11/21/20 12:04 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 11/21/20 12:04 1.0 U Tetrachloroethene 1.0 0.15 ug/L 11/21/20 12:04 trans-1,2-Dichloroethene 1.0 U 1.0 0.19 ug/L 11/21/20 12:04 Trichloroethene 1.0 U 1.0 0.10 ug/L 11/21/20 12:04 Vinyl chloride 1.0 U 1.0 0.20 ug/L 11/21/20 12:04

	MB MB				
Surrogate	%Recovery Quality	fier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	75 - 130		11/21/20 12:04	1
4-Bromofluorobenzene (Surr)	104	47 - 134		11/21/20 12:04	1
Toluene-d8 (Surr)	102	69 - 122		11/21/20 12:04	1
Dibromofluoromethane (Surr)	93	78 - 129		11/21/20 12:04	1

Lab Sample ID: LCS 240-462197/5

Matrix: Water

Analysis Batch: 462197

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit D %Rec 1,1-Dichloroethene 20.0 18.2 ug/L 91 73 - 129 20.0 cis-1,2-Dichloroethene 19.1 95 75 - 124 ug/L Tetrachloroethene 20.0 17.5 88 70 - 125 ug/L trans-1,2-Dichloroethene 74 - 130 20.0 18.8 ug/L 94 Trichloroethene 20.0 16.3 ug/L 81 71 - 121 Vinyl chloride 20.0 20.4 ug/L 102 61 - 134

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 130
4-Bromofluorobenzene (Surr)	108		47 - 134
Toluene-d8 (Surr)	103		69 - 122
Dibromofluoromethane (Surr)	82		78 - 129

Analysis Batch: 462197

ab Sample ID: 240-140141-C-3 MS	Client Sample ID: Matrix Spike
latrix: Water	Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	5000	U	100000	88500		ug/L		88	64 - 132
cis-1,2-Dichloroethene	2000	J	100000	93300		ug/L		91	68 - 121
Tetrachloroethene	5000	U	100000	78400		ug/L		78	52 - 129
Trichloroethene	200000		100000	264000		ug/L		59	56 - 124
Vinyl chloride	5000	U	100000	92700		ug/L		93	49 - 136

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75 - 130
4-Bromofluorobenzene (Surr)	109		47 - 134
Toluene-d8 (Surr)	105		69 - 122
Dibromofluoromethane (Surr)	82		78 - 129

Eurofins TestAmerica, Canton

11/27/2020

Page 11 of 18

Job ID: 240-140101-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Mat

Analysis Batch: 462197

b Sample ID: 240-140141-C-3 MSD	Client Sample ID: Matrix Spike Duplicate
atrix: Water	Prep Type: Total/NA
nelvoje Beteh: 462407	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	5000	U	100000	93300		ug/L		93	64 - 132	5	35
cis-1,2-Dichloroethene	2000	J	100000	101000		ug/L		99	68 - 121	8	35
Tetrachloroethene	5000	U	100000	85900		ug/L		86	52 - 129	9	35
Trichloroethene	200000		100000	277000		ug/L		73	56 - 124	5	35
Vinyl chloride	5000	U	100000	97100		ug/L		97	49 - 136	5	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 130
4-Bromofluorobenzene (Surr)	108		47 - 134
Toluene-d8 (Surr)	105		69 - 122
Dibromofluoromethane (Surr)	81		78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-461808/15 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 461808

alysis balcii. 40 1000									
	MB	MB							
lyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dioxane	2.0	U	2.0	0.86	ug/L			11/19/20 16:21	1
	MB	MB							
rogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroethane-d4 (Surr)	85		70 - 133			_		11/19/20 16:21	1
	yte Dioxane ogate	MB Result Dioxane 2.0 MB Result WB Result 2.0 MB WRecovery	yte Result Qualifier Dioxane 2.0 U MB MB Waltier Waltier WB MB WB WRecovery Qualifier	MB vyte MB Result Qualifier RL Qualifier Dioxane 2.0 U 2.0 MB MB MB MB ogate %Recovery Qualifier Limits	MB MB yte Result Qualifier RL MDL Dioxane 2.0 U 2.0 0.86 MB MB ogate %Recovery Qualifier Limits	MB MB yte Result Qualifier RL MDL Unit Dioxane 2.0 U 2.0 0.86 ug/L MB MB ogate %Recovery Qualifier Limits	MB MB Syte Result Qualifier RL MDL Unit D Dioxane 2.0 U 2.0 0.86 ug/L MB MB Sogate %Recovery Qualifier Limits	MB MB yte Result Qualifier RL MDL Unit D ioxane 2.0 U 2.0 0.86 ug/L MB MB ogate %Recovery Qualifier Limits Prepared	MB MB yte Result Qualifier RL MDL Unit D Prepared Analyzed Dioxane 2.0 U 2.0 0.86 ug/L 11/19/20 16:21 MB MB ogate %Recovery Qualifier Limits Prepared Analyzed

Lab Sample ID: LCS 240-461808/14 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 461808

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
1.4-Dioxane	10.0	10.7		ua/L	107	80 - 135	

LCS LCS %Recovery Qualifier Limits Surrogate 70 - 133 1,2-Dichloroethane-d4 (Surr) 86

Lab Sample ID: MRL 240-461808/16

Matrix: Water

Analysis Batch: 461808

/ indigoto Dutom 101000								
	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	 0.00100	0.00123	J	ng/uL		123	10 - 150	

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		10 - 150

Eurofins TestAmerica, Canton

11/27/2020

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Lab Sample ID: 240-140111-D-3 MS

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 461808

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.5		ug/L		105	46 - 170	

MS MS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 133 89

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

10

Matrix: Water

Lab Sample ID: 240-140111-D-3 MSD

Analysis Batch: 461808

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	10.4		ug/L		104	46 - 170	0	26

MSD MSD

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 91 70 - 133

Eurofins TestAmerica, Canton

11/27/2020

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-140101-1

GC/MS VOA

Analysis Batch: 461808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-140101-2	MW-193S_111020	Total/NA	Water	8260B SIM	
MB 240-461808/15	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-461808/14	Lab Control Sample	Total/NA	Water	8260B SIM	
MRL 240-461808/16	Lab Control Sample	Total/NA	Water	8260B SIM	
240-140111-D-3 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-140111-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 462197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-140101-1	TRIP BLANK	Total/NA	Water	8260B	
240-140101-2	MW-193S_111020	Total/NA	Water	8260B	
MB 240-462197/8	Method Blank	Total/NA	Water	8260B	
LCS 240-462197/5	Lab Control Sample	Total/NA	Water	8260B	
240-140141-C-3 MS	Matrix Spike	Total/NA	Water	8260B	
240-140141-C-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

4

6

0

10

ш

13

4

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-140101-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-140101-1 Date Collected: 11/10/20 00:00

Matrix: Water

Date Received: 11/12/20 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	462197	11/21/20 15:47	HMB	TAL CAN

Client Sample ID: MW-193S_111020 Lab Sample ID: 240-140101-2

Date Collected: 11/10/20 09:25 **Matrix: Water**

Date Received: 11/12/20 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	462197	11/21/20 16:12	HMB	TAL CAN
Total/NA	Analysis	8260B SIM		1	461808	11/19/20 19:42	SAM	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-140101-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-21
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

7

9

10

11

13

4

Chain of Custody Record

MICHIGAN

<u>TestAmerica</u>

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: - NPDES - RCRA Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Julia McClafferty Lab Contact: Mike DelMonico Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 330-497-9396 Telephone: 734-644-5131 City/State/Zip: Novi, MI, 48377 COCs Analyses Email: kristoffer.hinskey@arcadis.com Analysis Turnaround Time For lab use only Phone: 248-994-2240 Walk-in client TAT if different from below Sampler Name: Allyson Hartz Project Name: Ford LTP Off-Site 3 weeks ₹ 2 weeks Lab sampling Project Number: 30050315.402.04 Method of Shipment/Carrier: 1 week 8260B SIM Composite=C / Grab=G - 2 days frans-1,2-DCE 8260B Vinyl Chloride 8260B PO # 30050315,402.04 Shipping/Tracking No: 1 day Job/SDG No: ,1-DCE 8260B Matrix Containers & Preservatives ,4-Dioxane **ICE 8260B** Sample Specific Notes / H2S04 NaOH HCI Special Instructions: Sample Identification Sample Date Sample Time TRIP BLANK 6 tripblank X 3 NOAS FOR @200B MW-1935_111020 11/10/20 9:25 × 3 YOAR for Educ BSVM Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard lammable sin Irritant Disposal By Lab Poison B Unknown Return to Client Archive For Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested. Company: Relinquished by: Date/Time: Received by: Date/Time: 11/10/20 Novi (old storage Arroldis 15:00 11/16/20 15:00 Relinquished by Date/Time: 11/11/20 Relinquished by: Received in Laboratory by: Date/Time;

©2008. TestAmenca Laboratories, Inc., All rights reserved. TestAmenca & Design III are trademarks of TestAmenca Laboratones, Inc.

Page

of 18

11/27/2020

WI-NC-099

VOA Sample Preservation - Date/Time VOAs Frozen:

DATA VERIFICATION REPORT

November 27, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30050315.0301.01 off site

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 140101-1 Sample date: 2020-11-10

Report received by CADENA: 2020-11-27

Initial Data Verification completed by CADENA: 2020-11-27

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 140101-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2401401 11/10/2	1011			MW-193 2401401 11/10/2	1012	20	
	A I	C. N.	D	Report		Valid	D	Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-8260	<u>)B</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260	<u>BBSim</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-140101-1

CADENA Verification Report: 2020-11-27

Analyses Performed By: TestAmerica

North Canton, Ohio

Report #39381R Review Level: Tier III Project: 30050315.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-140101-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

		Sample			Analy	/sis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC (Full Scan)	VOC (SIM)
TRIP BLANK	240-140101-1	Water	11/10/20		X	
MW-193S_111020	240-140101-2	Water	11/10/20		X	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		X		X	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		X	
4. Methods of analysis		Х		X	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation (Q) Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/I	VIS)			
Tier II Validation					
Holding times/Preservation		X		Х	
Tier III Validation					
System performance and column resolution		X		Х	
Initial calibration %RSDs		X		Х	
Continuing calibration RRFs		X		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		X		Х	
lon abundance criteria for each instrument used		X		Х	
Field Duplicate RPD	Х				Х
Internal standard		X		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		X		X	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		X		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	
NI_4					

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: December 07, 2020

PEER REVIEW: Andrew Korycinski

DATE: December 08, 2020

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

MICHIGAN

<u>TestAmerica</u>

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: - DW - NPDES RCRA Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Julia McClafferty Lab Contact: Mike DelMonico Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 734-644-5131 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 COCs Analysis Turnaround Time Analyses Email: kristoffer.hinskey@arcadis.com or lab use only Phone: 248-994-2240 TAT if different from below Walk-in client Sampler Name: Project Name: Ford LTP Off-Site Allyson Hartz 3 weeks 2 weeks Lab sampling Project Number: 30050315.402.04 Method of Shipment/Carrier: 1 week 8260B SIM Composite=C / Grab=G Filtered Sample (Y / N) Frans-1,2-DCE 8260B - 2 days /inyl Chloride 8260B PO # 30050315.402.04 Shipping/Tracking No: 1 day Job/SDG No: Matrix Containers & Preservatives 1,4-Dioxane PCE 8260B TCE 8260B Sample Specific Notes / H2S04 HN03 NaOH HCI Special Instructions: Sample Date Sample Time Sample Identification TRIP BLANK tripblank 6 X 3 YOAS FOR BAGGE 11/10/20 × MW-1935_111020 6 3 YOAK for Educ BSVM 240-140101 Chain of Custody Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Tammable sin Irritant Poison B Unknown Disposal By Lab Archive For [Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested. Company: Relinquished by: Date/Time: Date/Time: Received by: Noil (old Storage 11/10/20 Arcadis 15:00 11/16/20 15 .00 Relinquished by: Date/Time: Date/Time: Received by 11/11/20 Relinquished by: Date/T/me: Received in Laboratory by: Date/Time;

N2008. TestAmerica Liscoratories, Inc., All rights received.

estAmerica & Design "I" are trademarks of TestAmerica Laboratories, Inc.

N

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-140101-1 Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-140101-1

Date Collected: 11/10/20 00:00 **Matrix: Water** Date Received: 11/12/20 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 15:47	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			11/21/20 15:47	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			11/21/20 15:47	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			11/21/20 15:47	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			11/21/20 15:47	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			11/21/20 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 130					11/21/20 15:47	1
4-Bromofluorobenzene (Surr)	100		47 - 134					11/21/20 15:47	1
Toluene-d8 (Surr)	99		69 - 122					11/21/20 15:47	1
Dibromofluoromethane (Surr)	91		78 - 129					11/21/20 15:47	1

Client Sample ID: MW-193S_111020 Lab Sample ID: 240-140101-2

Date Collected: 11/10/20 09:25 Date Received: 11/12/20 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/19/20 19:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 133			-		11/19/20 19:42	1
Method: 8260B - Volatile C	•	•	,	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8260B - Volatile C	•	•	MS)						
Analyte	Result	Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
Analyte 1,1-Dichloroethene	Result 1.0	Qualifier U	RL 1.0	0.19	ug/L	<u>D</u>	Prepared	11/21/20 16:12	Dil Fac
Analyte 1,1-Dichloroethene	Result	Qualifier U U	RL	0.19 0.16	ug/L	<u> </u>	Prepared		Dil Fac 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene	1.0 1.0	Qualifier U U U	1.0 1.0	0.19 0.16	ug/L ug/L ug/L	<u>D</u> .	Prepared	11/21/20 16:12 11/21/20 16:12	Dil Fac 1 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	Result 1.0 1.0 1.0	Qualifier U U U U	1.0 1.0 1.0	0.19 0.16 0.15 0.19	ug/L ug/L ug/L	<u> </u>	Prepared	11/21/20 16:12 11/21/20 16:12 11/21/20 16:12	Dil Fac 1 1 1 1 1 1 1 1

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	75 - 130		11/21/20 16:12	1
4-Bromofluorobenzene (Surr)	101	47 - 134		11/21/20 16:12	1
Toluene-d8 (Surr)	99	69 - 122		11/21/20 16:12	1
Dibromofluoromethane (Surr)	93	78 - 129		11/21/20 16:12	1

Matrix: Water