

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-130798-1 Client Project/Site: Ford LTP Off-Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 6/9/2020 3:30:20 PM

Michael DelMonico, Project Manager I (330)497-9396

michael.delmonico@testamericainc.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Laboratory Job ID: 240-130798-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

6

8

10

11

13

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

- -

3

Ę

5

6

9

10

1 1

13

| 1 4

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Job ID: 240-130798-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

CASE NARRATIVE

Client: ARCADIS U.S., Inc.

Project: Ford LTP Off-Site

Report Number: 240-130798-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Eurofins TestAmerica, Canton attests to the validity of the laboratory data generated by Eurofins TestAmerica facilities reported herein. All analyses performed by Eurofins TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

RECEIPT

The samples were received on 5/23/2020 10:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.2° C and 4.9° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TRIP BLANK (240-130798-1) and MW-88S_052120 (240-130798-2) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 06/02/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS SIM)

Sample MW-88S_052120 (240-130798-2) was analyzed for volatile organic compounds (GCMS SIM) in accordance with EPA SW-846 Method 8260B SIM. The sample was analyzed on 06/03/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-0

4

6

7

8

10

11

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 240-130798-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

7

Ŏ

10

11

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 240-130798-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-130798-1	TRIP BLANK	Water	05/21/20 00:00	05/23/20 10:15	
240-130798-2	MW-88S_052120	Water	05/21/20 13:58	05/23/20 10:15	

6

Я

9

11

12

4 /

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK Lab Sample ID: 240-130798-1

No Detections.

No Detections.

3

4

5

8

11

12

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-130798-1 Date Collected: 05/21/20 00:00

Matrix: Water

Date Received: 05/23/20 10:15

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:01	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			06/02/20 03:01	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			06/02/20 03:01	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:01	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			06/02/20 03:01	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			06/02/20 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		75 - 130					06/02/20 03:01	1
4-Bromofluorobenzene (Surr)	89		47 - 134					06/02/20 03:01	1
Toluene-d8 (Surr)	94		69 - 122					06/02/20 03:01	1
Dibromofluoromethane (Surr)	104		78 - 129					06/02/20 03:01	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Client Sample ID: MW-88S_052120

Date Collected: 05/21/20 13:58 Date Received: 05/23/20 10:15

Lab Sample ID: 240-130798-2 **Matrix: Water**

Analyzed

D

Prepared

 Method: 8260B SIM - Volatile (Organic Compounds	(GC/MS)		
Analyte	Result Qualifier	RL	MDL Unit	
1,4-Dioxane	2.0 U	2.0	0.86 ug/L	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86 ug/L		06/03/20 13:58	1

1,1210/10/10		•		0.00 ag/=		00.00.20 10.00	•
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 133			06/03/20 13:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:23	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			06/02/20 03:23	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			06/02/20 03:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:23	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			06/02/20 03:23	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			06/02/20 03:23	1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	75 - 130		06/02/20 03:23	1
4-Bromofluorobenzene (Surr)	90	47 - 134		06/02/20 03:23	1
Toluene-d8 (Surr)	93	69 - 122		06/02/20 03:23	1
Dibromofluoromethane (Surr)	103	78 - 129		06/02/20 03:23	1

6/9/2020

Dil Fac

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)
240-130798-1	TRIP BLANK	115	89	94	104
240-130798-2	MW-88S_052120	115	90	93	103
LCS 240-436415/5	Lab Control Sample	117	95	96	106
MB 240-436415/8	Method Blank	115	91	94	107

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-130798-2	MW-88S_052120	87	
LCS 240-436630/4	Lab Control Sample	98	
MB 240-436630/5	Method Blank	99	

Eurofins TestAmerica, Canton

6/9/2020

Page 10 of 18

9

5

7

10

4.6

13

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-436	8415/8
---------------------------	--------

Matrix: Water

Analysis Batch: 436415

Client Sam	ple ID:	Meth	od Blank	
	Prep '	Type:	Total/NA	

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/01/20 18:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			06/01/20 18:50	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			06/01/20 18:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/01/20 18:50	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			06/01/20 18:50	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			06/01/20 18:50	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	Prej	pared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		75 - 130			06/01/20 18:50	1
4-Bromofluorobenzene (Surr)	91		47 - 134			06/01/20 18:50	1
Toluene-d8 (Surr)	94		69 - 122			06/01/20 18:50	1
Dibromofluoromethane (Surr)	107		78 - 129			06/01/20 18:50	1
—							

Lab Sample ID: LCS 240-436415/5

Matrix: Water

Analysis Batch: 436415

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 manyolo Batom 100 mg	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	22.9		ug/L		115	73 - 129	
cis-1,2-Dichloroethene	20.0	19.9		ug/L		99	75 - 124	
Tetrachloroethene	20.0	19.4		ug/L		97	70 - 125	
trans-1,2-Dichloroethene	20.0	21.8		ug/L		109	74 - 130	
Trichloroethene	20.0	20.3		ug/L		102	71 - 121	
Vinyl chloride	20.0	18.1		ug/L		90	61 - 134	

	LCS LCS						
Surrogate	%Recovery	Qualifier	Limits				
1,2-Dichloroethane-d4 (Surr)	117		75 - 130				
4-Bromofluorobenzene (Surr)	95		47 - 134				
Toluene-d8 (Surr)	96		69 - 122				
Dibromofluoromethane (Surr)	106		78 - 129				

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-4366 Matrix: Water Analysis Batch: 436630	30/5						Client Sam	ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			06/03/20 06:38	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 133			-		06/03/20 06:38	1

Eurofins TestAmerica, Canton

6/9/2020

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-436630/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 436630

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,4-Dioxane 108 10.0 10.8 ug/L

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 70 - 133

Prep Type: Total/NA

80 - 135

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Off-Site

Job ID: 240-130798-1

GC/MS VOA

Analysis Batch: 436415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-130798-1	TRIP BLANK	Total/NA	Water	8260B	
240-130798-2	MW-88S_052120	Total/NA	Water	8260B	
MB 240-436415/8	Method Blank	Total/NA	Water	8260B	
LCS 240-436415/5	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 436630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-130798-2	MW-88S_052120	Total/NA	Water	8260B SIM	
MB 240-436630/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-436630/4	Lab Control Sample	Total/NA	Water	8260B SIM	

J

4

10

11

12

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1 Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-130798-1 Date Collected: 05/21/20 00:00

Matrix: Water

Date Received: 05/23/20 10:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			436415	06/02/20 03:01	TJL1	TAL CAN

Client Sample ID: MW-88S_052120 Lab Sample ID: 240-130798-2

Date Collected: 05/21/20 13:58 **Matrix: Water**

Date Received: 05/23/20 10:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	436415	06/02/20 03:23	TJL1	TAL CAN
Total/NA	Analysis	8260B SIM		1	436630	06/03/20 13:58	SAM	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-20
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-20
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-20
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

TestAmerica 3 JOHS FOR BELOOK TestAmerica Laboratories, Inc. COC No: 1 TRSP BUANK /H30 Sample Specific Notes / Special Instructions: 5/21/20 5/2/128 /alk-in clien oN DGS/90 ARCHOES m This X × MIS 80658 enexold-4, Lab Contact: Mike DelMonico X Vinyl Chloride 8260B Telephone: 330-497-9396 X CE 8500B X CE 8500B X rans-1,2-DCE 8260B X Test America Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 12-1,2-DCE 8260B X × D STORAGE 2 S Dedario / Deslicoquo Filtered Sample (Y/N) BIELHIL Chain of Custody Record Site Contact: Julia McClafferty Отрет RCRA Analysis Iurnaround Iim 3 weeks
7 2 weeks
1 week
2 days
1 day Sazdun 3 weeks Felephone: 734-644-5131 LACKEL . sceived by HOE YOU (a/a) 240-130798 Chain of Custody HOEN NPDES 9 HCI 5112120 0950 S(22/20 9:53 1430 10 day EONH 1555 HISOH 5/21/20 Other WERVER SI2/(20 DW pilos tarmibe 9 Unknown Email: kristoffer,hinskey@arcadis.com snoonby 25/32 Client Project Manager: Kris Hinskey 1jy Regulatory program: 1358 CHRISTING Sample Time Method of Shipment/Carrier: ARCH OIS Telephone: 248-994-2240 EM MI ubmit all results through Cadena at Jtomalia@cadenaco.com. Cadena #E203631 Arcabis Shipping/Tracking No: Poison B Sampler Name; 5/2/120 Sample Date MICHIGAN 190 sin Irritani secial Instructions/QC Requirements & Comments: NW-885_052120 Sample Identification Client Contact Address: 28550 Cabot Drive, Suite 500 roject Number: 30050315.402.04 roject Name: Ford LTP Off-Site evel IV Reporting requested ity/State/Zip: Novi, MI, 48377 Possible Hazard Identificati RIELE mpany Name: Arcadis TRIP BLANK PO # 30050315,402,04 one: 248-994-2240 linquished by: CACHEO linguished by: proving 19/2020

Page 16 of 18

Cooler Description (Circle)	IR Gun # (Circle)	Observed Temp °C	Corrected Temp °C	Coolant (Circle)
TA Client Box Other	18-10 IR-11	2.5	3-2	Wefice Blue ice Dry io
Client Box Other	(R-10) IR-11	4.2	4.9	Water None Wet-lee Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11	7.4	1.1	Water None Wet ice Blue ice Dry ic
	IR-10 IR-11			Water None
	IR-10 IR-11			Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ic Water None
TA Client Box Other	Account of the second			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet ice Blue ice Dry k
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Id
	IR-10 IR-11			Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry k Water None
TA Client Box Other				Wet ice Blue ice Dry id Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry k Water None
TA Client Box Other	IR-10 IR-11			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Id
TA Client Box Other	IR-10 IR-11			Water None Wet ice Blue ice Dry ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Id
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry K
TA Client Box Other	IR-10 IR-11			Water None Wet Ice Blue Ice Dry Id
	IP.10 IP.11			Water None Wet Ice Blue Ice Dry Ic
	IP.10 IP.11			Water None
TA Client Box Other	IP.10 IP.11			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IP.10 IP.11			Wet ice Blue ice Dry ic Water None
TA Client Box Other				Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other				Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-10 IR-11			Wet Ice Blue Ice Dry Ic Water None

DATA VERIFICATION REPORT

June 09, 2020

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30050315.0402.04 off site

Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 130798-1 Sample date: 2020-05-21

Report received by CADENA: 2020-06-09

Initial Data Verification completed by CADENA: 2020-06-09

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 130798-1

Sample Name:	TRIP BLA	ANK			MW-889	5_052120	O		
Lab Sample ID:	2401307	7981			2401307	7982			
Sample Date:	5/21/20	20			5/21/20	20			
		Report		Valid		Report		Valid	
Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	
75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		
156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		
127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		
156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		
79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		
75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		
123-91-1					ND	2.0	ug/l		
	Tab Sample ID: Sample Date: Cas No. 75-35-4 156-59-2 127-18-4 156-60-5 79-01-6 75-01-4	Cas No. Result 75-35-4 ND 156-59-2 ND 127-18-4 ND 156-60-5 ND 79-01-6 ND 75-01-4 ND	Lab Sample ID: 2401307981 Sample Date: 5/21/2020 Report Cas No. Result Limit 75-35-4 ND 1.0 156-59-2 ND 1.0 127-18-4 ND 1.0 156-60-5 ND 1.0 79-01-6 ND 1.0 75-01-4 ND 1.0	Lab Sample ID: 2401307981 Sample Date: 5/21/2020 Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 156-60-5 ND 1.0 ug/l 79-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401307981 Sample Date: 5/21/2020 Report Valid Cas No. Result Limit Units Qualifier 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 156-60-5 ND 1.0 ug/l 79-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401307981 2401307 Sample Date: 5/21/2020 5/21/200 Report Valid Cas No. Result Report Valid Qualifier Result 75-35-4 ND 1.0 ug/l ND 156-59-2 ND 1.0 ug/l ND 127-18-4 ND 1.0 ug/l ND 156-60-5 ND 1.0 ug/l ND 79-01-6 ND 1.0 ug/l ND 75-01-4 ND 1.0 ug/l ND	Lab Sample ID: 2401307981 2401307982 Sample Date: 5/21/20∪0 5/21/20∪0 Result Limit Units Qualifier Result Limit	Lab Sample ID: 2401307981 5/21/20∪0	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-130798-1

CADENA Verification Report: 2020-06-09

Analyses Performed By:

TestAmerica

Edison, New Jersey

Report #37206R Review Level: Tier III Project: 30050315.402.02

DATA REVIEW

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-130798-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC (Full Scan)	Analysis VOC (SIM)	MISC
	TRIP BLANK	240-130798-1	Water	5/21/2020		Х		
240-130798-1	MW-88S_052120	240-130798-2	Water	5/21/2020		Х	Х	

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		X	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		X	
9. Sample preparation/extraction/analysis dates		Х		X	
10. Fully executed Chain-of-Custody (COC) form		Х		X	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

DATA REVIEW

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not performed on a sample within this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETE	RY (GC/N	/IS)			
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation	·		·		
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Andrew Korycinski

SIGNATURE:

DATE: June 17, 2020

a Kays

PEER REVIEW: Dennis Capria

DATE: June 24, 2020

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

TestAmerica 3 JOHS FOR BELOOK TestAmerica Laboratories, Inc. COC No: 1 TRSP BUANK /H30 Sample Specific Notes / Special Instructions: 5/21/20 5/2/128 /alk-in clien oN DGS/90 ARCHOES m This X × MIS 80658 enexold-4, Lab Contact: Mike DelMonico X Vinyl Chloride 8260B Telephone: 330-497-9396 X CE 8500B X CE 8500B X rans-1,2-DCE 8260B X Test America Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 12-1,2-DCE 8260B X × D STORAGE 2 S Dedario / Deslicoquo Filtered Sample (Y/N) BIELHIL Chain of Custody Record Site Contact: Julia McClafferty Отрет RCRA Analysis Iurnaround Iim 3 weeks
7 2 weeks
1 week
2 days
1 day Sazdun 3 weeks Felephone: 734-644-5131 LACKEL . sceived by HOE YOU (a/a) 240-130798 Chain of Custody HOEN NPDES 9 HCI 5112120 0950 S(22/20 9:53 1430 10 day EONH 1555 HISOH 5/21/20 Other WERVER SI2/(20 DW pilos tarmibe 9 Unknown Email: kristoffer,hinskey@arcadis.com snoonby 25/32 Client Project Manager: Kris Hinskey 1jy Regulatory program: 1358 CHRISTING Sample Time Method of Shipment/Carrier: ARCH OIS Telephone: 248-994-2240 EM MI ubmit all results through Cadena at Jtomalia@cadenaco.com. Cadena #E203631 Arcabis Shipping/Tracking No: Poison B Sampler Name; 5/2/120 Sample Date MICHIGAN 190 sin Irritani secial Instructions/QC Requirements & Comments: NW-885_052120 Sample Identification Client Contact Address: 28550 Cabot Drive, Suite 500 roject Number: 30050315.402.04 roject Name: Ford LTP Off-Site evel IV Reporting requested ity/State/Zip: Novi, MI, 48377 Possible Hazard Identificati RIELE mpany Name: Arcadis TRIP BLANK PO # 30050315,402,04 one: 248-994-2240 linquished by: CACHEO linguished by: proving 19/2020

Page 16 of 18

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-130798-1 Date Collected: 05/21/20 00:00

Matrix: Water

Date Received: 05/23/20 10:15

Method: 8260B - Volatile Org	ganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:01	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			06/02/20 03:01	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			06/02/20 03:01	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/02/20 03:01	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			06/02/20 03:01	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			06/02/20 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		75 - 130					06/02/20 03:01	1
4-Bromofluorobenzene (Surr)	89		47 - 134					06/02/20 03:01	1
Toluene-d8 (Surr)	94		69 - 122					06/02/20 03:01	1
Dibromofluoromethane (Surr)	104		78 - 129					06/02/20 03:01	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-130798-1

Project/Site: Ford LTP Off-Site

Client Sample ID: MW-88S_052120

%Recovery Qualifier

115

90

93

103

Date Collected: 05/21/20 13:58 Date Received: 05/23/20 10:15

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 240-130798-2

Prepared

Analyzed

06/02/20 03:23

06/02/20 03:23

06/02/20 03:23

06/02/20 03:23

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			06/03/20 13:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 133					06/03/20 13:58	1
Method: 8260B - Volatile C Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
	•	Qualifier	•		Unit ug/L	D	Prepared	Analyzed 06/02/20 03:23	Dil Fac
Analyte	Result	Qualifier U	RL	0.19		<u>D</u> .	Prepared	.	Dil Fac
Analyte 1,1-Dichloroethene	Result 1.0	Qualifier U U	1.0 —	0.19 0.16	ug/L	<u>D</u> .	Prepared	06/02/20 03:23	Dil Fac 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	1.0 1.0	Qualifier U U U	1.0 1.0	0.19 0.16 0.15	ug/L ug/L	D	Prepared	06/02/20 03:23 06/02/20 03:23	Dil Fac 1 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene	Result 1.0 1.0 1.0	Qualifier U U U U	1.0 1.0 1.0	0.19 0.16 0.15 0.19	ug/L ug/L ug/L	<u>D</u>	Prepared	06/02/20 03:23 06/02/20 03:23 06/02/20 03:23	Dil Fac 1 1 1 1 1 1

Limits

75 - 130

47 - 134

69 - 122

78 - 129

6/9/2020

3

5

9

10

12

Dil Fac

13