

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-149325-1 Client Project/Site: Ford LTP - Off Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 5/27/2021 10:27:49 AM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-149325-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

А

5

6

8

10

11

13

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA
Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

9

10

12

13

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Job ID: 240-149325-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-149325-1

Comments

No additional comments.

Receipt

The samples were received on 5/13/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) for analytical batch 240-486724 recovered outside control limits for the following analyte: Vinyl Chloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data has been reported: TRIP BLANK_61 (240-149325-1), MW-121S_051121 (240-149325-2) and (LCS 240-486724/4).

Method 8260B: There was an MS/MSD analyzed in batch 240-486724 but could not be reported because the associated sample needed reanalyzed in a different batch: TRIP BLANK_61 (240-149325-1) and MW-121S_051121 (240-149325-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

- 0

4

6

R

9

4 4

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-149325-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-149325-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-149325-1	TRIP BLANK_61	Water	05/11/21 00:00	05/13/21 08:00	
240-149325-2	MW-121S_051121	Water	05/11/21 13:41	05/13/21 08:00	

6

9

10

111

13

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_61 Lab Sample ID: 240-149325-1

No Detections.

No Detections.

- .

2

5

4

5

7

ŏ

10

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_61

Lab Sample ID: 240-149325-1 Date Collected: 05/11/21 00:00 Date Received: 05/13/21 08:00

Matrix: Water

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 18:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/20/21 18:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/20/21 18:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 18:41	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/20/21 18:41	1
Vinyl chloride	1.0	U *+	1.0	0.20	ug/L			05/20/21 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		75 - 130					05/20/21 18:41	1
4-Bromofluorobenzene (Surr)	92		47 - 134					05/20/21 18:41	1
Toluene-d8 (Surr)	99		69 - 122					05/20/21 18:41	1
Dibromofluoromethane (Surr)	88		78 - 129					05/20/21 18:41	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-121S_051121

Date Collected: 05/11/21 13:41 Date Received: 05/13/21 08:00

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 240-149325-2

05/20/21 19:06

05/20/21 19:06

Matrix: Water

Method: 8260B SIM - Volati	ile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/18/21 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 133					05/18/21 16:59	1
_ Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 19:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/20/21 19:06	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/20/21 19:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 19:06	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/20/21 19:06	1
Vinyl chloride	1.0	U *+	1.0	0.20	ug/L			05/20/21 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	78		75 - 130				-	05/20/21 19:06	1
4-Bromofluorobenzene (Surr)	89		47 - 134					05/20/21 19:06	1

69 - 122

78 - 129

99

85

5/27/2021

-

3

5

8

9

11

12

Ш

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)
240-149325-1	TRIP BLANK_61	80	92	99	88
240-149325-2	MW-121S_051121	78	89	99	85
LCS 240-486724/4	Lab Control Sample	83	96	94	89
MB 240-486724/7	Method Blank	79	92	99	86

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-149325-2	MW-121S_051121	91	
240-149329-H-3 MS	Matrix Spike	90	
240-149329-N-3 MSD	Matrix Spike Duplicate	85	
LCS 240-486344/4	Lab Control Sample	93	
MB 240-486344/5	Method Blank	90	

DCA = 1,2-Dichloroethane-d4 (Surr)

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-486724/7

Matrix: Water

Analysis Batch: 486724

Client Sam	ple ID:	Meth	od Bla	nk
	Prep	Type:	Total/I	NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 15:20	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/20/21 15:20	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/20/21 15:20	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 15:20	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/20/21 15:20	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/20/21 15:20	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepa	red Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	79		75 - 130		05/20/21 15:20	1
4-Bromofluorobenzene (Surr)	92		47 - 134		05/20/21 15:20	1
Toluene-d8 (Surr)	99		69 - 122		05/20/21 15:20	1
Dibromofluoromethane (Surr)	86		78 - 129		05/20/21 15:20	1
Dibromondoromethane (Gan)	00		70-123		03/20/21 13:20	,

Lab Sample ID: LCS 240-486724/4

Matrix: Water

Analysis Batch: 486724

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
10.0	8.89		ug/L		89	73 - 129	
10.0	8.85		ug/L		89	75 - 124	
10.0	9.82		ug/L		98	70 - 125	
10.0	9.06		ug/L		91	74 - 130	
10.0	8.84		ug/L		88	71 - 121	
10.0	13.9	*+	ug/L		139	61 - 134	
	Added 10.0 10.0 10.0 10.0 10.0 10.0	Added Result 10.0 8.89 10.0 8.85 10.0 9.82 10.0 9.06 10.0 8.84	Added Result Qualifier 10.0 8.89 10.0 8.85 10.0 9.82 10.0 9.06 10.0 8.84	Added Result Qualifier Unit 10.0 8.89 ug/L 10.0 8.85 ug/L 10.0 9.82 ug/L 10.0 9.06 ug/L 10.0 8.84 ug/L	Added Result Qualifier Unit D 10.0 8.89 ug/L 10.0 8.85 ug/L 10.0 9.82 ug/L 10.0 9.06 ug/L 10.0 8.84 ug/L	Added Result Qualifier Unit D %Rec 10.0 8.89 ug/L 89 10.0 8.85 ug/L 89 10.0 9.82 ug/L 98 10.0 9.06 ug/L 91 10.0 8.84 ug/L 88	Added Result 10.0 Qualifier 20.0 Unit 20.0 Description of the Windows Windo

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	83		75 - 130
4-Bromofluorobenzene (Surr)	96		47 - 134
Toluene-d8 (Surr)	94		69 - 122
Dibromofluoromethane (Surr)	89		78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-4863 Matrix: Water Analysis Batch: 486344	344/5					(Client Sam	ple ID: Method Prep Type: To	
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/18/21 14:01	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 133			•		05/18/21 14:01	1

Eurofins TestAmerica, Canton

5/27/2021

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-486344/4

Matrix: Water

Analysis Batch: 486344

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	10.2		ug/L		102	80 - 135	

LCS LCS Surrogate %Recovery Qualifier

Limits 1,2-Dichloroethane-d4 (Surr) 70 - 133

Lab Sample ID: 240-149329-H-3 MS **Client Sample ID: Matrix Spike**

Matrix: Water

Analysis Batch: 486344

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.3		ug/L		103	46 - 170	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

70 - 133

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 240-149329-N-3 MSD **Matrix: Water**

Analysis Batch: 486344

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	10.2		ug/L	 _	102	46 - 170	1	26

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 85 70 - 133

MSD MSD

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

QC Association Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 486344

Lab Sample ID 240-149325-2	Client Sample ID MW-121S_051121	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-486344/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-486344/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-149329-H-3 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-149329-N-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 486724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-149325-1	TRIP BLANK_61	Total/NA	Water	8260B	<u> </u>
240-149325-2	MW-121S_051121	Total/NA	Water	8260B	
MB 240-486724/7	Method Blank	Total/NA	Water	8260B	
LCS 240-486724/4	Lab Control Sample	Total/NA	Water	8260B	

4

5

7

10

11

12

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Date Received: 05/13/21 08:00

Client Sample ID: TRIP BLANK_61

Lab Sample ID: 240-149325-1 Date Collected: 05/11/21 00:00 **Matrix: Water**

Batch Batch Dilution Batch **Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA Analysis 8260B 486724 05/20/21 18:41 LRW TAL CAN

Client Sample ID: MW-121S_051121

Lab Sample ID: 240-149325-2 Date Collected: 05/11/21 13:41 **Matrix: Water**

Date Received: 05/13/21 08:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 486724 05/20/21 19:06 LRW TAL CAN Total/NA Analysis 8260B SIM 1 486344 05/18/21 16:59 CS TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-21
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21 *
Kentucky (UST)	State	112225	02-23-21 *
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Chain of Custody Record

MICHIGAN

<u>TestAmerica</u>

Test	America Labora	atory location:	Brig	nton	10448	Citation	Drive	, Suit	e 200	0 / Bi	righto	n, Ml 48	8116	/ 810)-229-	2763		VI.	IC	П	1		Z),		T	HE LEADER IN ENVIRONMENTAL TESTING
Client Contact	Regula	tory program:	:	-	DW		r N	PDES	8	1-	RC	RA		Othe	er						釆	}				
Company Name: Arcadis	Client Project	Managan, Kala	H'ast				014 6									L										TestAmerica Laboratories, Inc.
Address: 28550 Cabot Drive, Suite 500			riinsk	ey			Site Co	ontac	t: Jui	lia M	IcClai	lierty				Lab C	ontac	t: Mil	e Del	Monic	0					COC No:
City/State/Zip: Novi, MI, 48377	Telephone: 248	3-994-2240					Telepl	none:	734-0	644-5	5131					Telep	none:	330-4	97-93	96						
	Email: kristoff	fer.hinskey@ar	cadis.	com			Ai	nalysi	s Tur	rnaro	ound 1	lime		1				_	A	nalys	es	_		_		1 of 1 COCs For lab use only
Phone: 248-994-2240	Samples Name				-		TATE	Lift		- balan												Γ				W.H.: P.
Project Name: Ford LTP Off-Site	Sampler Name		>			- 1	TAT if different from below 3 weeks														Walk-in client					
Project Number: 30080642.402.04	G7CVY	ment/Carrier:	32			-	10 day 2 weeks										Lab sampling									
PO # 30080642.402.04									2 d	lays		2	ab=G		_	30B			<u>۾</u>	SIS	8260B SIM					
PO # 30080642.402.04	Shipping/Tracking No:								1 d	lay		Sample (Y /	/Gra	8	260E	82(8260B	260E					Job/SDG No:	
	Matrix					C	ontair	ners &	& Pres	servat	ives	am p	O O O	3260	Щ 8	DQ.	ω	В	ride	Je 8.						
				á .		.	7 .] ,		red S	posit	CE 8	2-DC	-1,2	8260	3260	Chlo	ioxa					Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Solid	Other	H2SO4		NaOH	ZnAc/	Unpres	Other:	Filtered	Composite=C / Grab=G	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE 8260B	PCE 8260B	TCE 8260B	Vinyl Chloride	1,4-Dioxane					Special Instructions:
Trip Blank_ 61 MW-1215_051121				X				1					N	G	Х	Х	X	Х	Х	X	Х			Ì		1 Trip Blank
ANN 1215 BE1121	05/	17. 11	П		П			Τ,	Τ				N	G	. ,											3 VOAs for 8260B
100V - 1215 - 031121	11/2/	13:41		<u> </u>	+	-	+	14	2	+-	+	-	,	9	X	\times	ید	X	بح	X	X	-	+	\vdash	_	3 VOAs for 8260B SIM
									T																	
								T						П												
																	,									
					П			T																		
			П					Ť		Ш																
			П		T			†	24	40-1	493	 25 Cha	ii iiiii ain o	f Cu	stod	y	11 11					-	+-			
				_	+		+	+	H											_		\vdash	-	-	-	
Possible Hazard Identification																										
Non-Hazard Slammable sin Irritant	Poise	on B	Unkr	own			San	uple D Ret	Dispos Turn to	sal (/ o Clic	A fee : ent	may be	asses: Dispos	sed if sal By	samp Lab	les are		ned lor rchive		han 1		h) lonths				
Special Instructions/QC Requirements & Comments:																										
Submit all results through Cadena at jtomalia@cadenaco Level IV Reporting requested.	com, Cadena #	E203631																								
Relinquished by:	Company:	دن		Date/Tir	ne:	-	/5a	5	Rec	ceive		1	C	71.6	00	706	2.0A		Comp	any:	RC	ひし	XS		_	Date/Time: 5/11/21 1525
Relinquished by:	Company:	10IS		Date/Tir	ne:	1	299		Rec	ceive		aco	l		12		Ž	4	Corng	any:	F		7	-		Date Time 201951
Relinquished by: Manch Dillih	Company:	7		Date//ii	2/2	1	13:	37	Red	eive	d in F	aborate	ory by	y: 7 (1	Ç	7	Ċ.	Ĭ	Comp	eny:	A	/ //				Day/Time: / 5-13-21 (2800)
[2008, TestAmenca Liscorationes, Inc. All rights reserved, lestAmenca δ Direign ™ are trademarks of TestAmenca Laboratores, Inc.				/	/			/	1		_		7	-		-				- 1	- 3					10 04 000

Page 16 of 17

00

o

U

4

N

18. CHAIN OF CUSTODY & SA	MPLE DISCREPANCIES	additional next page	Samples processed by:
Sample(s)			
Sample(s)			
19. SAMPLE CONDITION Sample(s) Sample(s) Sample(s)		were received	d in a broken container.
Sample(s)Sample(s)		were received	d in a broken container.
Sample(s) Sample(s) Sample(s)	were rec	were fu	d in a broken container. in diameter. (Notify PM)

WI-NC-099

DATA VERIFICATION REPORT

May 28, 2021

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30080642.402.04_W01 OFF-SITE GW Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 149325-1 Sample date: 2021-05-11

Report received by CADENA: 2021-05-27

Initial Data Verification completed by CADENA: 2021-05-28

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch 486724 LCS recovery was outlying biased high for the following analyte: VINYL CHLORIDE. Associated client sample results were non-detect so qualification was not required based on this high bias QC outlier.

GCMS VOC QC batch MS/MSD issues as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 149325-1

		Sample Name:	TRIP BLA	ANK_61			MW-12			
		Lab Sample ID:	2401493	3251			2401493	3252		
		Sample Date:	5/11/20	21			5/11/20	21		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-8260	<u>OB</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260	<u>OBBSim</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-149325-1

CADENA Verification Report: 2021-05-28

Analyses Performed By: TestAmerica

North Canton, Ohio

Report # 41601R Review Level: Tier III Project: 30080642.402.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-149325-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Ana	lysis
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM
TRIP BLANK_61	240-149325-1	Water	05/11/2021		Х	
MW-121S_051121	240-149325-2	Water	05/11/2021		X	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		Х		Х		
2. Requested analyses and sample results		X		X		
Master tracking list		Х		Х		
4. Methods of analysis		Х		Х		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8. Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
Narrative summary of Quality Assurance or sample problems provided		Х		Х		
12. Data Package Completeness and Compliance		Х		Х		

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Rep	orted		rmance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					-
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE: Cuindinlund

DATE: June 22, 2021

PEER REVIEW: Andrew Korycinski

DATE: June 24, 2021

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

1/2/1/3

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

MICHIGAN

<u>TestAmerica</u>

Client Contact	Regula	tory program	:		_ D	w	P 1	NPDE	S		RO	CRA		F 6	Other						1	9	$\boldsymbol{\Theta}$				
Company Name: Arcadis	Client Project	Manager: Kris	Hins	kev			Site (onta	ct: Jı	ulia i	McCla	fferty				li	Lab C	onta	ct: M	ke De	Mor	nico				TestAmerica Laboratories, Inc.	
Address: 28550 Cabot Drive, Suite 500	Telephone: 248											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_							COC No.	
City/State/Zip: Novi, MI, 48377								hone									Telep	hone	: 330-	497-9	396					1 of 1 COCs	
Phone: 248-994-2240	Email: kristofi	fer.hinskey@ar	cadis	.com			A	nalys	is Tu	urna	round	Time						_	,	1	Analy	vses		_		For lab use only	
	Sampler Name	2:					ТАТ	if differe																		Walk-in client	
Project Name: Ford LTP Off-Site	Grany	Schof	6 h				10	day			weeks															Lab sampling	
Project Number: 30080642.402.04	Method of Ship	ment/Carrier:					1 "	,	Г	_ 1	week		5	2	ပူ			8					2			Lao sampling	
PO # 30080642.402.04	Shipping/Tracl	king No:					1			- 1	days day		3	Sample (Y / N)	C/Grab		8260B	Trans-1,2-DCE 8260B			8260B		1.4-Dioxane azoub SIM			Job/SDG No:	
					Matri	X		Contai	iners	& Pr	eserva	tives		de l		BOO7	E 82	DCE			de 8		20 9			1999	
				ń	rat		1,2		Τ.					S S	Composite	Š	cis-1,2-DCE	-1,2-	PCE 8260B	TCE 8260B	Vinyl Chloride		loxan			Sample Specific Notes /	
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Sediment	Other:	H2SO4	HN03	2 3 2	NaOH ZaAc	Vapres	Other:	1	File	Con	-	cis-1,	Trans	PCE	TCE	Vinyl		4.			Special Instructions:	
Trip Blank-61				X				1					٨	3	G ;	X	Х	X	Х	X	X	()	<			1 Trip Blank	
MW-1215_05/121	05/11/21	13:41	L	X					6				^	V	3	ζ.	×	بر	X	بد	×					3 VOAs for 8260B 3 VOAs for 8260B SIM	
U																											
													T														
													T												1		
										T								,				T					
																					1						
							П		2	240-	1493	325 CI	hain	of	Cust	ody		11881 81	11 11 11 1		1			\top			
					T		П		ī	Ī	1	1	1	1	1	ı	ı		I		1			\top			
Possible Hazard Identification Non-Hazard Nammable sin Ir	ritant Poisc	on B	Unk	nown			Sa	mple l	Dispo	osal (A fee	may b	e asso	essec	d if sa By La	mple	es are					1 mo					
Special Instructions/QC Requirements & Comments:			Olik	110,411				ixc	tuin	10 C	icin		Disp	osai	Dy L	10		,	rchiv	POT	1	_	Months				
Submit all results through Cadena at jtomalia@cader Level IV Reporting requested.	naco.com. Cadena #	⊭E203631																									
Relinquished by:	Company:	ر ز		CS,		ر ما	152	25	Re		ed by:			اث'	100	2		 2006		Con	pany:	AF	KCP-Or	.s	_	Date/Time: 5/11/21 1525	
Relinquistred to:	Company: HRC	70IS		5		71/	093		R	ecei		ac	d	1	-1	Si			Z	Con	ipany:	- 1	FTF	7		Date Title: 2/1951	
Relinquisted by: Manch Dilleth	Company:	7		Date/	Jime:	121	13	37	, R	e eiv	ed in	Lee	atory	by:	1	9	7	ſ	\	Con	ipany E	T	4			Days/Time: / ()800	
MICONS Tard American London Inc. All pichts or county				/	1				/	7	-		7		7										-	 2 10 01 000	

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149325-1

Client Sample ID: TRIP BLANK_61

Project/Site: Ford LTP - Off Site

Lab Sample ID: 240-149325-1

Date Collected: 05/11/21 00:00 **Matrix: Water** Date Received: 05/13/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 18:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/20/21 18:41	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/20/21 18:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 18:41	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/20/21 18:41	1
Vinyl chloride	1.0	U 🥆	1.0	0.20	ug/L			05/20/21 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		75 - 130					05/20/21 18:41	1
4-Bromofluorobenzene (Surr)	92		47 - 134					05/20/21 18:41	1
Toluene-d8 (Surr)	99		69 - 122					05/20/21 18:41	1
Dibromofluoromethane (Surr)	88		78 - 129					05/20/21 18:41	1

Client Sample ID: MW-121S_051121 Lab Sample ID: 240-149325-2

Date Collected: 05/11/21 13:41 Date Received: 05/13/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/18/21 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 133			-		05/18/21 16:59	1

Method: 8260B - Volatile Organic Compounds (GC/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 19:06	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/20/21 19:06	1	
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/20/21 19:06	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/20/21 19:06	1	
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/20/21 19:06	1	
Vinyl chloride	1.0	U 🛰	1.0	0.20	ug/L			05/20/21 19:06	1	

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	78	75 - 130		05/20/21 19:06	1
4-Bromofluorobenzene (Surr)	89	47 - 134		05/20/21 19:06	1
Toluene-d8 (Surr)	99	69 - 122		05/20/21 19:06	1
Dibromofluoromethane (Surr)	85	78 - 129		05/20/21 19:06	1

05/27/2021

Matrix: Water