

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-149869-1 Client Project/Site: Ford LTP Off-Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 6/7/2021 12:01:31 PM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Laboratory Job ID: 240-149869-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

4

8

9

11

46

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Qualifiers

GC/MS VOA Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Job ID: 240-149869-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-149869-1

Comments

No additional comments.

Receipt

The samples were received on 5/21/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.4° C.

GC/MS VOA

Method 8260B: The MS/MSD for batch 240-488207 was not analyzed due to an instrument malfunction: TRIP BLANK_127 (240-149869-1) and MW-123S 051921 (240-149869-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

Λ

6

7

8

9

4 4

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 240-149869-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

2

3

۾

7

9

10

46

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Job ID: 240-149869-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-149869-1	TRIP BLANK_127	Water	05/19/21 00:00	05/21/21 08:00	
240-149869-2	MW-123S_051921	Water	05/19/21 09:05	05/21/21 08:00	

-

6

R

9

11

12

IS

Detection Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK_127 Lab Sample ID: 240-149869-1

No Detections.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	3.7	1.0	0.20 ug/L		8260B	Total/NA

4

5

6

9

10

12

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK_127

Date Collected: 05/19/21 00:00 Date Received: 05/21/21 08:00 Lab Sample ID: 240-149869-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:33	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/29/21 16:33	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/29/21 16:33	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:33	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/29/21 16:33	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/29/21 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		75 - 130			•		05/29/21 16:33	1
4-Bromofluorobenzene (Surr)	89		47 - 134					05/29/21 16:33	1
Toluene-d8 (Surr)	101		69 - 122					05/29/21 16:33	1
Dibromofluoromethane (Surr)	86		78 - 129					05/29/21 16:33	1

10

11

13

1 /

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Client Sample ID: MW-123S_051921

Date Collected: 05/19/21 09:05 Date Received: 05/21/21 08:00 Lab Sample ID: 240-149869-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/27/21 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		70 - 133				-	05/27/21 18:06	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:58	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/29/21 16:58	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/29/21 16:58	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:58	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/29/21 16:58	1
Vinyl chloride	3.7		1.0	0.20	ug/L			05/29/21 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		75 - 130					05/29/21 16:58	1
4-Bromofluorobenzene (Surr)	92		47 - 134					05/29/21 16:58	1
Toluene-d8 (Surr)	98		69 - 122					05/29/21 16:58	1
Dibromofluoromethane (Surr)	84		78 - 129					05/29/21 16:58	1

6/7/2021

9

Δ

5

7

9

10

12

13

Ш

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			ogate Reco
DCA	BFB	TOL	DBFM
Lab Sample ID Client Sample ID (75-130)	(47-134)	(69-122)	(78-129)
240-149869-1 TRIP BLANK_127 81	89	101	86
240-149869-2 MW-123S_051921 80	92	98	84
LCS 240-488207/4 Lab Control Sample 79	95	97	84
MB 240-488207/7 Method Blank 78	93	102	87

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(70-133)	
240-149869-2	MW-123S_051921	84	
500-199469-B-23 MS	Matrix Spike	85	
500-199469-B-23 MSD	Matrix Spike Duplicate	84	
LCS 240-487908/4	Lab Control Sample	84	
MB 240-487908/5	Method Blank	83	

DCA = 1,2-Dichloroethane-d4 (Surr)

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-488207/7

Matrix: Water

Analysis Batch: 488207

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyte Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 05/29/21 15:19 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 05/29/21 15:19 1.0 U Tetrachloroethene 1.0 0.15 ug/L 05/29/21 15:19 0.19 ug/L trans-1,2-Dichloroethene 05/29/21 15:19 1.0 U 1.0 Trichloroethene 1.0 U 1.0 0.10 ug/L 05/29/21 15:19 Vinyl chloride 1.0 U 1.0 0.20 ug/L 05/29/21 15:19

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 75 - 130 1,2-Dichloroethane-d4 (Surr) 78 05/29/21 15:19 4-Bromofluorobenzene (Surr) 93 47 - 134 05/29/21 15:19 102 69 - 122 Toluene-d8 (Surr) 05/29/21 15:19 Dibromofluoromethane (Surr) 87 78 - 129 05/29/21 15:19

Lab Sample ID: LCS 240-488207/4

Matrix: Water

Analysis Batch: 488207

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

10

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	7.64		ug/L		76	73 - 129	
cis-1,2-Dichloroethene	10.0	9.29		ug/L		93	75 - 124	
Tetrachloroethene	10.0	10.6		ug/L		106	70 - 125	
trans-1,2-Dichloroethene	10.0	8.73		ug/L		87	74 - 130	
Trichloroethene	10.0	9.09		ug/L		91	71 - 121	
Vinyl chloride	10.0	12.4		ug/L		124	61 - 134	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 79 75 - 130 4-Bromofluorobenzene (Surr) 95 47 - 134 Toluene-d8 (Surr) 97 69 - 122 78 - 129 Dibromofluoromethane (Surr) 84

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-4879 Matrix: Water Analysis Batch: 487908	08/5					(Client Sam	ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/27/21 16:18	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		70 - 133			-		05/27/21 16:18	1

Eurofins TestAmerica, Canton

6/7/2021

Job ID: 240-149869-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP Off-Site

Lab Sample ID: LCS 240-487908/4

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 48/908								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	10.3		ug/L		103	80 - 135	

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 133

Lab Sample ID: 500-199469-B-23 MS **Client Sample ID: Matrix Spike Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 487908

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.3		10.0	13.2		ug/L		109	46 - 170	
	MS	MS								

%Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 133

Lab Sample ID: 500-199469-B-23 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 487908

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,4-Dioxane	2.3		10.0	13.1		ug/L		109	46 - 170	1	26	

%Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 84 70 - 133

MSD MSD

Eurofins TestAmerica, Canton

6/7/2021

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP Off-Site

Job ID: 240-149869-1

GC/MS VOA

Analysis Batch: 487908

Lab Sample ID 240-149869-2	Client Sample ID MW-123S_051921	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-487908/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-487908/4	Lab Control Sample	Total/NA	Water	8260B SIM	
500-199469-B-23 MS	Matrix Spike	Total/NA	Water	8260B SIM	
500-199469-B-23 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 488207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-149869-1	TRIP BLANK_127	Total/NA	Water	8260B	
240-149869-2	MW-123S_051921	Total/NA	Water	8260B	
MB 240-488207/7	Method Blank	Total/NA	Water	8260B	
LCS 240-488207/4	Lab Control Sample	Total/NA	Water	8260B	

3

4

5

7

8

10

11

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1

Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK_127 Lab Sample ID: 240-149869-1

Date Collected: 05/19/21 00:00 **Matrix: Water**

Date Received: 05/21/21 08:00

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL CAN Total/NA Analysis 8260B 488207 05/29/21 16:33 LRW

Client Sample ID: MW-123S_051921 Lab Sample ID: 240-149869-2

Date Collected: 05/19/21 09:05 **Matrix: Water**

Date Received: 05/21/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	488207	05/29/21 16:58	LRW	TAL CAN
Total/NA	Analysis	8260B SIM		1	487908	05/27/21 18:06	CS	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1 Project/Site: Ford LTP Off-Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-21
Iowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21 *
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Chain of Custody Record

Test	America Labora	tory location:	Brigh	ton	10448 C	itation	Drive,	Suite	200	/ Brig	hton, MI	48116	/ 810)-229-	2763				10	M			TH	E LEADER IN ENVIRONMENTAL TESTING
Client Contact	Regulat	ory program:		(**	DW		- NP	DES			RCRA		Oth	er										
Company Name: Arcadis	Client Project N	Janager: Kris I	linska	- V		Is	ite Co	ntact:	Iulis	Mc(lafferty				l ab C	ontac	ı- Mil	e Del	Monic	0				TestAmerica Laboratories, Inc.
Address: 28550 Cabot Drive, Suite 500				···																				COC NO.
City/State/Zip: Novi, MI, 48377	Telephone: 248	-994-2240				- [relepho	one: 7	34-6-	44-51.	31				Telep	hone:	330-4	97-93	96					1 of 1 COCs
Phone: 248-994-2240	Email: kristoff	er.hinskey@arc	adis.c	om		F	An	alysis	Turn	arour	id Time							A	nalys	es				For lab use only
	Sampler Name	:		~		1	FAT ira	ifferent																Walk-in client
Project Name: Ford LTP Off-Site	All	150n	HO	urt-	t		10 d	lav		3 wee														Lab sampling
Project Number: 30080642.402.04	Method of Ship	ment/Carrier:						-,		1 wee 2 day	ek	2	ပူ			80				₹				- sampling
P() # 30080642.402.04	Shipping/Track	ing No:							I.	I day	,	mple (Y /		8	8260B	E 8260			e 8260B	8260B SIM				Job/SDG No:
				Ma	trix	-	Co	ontaine	ers &	Preser	vatives	Sa	ite	826	CE	2-DC	80g	90B	lorid	ane				
Sample Identification	Sample Date	Sample Time	Air	Aqueous Sediment	Solid Other:		H2SO4 HNO3	HCI	NaOH	ZaAc	Unpres Other:	Filtered	Composite	1.1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE 8260B	PCE 8260B	TCE 8260B	Vinyl Chloride	1.4-Dioxane				Sample Specific Notes / Special Instructions:
TRIP BLANK_127				X				1				2	6	X	Х	X	X	X	Х	X				1 Trip Blank
MW-1235_051921	5/19/21	9:05		X				6				17	6	X	χ	X	Х	χ	X	X				3 VOAs for 8260B 3 VOAs for 8260B SIM
						\dashv																		
						\forall						\top												
				\top		1				Н		\top	1	111	1 111111111111111111111111111111111111	HALL		91111	1816 8311				<u> </u>	
					$\forall t$			\dagger					+			Ш							-	
						\dashv	+		\vdash			+	+										-	
			H		++	\dashv						+	+	24	40-14	9869	Cha	in of	cus	tody				
				+		\dashv	+	1			-	+		-								+	-	
Possible Hazard Identification						-	Sam	nle Di	E DOE:	I/A	fee may l	be asset	seed it	feamn	les are	rotai	nad lo	nger !	han 1	ponti			1	
✓ Non-Hazard □ lammable □ sin Irritant	Poiso	on B	Unkr	iown				Retu				Dispo			nes are		rchive		Hall 1		onths			
Special Instructions/QC Requirements & Comments:																								
Submit all results through Cadena at jtomalia@cadenaco Level IV Reporting requested.	.com. Cadena #	E203631																						
Relinquished by: atlant	Company:	ld 15		Date/Tii	me: 9 2	\	700	ر	Rec	eived	by: -	(c),	1 5	ter	ÇIG	ie.		Com	pany:	(GC	115			Date/Time: 5/19/2/ 1700
Relinquished by:	Company	CAUIS	5	Date Ti	20/2				Red	eiyed M	by:	l4	D	al	hi	lu	U	Com	pany:	TK	7			Date / ime: 5/20/21 956
Reinquished by: Rathall	Company:			Date/fil	0/2	1	14.0	28	Rec	eived	MA	ratory [by:					Com	pany:	1A	-			Date/Time! 800

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design ¹⁶ are trademarks of TestAmerica Laboratories, Inc.

Eurofins TestAmerica Canton Sample Receipt Form/Narrative Canton Facility	Login # : 1996
Client ACCALIS Site Name	Cooler unpacked by:
Cooler Received on 5-21 Opened on 5-21-21	COIM G.
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	
TestAmerica Cooler # Foam Box Client Cooler Box Other	
COOLANT: We here Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler For	1
IR GUN# IR-11 (CF +0.1 °C) Observed Cooler Temp. 1.3 °C Corrected Cooler TR GUN #IR-12 (CF +0.2 °C) Observed Cooler Temp. °C Corrected Cooler Temp.	Temp°C
-Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? Yes 3. Shippers' packing slip attached to the cooler(s)? Yes	No NA Tests that are not checked for pH by Receiving: VOAs Oil and Grease
5. Were the custody papers relinquished & signed in the appropriate place?	No No TOC
7. Did all bottles arrive in good condition (Unbroken)?	No No
9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sa	mple type of grab/comp(VN)?
) No
11. Sufficient quantity received to perform indicated analyses? Yes	No No
12. Are these work share samples and all listed on the COC? Yes If yes, Questions 13-17 have been checked at the originating laboratory.	NO
	No NA pH Strip Lot# HC022887
	Na NA
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes	
17. Was a LL Hg or Me Hg trip blank present? Yes	No)
Contacted PM Date by via Verbal Vo	oice Mail Other
Concerning	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples processed by:
19. SAMPLE CONDITION Sample(s) were received after the recommended holding	ng time had expired.
Sample(s) were received	in a broken container.
Sample(s) were received Sample(s) were received with bubble >6 mm in	n diameter. (Notify PM)
20. SAMPLE PRESERVATION	
Sample(s) were furt Time preserved: Preservative(s) added/Lot number(s):	her preserved in the laboratory.
Time preserved:Preservative(s) added/Lot number(s):	
VOA Sample Preservation - Date/Time VOAs Frozen:	

WI-NC-099

DATA VERIFICATION REPORT

June 07, 2021

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30080642.402.04_W01 OFF-SITE GW Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 149869-1 Sample date: 2021-05-19

Report received by CADENA: 2021-06-07

Initial Data Verification completed by CADENA: 2021-06-07

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch MS/MSD issues as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 149869-1

	Sample Name Lab Sample ID Sample Date:			7		MW-123 2401498 5/19/20	_ 3692	21	
			Report			Report			Valid
Ana	alyte Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC OSW-8260B									
1,1-Dichloroet	thene 75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
cis-1,2-Dichlor	roethene 156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
Tetrachloroet	hene 127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
trans-1,2-Dich	loroethene 156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
Trichloroethe	ne 79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
Vinyl chloride	75-01-4	ND	1.0	ug/l		3.7	1.0	ug/l	
OSW-8260BBSim									
1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-149869-1

CADENA Verification Report: 2021-06-07

Analyses Performed By: TestAmerica

North Canton, Ohio

Report # 41736R Review Level: Tier III Project: 30080642.402.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-149869-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Ana	lysis
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM
TRIP BLANK_127	240-149869-1	Water	05/19/21		Х	
MW-123S_051921	240-149869-2	Water	05/19/21		X	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Reported		Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation					-	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
lon abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	Х				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: June 24, 2021

Curuliland

PEER REVIEW: Andrew Korycinski

DATE: June 25, 2021

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

[-311-4

Chain of Custody Record

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

MICHIGAN

<u>TestAmerica</u>

Client Contact Regulatory program: NPDES RCRA C Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Lab Contact: Mike DelMonico Site Contact: Julia McClafferty COC No: Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 734-644-5131 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 COCs Analysis Turnaround Time Analyses Email: kristoffer.hinskey@arcadis.com For lab use only Phone: 248-994-2240 Sampler Name: TAT if different from below Walk-in client Project Name: Ford LTP Off-Site ☐ 3 weeks Allyson Hartz Lab sampling Project Number: 30080642.402.04 1 week Method of Shipment/Carrier: / Grab=G Sample (Y / N) 2 days 8260B 1.4-Dioxane 8260B PO # 30080642.402.04 Shipping/Tracking No: ☐ I day Job/SDG No: 1.1-DCE 8260B 'inyl Chloride Matrix Containers & Preservatives Sample Specific Notes / H2SO4 Solid Other: **Special Instructions:** HC Sample Identification Sample Date Sample Time X X X X X Χ X TRIP BLANK_127 X 1 Trip Blank 3 VOAs for 8260B MW-1235_051921 5/19/2/9:05 6 6 X X Χ X X 3 VOAs for 8260B SIM Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard [*lammable sin Irritant Poison B Unknown Disposal By Lab Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested, Relinquished by AV (GC 15 Date/Time Arcad is 1700 1700 Relinquished by: 800 Date/Time/

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149869-1 Project/Site: Ford LTP Off-Site

Client Sample ID: TRIP BLANK_127

Lab Sample ID: 240-149869-1

Date Collected: 05/19/21 00:00 **Matrix: Water** Date Received: 05/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:33	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/29/21 16:33	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/29/21 16:33	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/29/21 16:33	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/29/21 16:33	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/29/21 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		75 - 130					05/29/21 16:33	1
4-Bromofluorobenzene (Surr)	89		47 - 134					05/29/21 16:33	1
Toluene-d8 (Surr)	101		69 - 122					05/29/21 16:33	1
Dibromofluoromethane (Surr)	86		78 - 129					05/29/21 16:33	1

Client Sample ID: MW-123S_051921 Lab Sample ID: 240-149869-2

Date Collected: 05/19/21 09:05 Date Received: 05/21/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/27/21 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		70 - 133			•		05/27/21 18:06	1

Method: 8260B - Volatile Organic Compounds (GC/MS)							
Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1.0 U	1.0	0.19 u	ıg/L			05/29/21 16:58	1
1.0 U	1.0	0.16 u	ıg/L			05/29/21 16:58	1
1.0 U	1.0	0.15 u	ıg/L			05/29/21 16:58	1
1.0 U	1.0	0.19 u	ıg/L			05/29/21 16:58	1
1.0 U	1.0	0.10 u	ıg/L			05/29/21 16:58	1
3.7	1.0	0.20 u	ıg/L			05/29/21 16:58	1
	Result Qualifier 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	Result Qualifier RL 1.0 U 1.0 1.0 U 1.0	Result Qualifier RL MDL U 1.0 U 1.0 0.19 U 1.0 U 1.0 0.16 U 1.0 U 1.0 0.15 U 1.0 U 1.0 0.19 U 1.0 U 1.0 0.10 U	Result Qualifier RL MDL Unit 1.0 U 1.0 0.19 ug/L 1.0 U 1.0 0.16 ug/L 1.0 U 1.0 0.15 ug/L 1.0 U 1.0 0.19 ug/L 1.0 U 1.0 0.10 ug/L	Result Qualifier RL MDL ug/L Unit D 1.0 U 1.0 0.19 ug/L ug/L 1.0 U 1.0 0.16 ug/L 1.0 U 1.0 0.15 ug/L 1.0 U 1.0 0.19 ug/L 1.0 U 1.0 0.10 ug/L	Result Qualifier RL MDL ug/L Unit D Prepared 1.0 U 1.0 U 0.19 ug/L ug/L <td>Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.19 ug/L 05/29/21 16:58 1.0 U 1.0 0.16 ug/L 05/29/21 16:58 1.0 U 1.0 0.15 ug/L 05/29/21 16:58 1.0 U 1.0 0.19 ug/L 05/29/21 16:58 1.0 U 1.0 0.10 ug/L 05/29/21 16:58</td>	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.19 ug/L 05/29/21 16:58 1.0 U 1.0 0.16 ug/L 05/29/21 16:58 1.0 U 1.0 0.15 ug/L 05/29/21 16:58 1.0 U 1.0 0.19 ug/L 05/29/21 16:58 1.0 U 1.0 0.10 ug/L 05/29/21 16:58

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80	75 - 130		05/29/21 16:58	1
4-Bromofluorobenzene (Surr)	92	47 - 134		05/29/21 16:58	1
Toluene-d8 (Surr)	98	69 - 122		05/29/21 16:58	1
Dibromofluoromethane (Surr)	84	78 - 129		05/29/21 16:58	1

Matrix: Water