

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-149091-1 Client Project/Site: Ford LTP - Off Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 5/25/2021 2:13:58 PM

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-149091-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

10

12

13

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

0

0

4.6

11

13

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Job ID: 240-149091-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-149091-1

Comments

No additional comments.

Receipt

The samples were received on 5/11/2021 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.3° C and 2.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

40 140001 1

2

3

4

J

6

9

10

4.0

13

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-149091-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

6

7

Ŏ

10

11

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-149091-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-149091-1	TRIP BLANK_46	Water	05/07/21 00:00	05/11/21 09:30	
240-149091-2	MW-154S_050721	Water	05/07/21 11:50	05/11/21 09:30	

3

4

5

9

10

12

13

Detection Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_46 Lab Sample ID: 240-149091-1

No Detections.

No Detections.

3

4

Ę

_

8

9

11

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_46

Date Collected: 05/07/21 00:00 Date Received: 05/11/21 09:30

Lab Sample ID: 240-149091-1

Matrix: Water

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene			1.0	0.19			Trepared	05/17/21 18:19	1
cis-1.2-Dichloroethene	1.0	-	1.0	0.19	•			05/17/21 18:19	1
Tetrachloroethene	1.0		1.0	0.15	U			05/17/21 18:19	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/17/21 18:19	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/17/21 18:19	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/17/21 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 130					05/17/21 18:19	1
4-Bromofluorobenzene (Surr)	112		47 - 134					05/17/21 18:19	1
Toluene-d8 (Surr)	107		69 - 122					05/17/21 18:19	1
Dibromofluoromethane (Surr)	110		78 - 129					05/17/21 18:19	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-154S_050721

Method: 8260B - Volatile Organic Compounds (GC/MS)

110

Date Collected: 05/07/21 11:50 Date Received: 05/11/21 09:30

Dibromofluoromethane (Surr)

Lab Sample ID: 240-149091-2

05/17/21 18:42

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/12/21 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		70 - 133					05/12/21 19:10	1

		•	,						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/17/21 18:42	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/17/21 18:42	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/17/21 18:42	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/17/21 18:42	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/17/21 18:42	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/17/21 18:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 130			-		05/17/21 18:42	1
4-Bromofluorobenzene (Surr)	111		47 - 134					05/17/21 18:42	1
Toluene-d8 (Surr)	105		69 - 122					05/17/21 18:42	1

78 - 129

5/25/2021

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(75-130)	(47-134)	(69-122)	(78-129)
240-149091-1	TRIP BLANK_46	102	112	107	110
240-149091-2	MW-154S_050721	101	111	105	110
240-149103-A-3 MSD	Matrix Spike Duplicate	98	112	105	112
240-149103-F-3 MS	Matrix Spike	97	113	109	110
LCS 240-486103/4	Lab Control Sample	97	115	108	114
MB 240-486103/7	Method Blank	103	109	107	114
Cumanata Lanand					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)
	DCA	
Client Sample ID	(70-133)	
Matrix Spike	84	
Matrix Spike Duplicate	83	
MW-154S_050721	83	
Lab Control Sample	84	
Method Blank	82	
	Matrix Spike Matrix Spike Duplicate MW-154S_050721 Lab Control Sample	Client Sample ID (70-133) Matrix Spike 84 Matrix Spike Duplicate 83 MW-154S_050721 83 Lab Control Sample 84

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins TestAmerica, Canton

5/25/2021

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-486103/7

Matrix: Water

Analysis Batch: 486103

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte D 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 05/17/21 16:21 cis-1,2-Dichloroethene 1.0 U 1.0 0.16 ug/L 05/17/21 16:21 1.0 U Tetrachloroethene 1.0 0.15 ug/L 05/17/21 16:21 0.19 ug/L trans-1,2-Dichloroethene 1.0 1.0 U 05/17/21 16:21 Trichloroethene 1.0 U 1.0 0.10 ug/L 05/17/21 16:21 Vinyl chloride 1.0 U 1.0 0.20 ug/L 05/17/21 16:21

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 103 75 - 130 1,2-Dichloroethane-d4 (Surr) 05/17/21 16:21 4-Bromofluorobenzene (Surr) 109 47 - 134 05/17/21 16:21 107 69 - 122 Toluene-d8 (Surr) 05/17/21 16:21 Dibromofluoromethane (Surr) 114 78 - 129 05/17/21 16:21

Lab Sample ID: LCS 240-486103/4

Matrix: Water

Analysis Batch: 486103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LUS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit I	D %Rec	Limits	
1,1-Dichloroethene	10.0	12.7		ug/L	127	73 - 129	
cis-1,2-Dichloroethene	10.0	11.8	ι	ug/L	118	75 - 124	
Tetrachloroethene	10.0	11.5	ι	ug/L	115	70 - 125	
trans-1,2-Dichloroethene	10.0	12.2	l	ug/L	122	74 - 130	
Trichloroethene	10.0	11.8	ι	ug/L	118	71 - 121	
Vinyl chloride	10.0	11.9	ι	ug/L	119	61 - 134	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 75 - 130 4-Bromofluorobenzene (Surr) 115 47 - 134 Toluene-d8 (Surr) 108 69 - 122 78 - 129 Dibromofluoromethane (Surr) 114

Lab Sample ID: 240-149103-A-3 MSD

Matrix: Water

Analysis Batch: 486103

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U F1	10.0	13.0		ug/L		130	64 - 132	3	35
cis-1,2-Dichloroethene	1.0	U F1	10.0	12.4	F1	ug/L		124	68 - 121	2	35
Tetrachloroethene	1.0	U	10.0	11.1		ug/L		111	52 - 129	4	35
trans-1,2-Dichloroethene	1.0	U F1	10.0	12.4		ug/L		124	69 - 126	2	35
Trichloroethene	1.0	U	10.0	12.0		ug/L		120	56 - 124	3	35
Vinyl chloride	1.0	U	10.0	12.2		ug/L		122	49 - 136	3	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 130
4-Bromofluorobenzene (Surr)	112		47 - 134
Toluene-d8 (Surr)	105		69 - 122

Eurofins TestAmerica, Canton

5/25/2021

Page 11 of 19

Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Client: ARCADIS U.S., Inc.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-149103-A-3 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 486103

MSD MSD

%Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 112 78 - 129

Lab Sample ID: 240-149103-F-3 MS

Matrix: Water

Analysis Batch: 486103

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Limits **Analyte** Unit 1.0 UF1 1,1-Dichloroethene 10.0 13.3 F1 ug/L 133 64 - 132 cis-1.2-Dichloroethene 1.0 UF1 10.0 12.7 F1 ug/L 127 68 - 121 Tetrachloroethene 1.0 U 10.0 11.6 ug/L 116 52 - 129 trans-1.2-Dichloroethene 1.0 U F1 10.0 12.7 F1 127 69 - 126ug/L Trichloroethene 1.0 U 10.0 124 ug/L 124 56 - 124 Vinyl chloride 1.0 U 10.0 12.5 ug/L 125 49 - 136

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 130
4-Bromofluorobenzene (Surr)	113		47 - 134
Toluene-d8 (Surr)	109		69 - 122
Dibromofluoromethane (Surr)	110		78 - 129

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 240-485384/5 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 485384

Prep Type: Total/NA

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 1,4-Dioxane 2.0 U 0.86 ug/L 05/12/21 14:38

MB MB

%Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 82 70 - 133 05/12/21 14:38

Lab Sample ID: LCS 240-485384/4

Matrix: Water Prep Type: Total/NA Analysis Batch: 485384

Spike LCS LCS Added Result Qualifier Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 10.5 ug/L 105 80 - 135

LCS LCS

Surrogate %Recovery Qualifier Limits 70 - 133 1,2-Dichloroethane-d4 (Surr) 84

Lab Sample ID: 240-149042-H-2 MS

Matrix: Water		Prep Type: Total/NA
Analysis Batch: 485384		
	 •	 0/ =

Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit Limits Analyte %Rec 1,4-Dioxane 2.0 U 10.0 10.6 ug/L 106 46 - 170

Eurofins TestAmerica, Canton

5/25/2021

Client Sample ID: Matrix Spike

Page 12 of 19

10

Client Sample ID: Lab Control Sample

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	84		70 - 133								
Lab Sample ID: 240-1490 Matrix: Water Analysis Batch: 485384	042-N-2 MSD					Client	Samp	le ID: N	latrix Spil Prep Ty		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	10.1		ug/L		101	46 - 170	5	26
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	83		70 - 133								

QC Association Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-149091-1

GC/MS VOA

Analysis Batch: 485384

Lab Sample ID 240-149091-2	Client Sample ID MW-154S_050721	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-485384/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-485384/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-149042-H-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-149042-N-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 486103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-149091-1	TRIP BLANK_46	Total/NA	Water	8260B	_ <u> </u>
240-149091-2	MW-154S_050721	Total/NA	Water	8260B	
MB 240-486103/7	Method Blank	Total/NA	Water	8260B	
LCS 240-486103/4	Lab Control Sample	Total/NA	Water	8260B	
240-149103-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
240-149103-F-3 MS	Matrix Spike	Total/NA	Water	8260B	

2

3

4

6

9

10

12

13

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1

Project/Site: Ford LTP - Off Site

Date Received: 05/11/21 09:30

Client Sample ID: TRIP BLANK_46

Lab Sample ID: 240-149091-1 Date Collected: 05/07/21 00:00

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL CAN Total/NA Analysis 8260B 486103 05/17/21 18:19 LRW

Client Sample ID: MW-154S_050721 Lab Sample ID: 240-149091-2

Date Collected: 05/07/21 11:50 **Matrix: Water**

Date Received: 05/11/21 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	486103	05/17/21 18:42	LRW	TAL CAN
Total/NA	Analysis	8260B SIM		1	485384	05/12/21 19:10	CS	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1 Project/Site: Ford LTP - Off Site

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-22
Illinois	NELAP	004498	07-31-21
Iowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21 *
Kentucky (UST)	State	112225	02-23-21 *
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Chain of Custody Record

	TestAmerica
MICHIGAN	THE LEADER IN ENVIRONMENTAL TESTING

Client Contact	Regulat	ory program:			DW		r N	PDE	s	į.	RCRA		Oth	er 🗆				Α.	A.A.		HG			
Company Name: Arcadis													190					TestAmerica	Laboratorie					
Address: 28550 Cabot Drive, Suite 500	Client Project !	lanager: Kris	Hinskey				Site Contact: Julia McClafferty				Lab Contact: Mike DelMonico				COC No:									
	Telephone: 248	-994-2240			_		Telephone: 734-644-5131				Telephone: 330-497-9396													
City/State/Zip: Novi, MI, 48377	Email: kristoff	ne hinekay@as	nadic on	Pa .		_	A	nalve	s Tur	parom	d Time							- 1	nalys	06			1 of	
hone: 248-994-2240	Zillali. Kriston	er annskey (ar ar	auis.co	"									1.5						Haiys		T		For lab use on	ly .
roject Name: Ford LTP Off-Site	Sampler Name	:	-1-				TAT if	differe		below 3 wee		7											Walk-in client	
		son Ho	16.	t			10	day		2 wee		100											Lab sampling	
roject Number: 30080642.402.04	Method of Ship	ment/Carrier:								1 wee		2	ပ္			B				<u>N</u>				
) # 30080642.402.04	Shipping/Track	ing No:								1 day		(7.7)	Grab		90	8260B			909	98 3			Job/SDG No:	
				146	trix			ontal	mour P	Preser		Filtered Sample (Y / N)	0/2	90g	8260B	SE			Vinyl Chloride 8260B	1.4-Dioxane 8260B SIM				
				T				Ontai	Hers or	rreser	vatives	San		1.1-DCE 8260B	cis-1.2-DCE	Trans-1,2-DCE	808	90g	loric	ane				
			Air	Sediment	9	Ë	H2SO4	3 -	. =	o =	Unpres Other:	tered	Composite	ğ	1.2-	ns-1	PCE 8260B	TCE 8260B	5	Ç				Specific Notes
Sample Identification	Sample Date	Sample Time	Į.	Sed	Solid	Other:	E S	S DH	NaOH	ZaAc	5 d	Ē	ပိ	+ .	CIS-	Tra	S.	ξ	, S	1.4			Specia	Instructions:
TRIP BLANK-96			>					1						Х	X	X	Х	X	X	Х			1 Trip E	Blank
MW-1545_050721	5/7/21	11:50						6				M	0	人	X	x	×		V	×				or 8260B
910-1395-030721	3/7/2/	11.50	+	+	\vdash			K	4	+	-	IV	٧					X	<u> </u>	\triangle			3 VOAs	or 8260B S
					1 1																			
			\vdash	+	\vdash		-	+	+	+		+	\vdash						-				+	
				_	\sqcup			\perp	\perp	\sqcup		_	Ш						_					
	1					I					10010011111	iin wa		H aa ri oo										
			-	+	\vdash	-	-	+	+	-											_		+	
					\Box																		 	
									\perp	2	40-1490	91 C	hain	of C	usto	HIII III								
														-	40(0	uy								
			-	+	-		-	+	+	++	_	+	H	-					1	-		-		
Possible Hazard Identification Non-Hazard Clammable cin l							San				ee may be				es ar				han 1					
Non-Hazard lammable in I	rritant Poise	n B	Unkno	wn				Re	turn to	Client	~	Dispos	sal By	v Lab		□ A	rchive	For		Mo	nths			
ibmit all results through Cadena at jtomalia@cade vel IV Reporting requested.	naco.com, Cadena #	E203631																						
linquished by:	Company:	idis	D	ate/Tin		1 (600	9		eived I	y: VI CCl	d	SA	cra	'al	<u> </u>		Comp	any:	/bø	Ara	00/15	Date/Dime:	1 1600
linquished by: Win Bullets	Company: An	adis	D	ite/Tin	ne: 0/2		93			eyled)		h	-4	Ba	1	1	1	Com		77	9	ZVI (3	Date/Turne:	219
linquished by. Dallah	U E H			ite/Tip		211	1	10	Res		n Lahora	oryb	-	7.0	<i>V</i> [2			Com	pany:	n			Date/Time:	-21 9
2008, TestAmenca Laboratories, Inc., All rights reserved.				71	70	- 1 /	17.1	1	1.	20					_				/	T /			1311	C ! !

Page 17 of 19

WI-NC-099

VOA Sample Preservation - Date/Time VOAs Frozen:

Login #: 149091

		Eurofins TestAmerica	Canton Sample Rece	ipt Multiple Cooler Fo	
	Description	IR Gun #	Observed	Corrected	Coolant
	ircle)	(Circle)	Temp °C	Temp °C	(Circle) Wellice Blue Ice Dry Ice
TA Client	Box Other	R-11 R-12	2.4	2.5	Water None
TA Client	Box Other	₩-1D #R-12	2-2	7~3	Weller Blue Ice Bry Ice Water Hone
TA Client	Box Other	M-11 M-12			Wellce Blue Ice Dry Ice Water None
TA Client	Box Other	R-11 R-12			Wellice Blue Ice Dry Ice Water None
TA Client	Box Other	IR-11 IR-12			Wellice Blue Ice Dry Ice
TA Client	Box Other	R-11 R-12			Wellce Blue ice Dry Ice
TA Client	Box Other	19.11 19.12			Water None Wellice Blue Ice Dry Ice
TA Client	Box Other	10.11 10.12			Water None Wellice Sive Ice Dry Ice
TA Client		P.11 P.12			Water None Wetice Blue ice Dry ice
	Box Other	DA11 DA12			Water None Wetice Blue Ice Dry Ice
TA Client	Box Other				Water None Wellice Blue Ice Dry Ice
TA Client	Box Other				Water None
TA Client	Box Other	IR-11 IR-12			Wet ice Blue ice Dry ice Water None
TA Client	Box Other	R-11 R-12			Wetice Blue toe Dry Ice Water Name
TA Client	Box Other	IR-11 IR-12			Wellce Blue Ice Dry Ice Water Mone
TA Client	Box Other	M-11 M-12			Wellice Sive Ice Dry Ice Water None
TA Client	Box Other	M-11 M-12			Wellice Blue Ice By Ice Water None
TA Client	Box Other	IR-11 IR-12			Wet ice Blue ice By ice Water Name
TA Client	Box Other	IR-11 IR-12			Wet ice Blue ice Dry ice Water None
TA Client	Box Other	IR-11 IR-12			Wellice Blue Ice Dylice Water Mone
TA Client	Box Other	IR-11 IR-12			Wet ice Blue ice Dy ice
TA Client	Box Other	IR-11 IR-12			Wellice Blue Ice Dry Ice
TA Client	Box Other	W-11 W-12			Wette Stue Ice Dry Ice
TA Client	Box Other	W-11 W-12			Wette Blue Ice Dry Ice
TA Client		M-11 K-12			Water None Wat ice Blue Ice Dry ice
	Box Other	M-11 M-12			Water None Wellice Blue Ice Drylice
TA Client	Box Other	W-11 W-12			Water Mone Wetice Blue Ice Dryice
TA Client	Box Other	R-11 R-12			Water None Wellice Blue Ice Drylice
TA Client	Box Other				Water None Wet ice Blue ice Dry ice
TA Client	Box Other	IR-11 IR-12			Water None Water Blue Ice Dy ice
TA Client	Box Other	IR-11 IR-12			Water None
TA Client	Box Other	R-11 R-12			Wellice Blue Ice Dry ice Water None
TA Client	Box Other	IR-11 IR-12			Wellce Blue Ice Dryice Water None
TA Client	Box Other	IR-11 IR-12			Wellice Blue Ice Dry ice Water None
TA Client	Box Other	W-11 W-12			Wellice Blue Ice Drylice Water None
TA Client	Box Other	IR-11 IR-12			Wet ice Blue Ice Dry ice Water Name
				See Tem	perature Excursion Form

W1-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

DATA VERIFICATION REPORT

May 25, 2021

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30080642.402.04_W01 OFF-SITE GW Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 149091-1 Sample date: 2021-05-07

Report received by CADENA: 2021-05-25

Initial Data Verification completed by CADENA: 2021-05-25

Number of Samples: 1Water and 1 trip blank

Sample Matrices: Water Test Categories: GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

MS/MSD recovery outliers or sample duplicate RPD outliers were not determined using a client sample from this submittal for the test and QC batch noted so qualification was not required based on these sample-specific OC outliers:

GCMS VOC QC batch 486103.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than $10x$ the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 149091-1

Sample Name:	TRIP BLA	NK_46			MW-154	IS_0507	21	
Lab Sample ID:	2401490	911			2401490	912		
Sample Date:	5/7/202	1			5/7/202	1		
		Report		Valid		Report		Valid
Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
123-91-1					ND	2.0	ug/l	
	Cas No. 75-35-4 156-59-2 127-18-4 156-60-5 79-01-6 75-01-4	Cas No. Result 75-35-4 ND 156-59-2 ND 127-18-4 ND 156-60-5 ND 79-01-6 ND 75-01-4 ND	Lab Sample ID: 240149∪911 Sample Date: 5/7/2021 Cas No. Result Limit 75-35-4 ND 1.0 156-59-2 ND 1.0 127-18-4 ND 1.0 156-60-5 ND 1.0 79-01-6 ND 1.0 75-01-4 ND 1.0	Lab Sample ID: 2401490911 Sample Date: 5/7/2021 Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 156-60-5 ND 1.0 ug/l 79-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 240149∪911 Sample Date: 5/7/2021 Report Valid Cas No. Result Limit Units Qualifier 75-35-4 ND 1.0 ug/l 156-59-2 ND 1.0 ug/l 127-18-4 ND 1.0 ug/l 75-01-6 ND 1.0 ug/l 75-01-4 ND 1.0 ug/l	Lab Sample ID: 2401490911 2401490 Sample Date: 5/7/2021 Somple Teach (Cas No.) Result Result Limit Limit Units Valid Qualifier Result 75-35-4 ND 1.0 ug/l ND 156-59-2 ND 1.0 ug/l ND 127-18-4 ND 1.0 ug/l ND 156-60-5 ND 1.0 ug/l ND 79-01-6 ND 1.0 ug/l ND 75-01-4 ND 1.0 ug/l ND	Lab Sample ID: 240149∪911 240149∪912 Sample Date: 5/7/2021 5/7/2021 Report Valid Report Cas No. Result Limit Units Qualifier Result Limit 75-35-4 ND 1.0 ug/l ND 1.0 156-59-2 ND 1.0 ug/l ND 1.0 127-18-4 ND 1.0 ug/l ND 1.0 156-60-5 ND 1.0 ug/l ND 1.0 79-01-6 ND 1.0 ug/l ND 1.0 75-01-4 ND 1.0 ug/l ND 1.0	Lab Sample ID: 240149∪911 240149∪912 Sample Date: 5/7/2021 Feport Valid Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l ND 1.0 ug/l 156-59-2 ND 1.0 ug/l ND 1.0 ug/l 127-18-4 ND 1.0 ug/l ND 1.0 ug/l 79-01-6 ND 1.0 ug/l ND 1.0 ug/l 75-01-4 ND 1.0 ug/l ND 1.0 ug/l

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-149091-1

CADENA Verification Report: 2021-05-25

Analyses Performed By: TestAmerica

North Canton, Ohio

Report # 41511R Review Level: Tier III Project: 30080642.402.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-149091-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Analysis			
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM		
TRIP BLANK_46	240-149091-1	Water	05/07/2021		Х			
MW-154S_050721	240-149091-2	Water	05/07/2021		X	X		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Rep	orted		rmance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					-
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: June 02, 2021

Curuliland

PEER REVIEW: Andrew Korycinski

DATE: June 02, 2021

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

	•	Te	es.	†	√n	neri	ca
H	GAN	THE	LEAD	ER IN	ENVIR	ONMENTAL	TESTING

	TestAmerica Labora		•			Citation				-					2763			<u>, 1</u>	41	CHIC	jΑΙ	THE	LEADER IN ENVIRONMENTAL TES
Client Contact Company Name: Arcadis	Regulat	ory program:			DW		F NI	PDES			RCRA		Oth	er						-190	1		TestAmerica Laboratories, 1
	Client Project !	lanager: Kris	Hinske	ey			Site Co	ntact	: Juli	lia Mc	lafferty			I	Lab (Conta	ct: Mi	ke Del	Moni	02			COC No:
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240					Teleph	one:	734-6	644-51	31				Telen	hone	: 330-4	107_01	196				
City/State/Zip: Novi, MI, 48377											nd Time		_		renep	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							1 of 1 COCs
Phone: 248-994-2240	Email: kristoff	er.hinskey@ar	cadis.c	om			All	IMIYS1:	stur	narou	ia rime	+			_		Г		naly	ses		$\overline{}$	For lab use only
Project Name: Ford LTP Off-Site	Sampler Name	:		_			TAT if	differen		below 3 we												1 1	Walk-in client
		son Ho	111	t			10 c	day		2 we													Lab sampling
Project Number: 30080642.402.04	Method of Ship	ment/Carrier:							_	1 we 2 day		2	9			<u>@</u>			_	₩			
O # 30080642.402.04	Shipping/Track	ing No:								I day) le (Y /	/ Grab	8	360B	E 8260B			8260E	260B			Job/SDG No:
					itrix	į.			T		vatives	Filtered Sample (Y / N)	Composite=C / Grab=G	1,1-DCE 8260B	cis-1.2-DCE 8260B	Trans-1,2-DCE	PCE 8260B	TCE 8260B	Vinyl Chloride 8260B	1.4-Dioxane 8260B			Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air	Aqueous	Solid	Other	HZSO4	ΕĞ	NaOH	ZaAc	Unpres Other:	Filte	Com	7	cis-1	Trans	PCE	10E	Vinyl	1.4-C			Special Instructions:
TRIP BLANK-96				X				1						X	X	X	X	X	X	X			1 Trip Blank
MW-1545_050721	5/7/21	11:50		X				6				N	G	人	X	X	×	×	×	×			3 VOAs for 8260B 3 VOAs for 8260B SIM
					П			T		\Box												1	
			H		+		+	+-		+		+-									+	+	
			H		H		+	+	+	+1	11101000		Н	-				-	-		+	H	
			\vdash	_	H		-	+	+	-											_	\vdash	
			Ц																				
											40.140												
				+	\Box		+	+	+		40-149	091 CI	hain	of Cu	usto	dy					_	\vdash	
				_			_	\perp	\vdash	+	+	++	Н			-	-	_					
Possible Hazard Identification Non-Hazard Planmable (in I	rritant Poise	n B	Unkn	own			Sam			s al (A o Clien	fee may b	e assess Dispos					ined lo Archive			month) Months			
ecial Instructions/QC Requirements & Comments:																				-			
ubmit all results through Cadena at jtomalia@cade evel IV Reporting requested.	naco.com. Cadena #	E203631																					
linquished by:	Company:	idic	Г	Date/Til	ne:	1 /	600	3	Rec	ceived	by: VICC	id	CA-	cra	<i>a l</i>	,		Com	pany:	ede A	COO	, (Date/Dime: 5/7/D1 1600
linquished by:	0	adis		Date/Tir	ne:		930		Rec	ceived	by:		11/10	12	1	_	+ /	96m		THE THE	WO		Date/Time:
linquished by	Company		I	5/I	/0/7	7	1 5		Rec		in Lahor;		7	IN	W	h	$\sim l$	Com	Dany:	-///			5/10/34 9.30 Date/Time:
Imanor Dather	MEM			5	1 De	211	15:1	1/)		1/2	111		-						F	770			5:11-21 9

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-149091-1 Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_46

Lab Sample ID: 240-149091-1

Date Collected: 05/07/21 00:00 **Matrix: Water** Date Received: 05/11/21 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/17/21 18:19	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.16	ug/L			05/17/21 18:19	1
Tetrachloroethene	1.0	U	1.0	0.15	ug/L			05/17/21 18:19	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/17/21 18:19	1
Trichloroethene	1.0	U	1.0	0.10	ug/L			05/17/21 18:19	1
Vinyl chloride	1.0	U	1.0	0.20	ug/L			05/17/21 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 130					05/17/21 18:19	1
4-Bromofluorobenzene (Surr)	112		47 - 134					05/17/21 18:19	1
Toluene-d8 (Surr)	107		69 - 122					05/17/21 18:19	1
Dibromofluoromethane (Surr)	110		78 - 129					05/17/21 18:19	1

Client Sample ID: MW-154S_050721 Lab Sample ID: 240-149091-2 **Matrix: Water**

Date Collected: 05/07/21 11:50 Date Received: 05/11/21 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/12/21 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		70 - 133			-		05/12/21 19:10	1
Method: 8260B - Volatile O	•		,	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte 1,1-Dichloroethene	Result 1.0	Qualifier U	RL 1.0	0.19	ug/L	<u>D</u>	Prepared	05/17/21 18:42	Dil Fac
Analyte 1,1-Dichloroethene	Result	Qualifier U	RL		ug/L	<u> </u>	Prepared		Dil Fac
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	Result 1.0	Qualifier U U	RL 1.0	0.19	ug/L ug/L	<u> </u>	Prepared	05/17/21 18:42	Dil Fac 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene	1.0 1.0	Qualifier U U U	1.0 1.0	0.19 0.16	ug/L ug/L ug/L	<u>D</u>	Prepared	05/17/21 18:42 05/17/21 18:42	Dil Fac 1 1 1 1
Method: 8260B - Volatile O Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene	Result 1.0 1.0 1.0	Qualifier U U U U	1.0 1.0 1.0	0.19 0.16 0.15	ug/L ug/L ug/L ug/L	<u>D</u>	Prepared	05/17/21 18:42 05/17/21 18:42 05/17/21 18:42	Dil Fac 1 1 1 1 1 1 1

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	101		75 - 130		05/17/21 18:42	1
ı	4-Bromofluorobenzene (Surr)	111		47 - 134		05/17/21 18:42	1
	Toluene-d8 (Surr)	105		69 - 122		05/17/21 18:42	1
I	Dibromofluoromethane (Surr)	110		78 - 129	(05/17/21 18:42	1