

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-159708-1 Client Project/Site: Ford LTP - Off-Site

For:

ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

Mode Del Your

Authorized for release by: 11/24/2021 8:20:17 AM

Michael DelMonico, Project Manager I (330)497-9396 Michael.DelMonico@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site Laboratory Job ID: 240-159708-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	20

5

4

6

Q

9

11

12

14

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

E Result exceeded calibration range.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

3

5

7

8

10

14

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Job ID: 240-159708-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-159708-1

Comments

No additional comments.

Receipt

The samples were received on 11/10/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.7° C and 0.8° C.

GC/MS VOA

Method 8260B: The MSD for batch 513414 is outside of QC tune time but is reported: (240-159610-C-1 MSD).

Method 8260B: The laboratory control sample (LCS) for 513414 recovered outside control limits for multiple analytes. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

E

6

7

8

11

12

1

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site Job ID: 240-159708-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

4

5

_

8

10

11

13

14

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site Job ID: 240-159708-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-159708-1	TRIP BLANK_46	Water	11/05/21 00:00	11/10/21 08:00
240-159708-2	MW-156S 110521	Water	11/05/21 13:16	11/10/21 08:00

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: TRIP BLANK_46 Lab Sample ID: 240-159708-1

No Detections.

No Detections.

3

4

0

8

10

11

13

14

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Date Received: 11/10/21 08:00

Client Sample ID: TRIP BLANK_46

Lab Sample ID: 240-159708-1 Date Collected: 11/05/21 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/17/21 15:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/17/21 15:55	1
Tetrachloroethene	1.0	U *+	1.0	0.44	ug/L			11/17/21 15:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/17/21 15:55	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/17/21 15:55	1
Vinyl chloride	1.0	U *+	1.0	0.45	ug/L			11/17/21 15:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					11/17/21 15:55	1
4-Bromofluorobenzene (Surr)	81		56 - 136					11/17/21 15:55	1
Toluene-d8 (Surr)	114		78 - 122					11/17/21 15:55	1
Dibromofluoromethane (Surr)	98		73 - 120					11/17/21 15:55	1

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: MW-156S_110521

Date Collected: 11/05/21 13:16 Date Received: 11/10/21 08:00

Lab Sample ID: 240-159708-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/18/21 00:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		66 - 120					11/18/21 00:18	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/17/21 16:17	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/17/21 16:17	1
Tetrachloroethene	1.0	U *+	1.0	0.44	ug/L			11/17/21 16:17	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/17/21 16:17	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/17/21 16:17	1
Vinyl chloride	1.0	U *+	1.0	0.45	ug/L			11/17/21 16:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		62 - 137			,	-	11/17/21 16:17	1
4-Bromofluorobenzene (Surr)	77		56 - 136					11/17/21 16:17	1
Toluene-d8 (Surr)	102		78 - 122					11/17/21 16:17	1
Dibromofluoromethane (Surr)	92		73 - 120					11/17/21 16:17	1

11/24/2021

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-159610-C-1 MS	Matrix Spike	100	90	114	97
240-159610-C-1 MSD	Matrix Spike Duplicate	96	86	108	92
240-159708-1	TRIP BLANK_46	98	81	114	98
240-159708-2	MW-156S_110521	94	77	102	92
LCS 240-513414/4	Lab Control Sample	98	93	119	99
MB 240-513414/6	Method Blank	92	75	103	91

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-159636-H-2 MS	Matrix Spike	77	
240-159636-N-2 MSD	Matrix Spike Duplicate	77	
240-159708-2	MW-156S_110521	76	
LCS 240-513479/4	Lab Control Sample	78	
MB 240-513479/5	Method Blank	77	

DCA = 1,2-Dichloroethane-d4 (Surr)

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-513414/6

Matrix: Water

Analysis Batch: 513414

Project/Site: Ford LTP - Off-Site

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/17/21 13:40 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/17/21 13:40 1.0 U 0.44 ug/L Tetrachloroethene 1.0 11/17/21 13:40 0.51 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 11/17/21 13:40 Trichloroethene 10 U 1.0 0.44 ug/L 11/17/21 13:40 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/17/21 13:40

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 62 - 137 92 1,2-Dichloroethane-d4 (Surr) 11/17/21 13:40 4-Bromofluorobenzene (Surr) 75 56 - 136 11/17/21 13:40 103 78 - 122 Toluene-d8 (Surr) 11/17/21 13:40 Dibromofluoromethane (Surr) 91 73 - 120 11/17/21 13:40

Lab Sample ID: LCS 240-513414/4

Matrix: Water

Analysis Batch: 513414

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene 10.0 63 - 134 12.1 ug/L 121 cis-1,2-Dichloroethene 10.0 11.7 ug/L 117 77 - 123 Tetrachloroethene 10.0 133 13.3 *+ ug/L 76 - 123 trans-1.2-Dichloroethene 10.0 119 ug/L 119 75 - 124 Trichloroethene 10.0 10.3 ug/L 103 70 - 122 Vinyl chloride 10.0 14.5 *+ ug/L 145 60 - 144

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 62 - 137 4-Bromofluorobenzene (Surr) 93 56 - 136 Toluene-d8 (Surr) 119 78 - 122 73 - 120 Dibromofluoromethane (Surr) 99

Lab Sample ID: 240-159610-C-1 MS

Matrix: Water

Analysis Batch: 513414

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	6400		3330	9810		ug/L		103	56 - 135	
cis-1,2-Dichloroethene	6900		3330	10800		ug/L		115	66 - 128	
Tetrachloroethene	16000	E *+	3330	18200	E 4	ug/L		55	62 - 131	
trans-1,2-Dichloroethene	330	U	3330	3900		ug/L		117	56 - 136	
Trichloroethene	2600		3330	5610		ug/L		92	61 - 124	
Vinyl chloride	190	J *+	3330	5040		ug/L		146	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	90		56 - 136
Toluene-d8 (Surr)	114		78 - 122

Eurofins TestAmerica, Canton

Page 11 of 20

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site Job ID: 240-159708-1

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-159610-C-1 MS

Matrix: Water

Analysis Batch: 513414

MS MS

%Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 97 73 - 120

Lab Sample ID: 240-159610-C-1 MSD

Matrix: Water

Analysis Batch: 513414

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Limits RPD Limit **Analyte** Result Qualifier Unit %Rec 1,1-Dichloroethene 6400 3330 8970 ug/L 78 56 - 135 9 26 cis-1,2-Dichloroethene 6900 3330 9820 ug/L 87 66 - 128 9 14 Tetrachloroethene 16000 E*+ 3330 16800 E 4 ug/L 13 62 - 1318 20 trans-1.2-Dichloroethene 330 U 3330 3420 103 56 - 136 15 ug/L 13 Trichloroethene 2600 3330 5290 ug/L 82 61 - 124 6 15 Vinyl chloride 190 J*+ 3330 4530 ug/L 130 43 - 157 24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		62 - 137
4-Bromofluorobenzene (Surr)	86		56 - 136
Toluene-d8 (Surr)	108		78 - 122
Dibromofluoromethane (Surr)	92		73 - 120

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-513479/5

Matrix: Water

Analysis Batch: 513479

Client Sample ID: Method Blank Prep Type: Total/NA

ug/L

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 1,4-Dioxane 2.0 U 0.86 ug/L 11/17/21 17:41

MB MB

MB MB

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 77 66 - 120 11/17/21 17:41

Lab Sample ID: LCS 240-513479/4

Matrix: Water

1,4-Dioxane

Prep Type: Total/NA **Analysis Batch: 513479** Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec

11.9

10.0

LCS LCS %Recovery Qualifier

Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 78

Lab Sample ID: 240-159636-H-2 MS

Matrix: Water

Analysis Batch: 513479

Alialysis Datcii. 313479	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U F1	10.0	10.6		ug/L		106	51 - 153	

Eurofins TestAmerica, Canton

Client Sample ID: Lab Control Sample

80 - 122

Client Sample ID: Matrix Spike

Prep Type: Total/NA

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	77		66 - 120								
Lab Sample ID: 240-1596 Matrix: Water Analysis Batch: 513479	636-N-2 MSD					Client	Samp	le ID: N	Matrix Spil Prep Ty		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U F1	10.0	10.6		ug/L		106	51 - 153	0	16
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)			66 - 120								

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1 Project/Site: Ford LTP - Off-Site

GC/MS VOA

Analysis Batch: 513414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-159708-1	TRIP BLANK_46	Total/NA	Water	8260B	
240-159708-2	MW-156S_110521	Total/NA	Water	8260B	
MB 240-513414/6	Method Blank	Total/NA	Water	8260B	
LCS 240-513414/4	Lab Control Sample	Total/NA	Water	8260B	
240-159610-C-1 MS	Matrix Spike	Total/NA	Water	8260B	
240-159610-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

Analysis Batch: 513479

Lab Sample ID 240-159708-2	Client Sample ID MW-156S_110521	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-513479/5	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-513479/4	Lab Control Sample	Total/NA	Water	8260B SIM	
240-159636-H-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-159636-N-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Lab Chronicle

Client: ARCADIS U.S., Inc.

Job ID: 240-159708-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: TRIP BLANK_46 Lab Sample ID: 240-159708-1

Date Collected: 11/05/21 00:00 Matrix: Water

Date Received: 11/10/21 08:00

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab Total/NA Analysis 8260B 513414 11/17/21 15:55 LEE TAL CAN

Date Collected: 11/05/21 13:16 Date Received: 11/10/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	513414	11/17/21 16:17	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	513479	11/18/21 00:18	CS	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3

4

5

Matrix: Water

8

9

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off-Site

Job ID: 240-159708-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-22
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-22
Iowa	State	421	06-01-23
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-22
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-22
Texas	NELAP	T104704517-18-10	08-31-22
Virginia	NELAP	11570	09-14-22
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

- 0

6

Q

9

10

10

13

14

	MICHIGAN 190	Chair Test America Laboratory Incation: Brighton — 10448 Cital	Chain of Custody Record 10448 Citation Drive, Sulle 2007 Brighton, MI 48116 / 810-229-2763	16 / 810-229	-2763				TestAmeric	erico
	Client Confact	-	□ NPDES □ RCRA	Other				lı		
	Company Name: Arcadis	Client Project Manager: Kris Hinskey	Site Contact: Julia McClafferty		Lab Conta	Lab Contact: Mike DelMonico)el:Monico		TestAmerica Laboratories, Inc	oratories, Inc.
	Address: 28550 Cabot Drive, Suite 500						,000			
	City/State/Záp: Novi, MI, 48377	elephone: 248-994-2240	Telephone: 734-644-5131		relephone	Telephone: 330-497-9396	9396		1 of 1	COCs
	Phone: 248-994-2240	Email: kristoffer.hinskey@arcadis.com	Analysis Turnaround Time				Analyses	88	For lab use only	
	Project Name: Ford LTP Off-Site	Sampler Name:	ant from I						Walk-in client	
	Project Number: 30080642.402.04	Method of Shipment/Carrier:			====			Mi	Lab sampling	
	PO # 30080642.402.04	Shipping/Tracking No:	2 days	Grab			80929	S 809	Job/SDG No:	
		Matrix	Containers & Preservatives	/ D=				Z8 98		
	Sample Identification	Sample Date Sediment Air Aducous Sediment Air Air	Огрет:	Filtered Sa Composite		LCE 8360E	TCE 8260E	nexoiG-4, f	Sample Specific Notes / Special Instructions:	fic Notes / ructions:
,	\sim TRIP BLANK $_{-}$ $arphi_{ar{G}}$	×	-	У Э	×	×	×	(<u>§</u>)	1 Trip Blank	~
0	MW- 1565- 110521	11/05/21 13:16 X	9	× S	X	X	X	×	3 VOAs for 8260B 3 VOAs for 8260B SIM	260B 260B SIM
F										
Page										
17 c										
of 20										
	240-159708 Chain of Custody									
	Possible Hazard Identification Non-Hazard "ammable cin Irritant	☐ Poison B ☐ Unknown	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	e assessed if sam Disposal By Lab	ples are reta	ained longer Archive For	r fhan 1	nonth) Months		
	Special Instructions/QC Requirements & Comments: Submit all results through Cadena at Jtomalia@cadenaco.com. Cadena #E203631 Level IV Reporting requested,	сот. Cadena #E203631								
	Relinquished by:	Company: DatdTime/	(GA) Aby COLO		Storage	ŭ	Company	Ricadis	DatoTime:	1631
	(m) June Hollen	S	Received by:	d	7	ŭ .	Company;	. ≰	Date/Time:	1040
	Relinquished by:	Date/Time:	1055 Received in Laborator	Bloom	7	Ü	Company		Date/Time:	8
11		-								

Functing Tost America Cor	stan Cample Descint I	Corm/Normativ			T1 44 -	14.5	
Eurofins TestAmerica Car Canton Facility	non Sample Receipt i	VIJETIEFIUMITO	е		Login #:		
Client ArcaelD	9	ite Name			Cooler u	npacked by:	
Cooler Received on 11-10			0-21		ma	nalilia. M	21.0
		ent Drop Off	TestAmeric	a Courier	Other	Monday &	Story
Receipt After-hours: Drop-o		cit Diop On		Location	Oulei		
TestAmerica Cooler #		Client Cooler	Box	Other	****		
Packing material used:			None				ĺ
-		y Ice Water	None				
1. Cooler temperature upon	•		See Multi				
IR GUN# IR-14 (CF +0		er Temp				_℃	
IR GUN #IR-15 (CF +0			_		\	_℃	
2. Were tamper/custody seal			S Quantity	(/	No	Tests that are n	ot
-Were the seals on the of -Were tamper/custody s			MeHe)?	C	No NA	checked for pH	by
-Were tamper/custody s			givierig):	Yes	No NA	Receiving:	
3. Shippers' packing slip atta	•	omised:		Yes	160	VOAs	
4. Did custody papers accom				Yes) No	Oil and Grease	1
5. Were the custody papers re		the appropriate	place?		No	TOC	
6. Was/were the person(s) wl			•	C? (Yes	No		
7. Did all bottles arrive in go	_	•		~	No		
8. Could all bottle labels (ID/			?		No	~	
9. For each sample, does the	COC specify preservative	ves (Y/ N), # of o	containers (/N), and sa	mple type of	grab/comp(Y/N)?	
10. Were correct bottle(s) used	for the test(s) indicated	1?		Yes	'No		f
11. Sufficient quantity receive	-	•		Yes	No.		
12. Are these work share samp				Yes	(10)		
If yes, Questions 13-17 ha		-	ratory.			*	
13. Were all preserved sample		on receipt?		y es	No (NA)	pH Strip Lot# HC15	7842
14. Were VOAs on the COC?			.1.1	Yes) q		
15. Were air bubbles >6 mm i		Larger th		Yes	Nd NA		
16. Was a VOA trip blank pre17. Was a LL Hg or Me Hg tr		np Blank Lot #_			No		
Contacted PM		by	vi	a Verbal V	oice Mail Ot	her	
			+				
Concerning							
18. CHAIN OF CUSTODY	& SAMPLE DISCREP	PANCIES [additional n	ext page	Samples pro	ocessed by:	
NO SIM	on 1/3	Y20\	Parne	Cted	10C	<i></i>	
	1		1				
					i.		
19. SAMPLE CONDITION							
Sample(s)	Wet	e received after	the recomme	ended holdi	na time had e	vnired	/
	wei				in á broken c		<i>'</i>
Sample(s)		were receive					,
20. SAMPLE PRESERVAT	ION'			. /			-
S1-(-)		,		la seri		1	,
Sample(s) Time preserved:	Dresementing(s) add-1/	I at number(s):		were turt	ner preserved	d in the laboratory.	. '
i une preserved:	_1 reservative(s) added/	Lot number(s):_	" *				
VOA Sample Preservation - D	oto/Timo VOAs Erozon					9	

	escription rcle)	IR Gun # (Circle)	Observed Temp °C	Corrected Temp °C	Coolant (Circle)
367 Client	Box Other	(R-14) 18-15	0-6	0-7	Wellie Blue Ice Dry
(A) Client	Box Other	(R-1) IR-15			Water None Wat Re Blue Ice Dry
- OCIE		IR-14 IR-15	0.7	0-8	Water None Wellice Blue Ice Dry
TA Client	Box Other	IR-14 IR-15			Water None Wet Ice Blue Ice Dry
TA Client	Box Other	14.7. 16.7.			Water None
TA Client	Box Other	IR-14 IR-15			Wellice Blue Ice Dry I Water Mone
TA Client	Box Other	IR-14 IR-15	,		Wellice Blue Ice Dry I Water None
TA Client	Box Other	IR-14 IR-15			Wet ice Blue ice Dry i
TA Client	Box Other	IR-14 IR-15			Wel ice Blue ice Dry
TA Client	Bóx Other	IR-14 IR-15			Water None Wellice Blue Ice Dry I
		IR-14 IR-15			Water None Wet Ice Blue Ice Dry I
TA Client	Box Other	IR-14 IR-15			Water None Wette Blue ice Dry i
TA Client	Box Other				Water None
TA Client	Box Other	IR-14 IR-15			Wellice Blue Ice Dry I Water None
TA Client	Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry I Water None
TA Client	Box Other	IR-14 IR-15			Wellice Blue Ice Dry I Water None
TA Client	Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry I
TA Client	Box Other	IR-14 IR-15			Wellce Blue Ice Dry I
TA Client		IR-14 IR-15			Water None Wellce Blue Ice Dry I
		IR-14 IR-15			Water None Wetice Sive Ice Dry I
TA Client	Box Other	IR-14 IR-15		<u> </u>	Water Name Wellice Blue Ice Dry I
TA Client	Box Other				Water None
TA Client	Box Other		-	•	Water None
TA Client	Box Other	IR-14 IR-15	į.		Wet Ice Blue Ice Dry I 4 Water None
TA Client	Box Other	IR-14 R-15			Wet ice Blue ice Dry i
TA Client	Box Other	IR-14 IR-15			Wet ice Blue ice Dry i
	Box Other	IR-14 IR-15			Water None Water Blue ice Dry is
TA Client		IR-14 IR-15			Water None Wet ice Blue ice Dry i
	Box Other	IR-14 IR-15			Water None Wellice Blue Ice Dry I
TA Client	Box Other				Water None Wet ice Blue ice Dry k
TA Client	Box Other	IR-14 IR-15		3	Water None
TA Client	Box Other	IR-14 IR-15			Wet ice Blue ice Dry k Water None
TA Clent	Box Other	IR-14 IR-15			Wellice Blue Ice Dry k Water None
TA Client	Box Other	IR-14 IR-15			Wet ice Sive ice Dry k Water None
TA Client	Box Other	1 IR-14 IR-15		***************************************	Wellce Blue Ice Dry k
TA Cient	Box Other	IR-14 IR-15			Water None Wet Ice Blue Ice Dry ic
		IR-14 IR-15			Water None Wet Ice Stue Ice Dry lie
	Box Other	IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ic
TA Client	Box Other	IN-14 IN-13			Water None

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

3

4

6

8

10

11

13

-

Login Sample Receipt Checklist

Job Number: 240-159708-1 Client: ARCADIS U.S., Inc.

Login Number: 159708 List Source: Eurofins TestAmerica, Canton

List Number: 1

Creator: Snyder, Matthew

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

DATA VERIFICATION REPORT

November 25, 2021

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30080642.402.04 OFF-SITE GW Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 159708-1 Sample date: 2021-11-05

Report received by CADENA: 2021-11-24

Initial Data Verification completed by CADENA: 2021-11-25

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

MS/MSD recovery outliers or sample duplicate RPD outliers were not determined using a client sample from this submittal for the test and QC batch noted so qualification was not required based on these sample-specific OC outliers:

GCMS VOC QC batch 513414.

LCS recoveries were outliers biased HIGH for these tests and analytes (or one LCS and the associated LCS/LCSD RPD). All associated client sample results were non-detect for these analytes so were not affected by the high bias and qualification was not required:

GCMS VOC QC batch 51314 - tetrachloroethylene, vinyl chloride.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton

Laboratory Submittal: 159708-1

	Sample Name:	TRIP BLA	RIP BLANK_46			MW-156S_110521			
	Lab Sample ID:	2401597	7081			2401597	7082		
	Sample Date:	11/5/20	21			11/5/20	21		
			Report		Valid		Report		Valid
Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
<u>60B</u>									
1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u> 60BBSim</u>									
1,4-Dioxane	123-91-1					ND	2.0	ug/l	
	1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride	Lab Sample ID: Sample Date: Analyte Cas No. C	Lab Sample ID: 2401597 Sample Date: 11/5/20 Analyte Cas No. Result OBE 1,1-Dichloroethene 75-35-4 ND cis-1,2-Dichloroethene 156-59-2 ND Tetrachloroethene 127-18-4 ND trans-1,2-Dichloroethene 156-60-5 ND Trichloroethene 79-01-6 ND Vinyl chloride 75-01-4 ND	Lab Sample ID: 2401597081 Sample Date: 11/5/2021 Report Cas No. Result Limit 50B 1,1-Dichloroethene 75-35-4 ND 1.0 cis-1,2-Dichloroethene 156-59-2 ND 1.0 Tetrachloroethene 127-18-4 ND 1.0 trans-1,2-Dichloroethene 156-60-5 ND 1.0 Trichloroethene 79-01-6 ND 1.0 Vinyl chloride 75-01-4 ND 1.0	Lab Sample ID: 2401597081 Sample Date: 11/5/2021 Report Cas No. Result Limit Units Cost Cost	Lab Sample ID: 2401597081 Sample Date: 11/5/2021 Report Valid Analyte Cas No. Result Limit Units Qualifier 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l cis-1,2-Dichloroethene 156-59-2 ND 1.0 ug/l Tetrachloroethene 127-18-4 ND 1.0 ug/l trans-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l Trichloroethene 79-01-6 ND 1.0 ug/l Vinyl chloride 75-01-4 ND 1.0 ug/l SOBBSim	Lab Sample ID: 2401597081 2401597 Sample Date: 11/5/2021 11/5/20 Report Valid Analyte Cas No. Result Limit Units Qualifier Result 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l ND cis-1,2-Dichloroethene 156-59-2 ND 1.0 ug/l ND Tetrachloroethene 127-18-4 ND 1.0 ug/l ND trans-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND Trichloroethene 79-01-6 ND 1.0 ug/l ND Vinyl chloride 75-01-4 ND 1.0 ug/l ND ND SOBBSim	Lab Sample ID: 2401597081 2401597082 Sample Date: 11/5/2021 11/5/2021 Report Valid Report Analyte Cas No. Result Limit Units Qualifier Result Limit 50B 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l ND 1.0 cis-1,2-Dichloroethene 156-59-2 ND 1.0 ug/l ND 1.0 Tetrachloroethene 127-18-4 ND 1.0 ug/l ND 1.0 trans-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND 1.0 Trichloroethene 79-01-6 ND 1.0 ug/l ND 1.0 Vinyl chloride 75-01-4 ND 1.0 ug/l ND 1.0 60BBSim 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0<	Lab Sample ID: Sample ID: Sample Date: 2401597081 2401597082 Sample Date: 11/5/2021 11/5/2021 Report Valid Report Valid Report Units 30B 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l ND 1.0 ug/l cis-1,2-Dichloroethene 156-59-2 ND 1.0 ug/l ND 1.0 ug/l Tetrachloroethene 127-18-4 ND 1.0 ug/l ND 1.0 ug/l Trichloroethene 156-60-5 ND 1.0 ug/l ND 1.0 ug/l Trichloroethene 79-01-6 ND 1.0 ug/l ND 1.0 ug/l Vinyl chloride 75-01-4 ND 1.0 ug/l ND 1.0 ug/l 30BBSim 10 10 10 10 10 10 10

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-159708-1

CADENA Verification Report: 2021-11-25

Analyses Performed By: TestAmerica

North Canton, Ohio

Report # 43684R Review Level: Tier III Project: 30080642.402.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-159708-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Ana	lysis
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM
TRIP BLANK_46	240-159708-1	Water	11/05/21		Х	
MW-156S_110521	240-159708-2	Water	11/05/21		X	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM	Rep	orted		rmance eptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation					-	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
lon abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	Х				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: December 10, 2021

PEER REVIEW: Andrew Korycinski

DATE: December 14, 2021

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	tory program:		□ DW	,	- N	PDES		□ RCRA		Otl	her										TestAmerica Lab	oratories Inc
	Client Project Manager: Kris Hinskey					Site Contact: Julia McClafferty Telephone: 734-644-5131						Lab Contact: Mike DelMonico						COC No:	oratories, inc.				
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240				Telephone: 330-497-9396																		
City/State/Zip: Novi, MI, 48377						Analysis Turnaround Time				and the second second							1 of 1	COCs					
Phone: 248-994-2240	Email: kristoff	er.hinskey@ar	cadis.co	n						Analyses						For lab use only							
Project Name: Ford LTP Off-Site	Sampler Name	n ,	_			TAT if	different fi		low 3 weeks											Walk-in client	i de la company		
	Gary		fer			10	day	¥ 2	2 weeks			1										Lab sampling	
Project Number: 30080642.402.04	Method of Ship	ment/Carrier:							I week 2 days	2	9=0			89			l	SE					
PO # 30080642.402.04	Shipping/Track	ding No:							l day	mule (V / N)	/Grat	m	3260B	E 8260B			8260	3260B				Job/SDG No:	
				Matrix		C	ontainer	rs & P	reservatives	- 3	te=C	826(CE 8	5-DC	90	90	oride	ane 8					
Sample Identification	Sample Date	Sample Time	Air	Sediment	Other:	H2SO4	HCI	NaOH	ZaAc NaOH Unpres	Filtered	Composite=C / Grab=G	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE	PCE 8260B	TCE 8260B	Vinyl Chloride 8260B	1.4-Dioxane 8260B SIM				Sample Speci Special Inst	
TRIP BLANK_ 46			×				1			L.	6		X	X	X	X	X	*	(m)			1 Trip Blan	k
	11/ /				1	\vdash	1-1	\vdash													1	3 VOAs for 8	260B
MW-1565-110521	105/21	13:16	X				6		++	^) G	X	×	×	×	X	X	X			+	3 VOAs for 8	
Possible Hazard Identification Non-Hazard Special Instructions/QC Requirements & Comments:		on B	Unkno	VI		San			I (A fee ma	y be assu ✓ Disp			lles are		ned lo				n) onths				
Submit all results through Cadena at jtomalia@cadenacd Level IV Reporting requested.		#E203631	- In	. Ia T																			
Relinquished by: Relinquished by:	Company:	dis	D	OX 3)	162	1	N	ived by:	2010		5+0	rag	e_		Com	11	C90	dis			Date/Time:	1621
Relinquished by:	HR	CAOCS	1	19/	1	1049)		10.5	pokatori 1	by:	2				Cons	pany:	TA	·			11/9/21 Pate/Time:	1040
Jen Hal	Company:		\perp	1/2/2	1	055		1	ived in Lat	Loly	4	sur	<u>/_</u>			4	X	V)				11-10-21	8.00

©2008. TestAmerica Laboratories, Inc. All rights reserved.

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159708-1 Project/Site: Ford LTP - Off-Site

Client Sample ID: TRIP BLANK_46

Lab Sample ID: 240-159708-1 Date Collected: 11/05/21 00:00

Matrix: Water

Lab Sample ID: 240-159708-2

Matrix: Water

Date Received: 11/10/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/17/21 15:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/17/21 15:55	1
Tetrachloroethene	1.0	U 🦖	1.0	0.44	ug/L			11/17/21 15:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/17/21 15:55	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/17/21 15:55	1
Vinyl chloride	1.0	U**	1.0	0.45	ug/L			11/17/21 15:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					11/17/21 15:55	1
4-Bromofluorobenzene (Surr)	81		56 ₋ 136					11/17/21 15:55	1
Toluene-d8 (Surr)	114		78 - 122					11/17/21 15:55	1
Dibromofluoromethane (Surr)	98		73 - 120					11/17/21 15:55	1

Client Sample ID: MW-156S_110521

Date Collected: 11/05/21 13:16

Date Received: 11/10/21 08:00

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/18/21 00:18	1			
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery	Qualifier	Limits 66 - 120			-	Prepared	Analyzed 11/18/21 00:18	Dil Fac			

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/17/21 16:17	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/17/21 16:17	1
Tetrachloroethene	1.0	U **	1.0	0.44	ug/L			11/17/21 16:17	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/17/21 16:17	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/17/21 16:17	1
Vinyl chloride	1.0	U 🔭	1.0	0.45	ug/L			11/17/21 16:17	1

Surrogate	%Recovery Qualifie	r Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	62 - 137	11/17/21 16:17	1
4-Bromofluorobenzene (Surr)	77	56 - 136	11/17/21 16:17	1
Toluene-d8 (Surr)	102	78 - 122	11/17/21 16:17	1
Dibromofluoromethane (Surr)	92	73 - 120	11/17/21 16:17	1