

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-159953-1 Client Project/Site: Ford LTP - Off-Site

For: ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Attn: Kristoffer Hinskey

11/29/2021 8:29:07 AM

Authorized for release by:

Mode Del Your

Michael DelMonico, Project Manager I (330)497-9396

Michael.DelMonico@Eurofinset.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 240-159953-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Method Summary	5
Sample Summary	
Detection Summary	
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Qualifiers
GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

5

Ω

9

4 4

12

13

Case Narrative

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site Job ID: 240-159953-1

Job ID: 240-159953-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-159953-1

Comments

No additional comments.

Receipt

The samples were received on 11/12/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.6° C.

GC/MS VOA

Method 8260B: The continuing calibration verification (CCV) associated with batch 513962 recovered above the upper control limit for Vinyl Chloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated sample is impacted: TRIP BLANK_113 (240-159953-1).

Method 8260B: The continuing calibration verification (CCV) associated with batch 513804 recovered above the upper control limit for Vinyl Chloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated sample is impacted: MW-103S 111021 (240-159953-2).

Method 8260B: The laboratory control sample (LCS) for 513804 recovered outside control limits for Tetrachloroethene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

- -

5

6

q

10

12

13

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Job ID: 240-159953-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
5030B	Purge and Trap	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

7

8

9

11

12

Sample Summary

Client: ARCADIS U.S., Inc.
Project/Site: Ford LTP - Off-Site

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 240-159953-1
 TRIP BLANK_113
 Water
 11/10/21 00:00
 11/12/21 08:00

 240-159953-2
 MW-103S_111021
 Water
 11/10/21 10:28
 11/12/21 08:00

1

Job ID: 240-159953-1

2

- 3

6

Q

10

10

13

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: TRIP BLANK_113 Lab Sample ID: 240-159953-1

No Detections.

No Detections.

3-1

__

3

А

4

5

7

0

10

13

Client Sample Results

Client: ARCADIS U.S., Inc.

Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Dibromofluoromethane (Surr)

Client Sample ID: TRIP BLANK_113 Lab Sample ID: 240-159953-1

Date Collected: 11/10/21 00:00

100

Matrix: Water

11/20/21 19:36

Date Received: 11/12/21 08:00

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/20/21 19:36	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/20/21 19:36	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/20/21 19:36	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/20/21 19:36	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/20/21 19:36	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/20/21 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		62 - 137			·		11/20/21 19:36	1
4-Bromofluorobenzene (Surr)	74		<i>56</i> - 136					11/20/21 19:36	1
Toluene-d8 (Surr)	112		78 - 122					11/20/21 19:36	1

73-120

_

8

9

10

40

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: MW-103S_111021 Lab Sample ID: 240-159953-2

Date Collected: 11/10/21 10:28 Date Received: 11/12/21 08:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/18/21 02:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		66 - 120			-		11/18/21 02:20	1
Method: 8260B - Volatile O	rganic Compo	unds (GC/I	MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/19/21 16:23	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/19/21 16:23	1
Tetrachloroethene	1.0	U *+	1.0	0.44	ug/L			11/19/21 16:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/19/21 16:23	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/19/21 16:23	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/19/21 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137			•		11/19/21 16:23	1
1,2-Dichloroethane-d4 (Surr)	95		62 - 137					11/19/21 16:45	1
4-Bromofluorobenzene (Surr)	75		56 - 136					11/19/21 16:23	1
4-Bromofluorobenzene (Surr)	73		<i>56</i> - <i>136</i>					11/19/21 16:45	1
Toluene-d8 (Surr)	108		78 - 122					11/19/21 16:23	1
Toluene-d8 (Surr)	108		78 - 122					11/19/21 16:45	1
Dibromofluoromethane (Surr)	94		73 - 120					11/19/21 16:23	1
Dibromofluoromethane (Surr)	94		73 - 120					11/19/21 16:45	1

11/29/2021

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-159953-1	TRIP BLANK_113	108	74	112	100
240-159953-2	MW-103S_111021	95	73	108	94
240-159953-2	MW-103S_111021	99	75	108	94
240-159953-2 MS	MW-103S_111021	100	85	115	96
240-159953-2 MSD	MW-103S_111021	99	87	112	92
240-160095-B-1 MS	Matrix Spike	96	84	113	91
240-160095-B-1 MSD	Matrix Spike Duplicate	95	85	103	88
_CS 240-513804/4	Lab Control Sample	100	87	118	98
LCS 240-513962/4	Lab Control Sample	97	79	113	93
MB 240-513804/6	Method Blank	105	81	118	101
MB 240-513962/6	Method Blank	103	76	112	94

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-159642-H-3 MS	Matrix Spike	87	
240-159642-M-3 MSD	Matrix Spike Duplicate	87	
240-159953-2	MW-103S_111021	86	
LCS 240-513480/3	Lab Control Sample	84	
MB 240-513480/4	Method Blank	84	

DCA = 1,2-Dichloroethane-d4 (Surr)

6

_

11

40

4 /

Eurofins TestAmerica, Canton

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-513804/6

Matrix: Water

Analysis Batch: 513804

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D **Prepared** Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/19/21 15:38 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/19/21 15:38 1.0 U 0.44 ug/L Tetrachloroethene 1.0 11/19/21 15:38 trans-1,2-Dichloroethene 1.0 U 0.51 ug/L 1.0 11/19/21 15:38 1.0 U Trichloroethene 1.0 0.44 ug/L 11/19/21 15:38 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/19/21 15:38

MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 105 11/19/21 15:38 4-Bromofluorobenzene (Surr) 81 56 - 136 11/19/21 15:38 Toluene-d8 (Surr) 118 78 - 122 11/19/21 15:38 Dibromofluoromethane (Surr) 101 73-120 11/19/21 15:38

Lab Sample ID: LCS 240-513804/4

Matrix: Water

Analysis Batch: 513804

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 10.0 63 - 134 1,1-Dichloroethene 11.0 ug/L 110 10.0 cis-1,2-Dichloroethene 11.0 ug/L 110 77 - 123 10.0 13.0 *+ 130 Tetrachloroethene ug/L 76 - 123 75 - 124 trans-1,2-Dichloroethene 10.0 10.8 ug/L 108 Trichloroethene 10.0 9.54 ug/L 95 70 - 122 Vinyl chloride 10.0 11.1 ug/L 111 60 - 144

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 100 62 - 137 4-Bromofluorobenzene (Surr) 56 - 136 87 Toluene-d8 (Surr) 118 78-122 Dibromofluoromethane (Surr) 98 73-120

Lab Sample ID: 240-159953-2 MS

Matrix: Water

Analysis Batch: 513804

Client Sample ID: MW-103S_111021 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	10.0	10.4		ug/L		104	56 - 135	
cis-1,2-Dichloroethene	1.0	U	10.0	10.3		ug/L		103	66 - 128	
Tetrachloroethene	1.0	U *+	10.0	10.2		ug/L		102	62 - 131	
trans-1,2-Dichloroethene	1.0	U	10.0	10.4		ug/L		104	56 - 136	
Trichloroethene	1.0	U	10.0	8.59		ug/L		86	61 - 124	
Vinyl chloride	1.0	U	10.0	10.2		ug/L		102	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	85		56 - 136
Toluene-d8 (Surr)	115		78 - 122

Eurofins TestAmerica, Canton

Page 11 of 19

2

3

4

6

8

10

11 12

13

114

11/29/2021

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-513804/6

Matrix: Water

Analysis Batch: 513804

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D **Prepared** Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/19/21 15:38 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/19/21 15:38 1.0 U 0.44 ug/L Tetrachloroethene 1.0 11/19/21 15:38 trans-1,2-Dichloroethene 1.0 U 0.51 ug/L 1.0 11/19/21 15:38 1.0 U Trichloroethene 1.0 0.44 ug/L 11/19/21 15:38 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/19/21 15:38

MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 105 11/19/21 15:38 4-Bromofluorobenzene (Surr) 81 56 - 136 11/19/21 15:38 Toluene-d8 (Surr) 118 78 - 122 11/19/21 15:38 Dibromofluoromethane (Surr) 101 73-120 11/19/21 15:38

Lab Sample ID: LCS 240-513804/4

Matrix: Water

Analysis Batch: 513804

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 10.0 63 - 134 1,1-Dichloroethene 11.0 ug/L 110 10.0 cis-1,2-Dichloroethene 11.0 ug/L 110 77 - 123 10.0 13.0 *+ 130 Tetrachloroethene ug/L 76 - 123 75 - 124 trans-1,2-Dichloroethene 10.0 10.8 ug/L 108 Trichloroethene 10.0 9.54 ug/L 95 70 - 122 Vinyl chloride 10.0 11.1 ug/L 111 60 - 144

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 100 62 - 137 4-Bromofluorobenzene (Surr) 56 - 136 87 Toluene-d8 (Surr) 118 78-122 Dibromofluoromethane (Surr) 98 73-120

Lab Sample ID: 240-159953-2 MS

Matrix: Water

Analysis Batch: 513804

Client Sample ID: MW-103S_111021 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	10.0	10.4		ug/L		104	56 - 135	
cis-1,2-Dichloroethene	1.0	U	10.0	10.3		ug/L		103	66 - 128	
Tetrachloroethene	1.0	U *+	10.0	10.2		ug/L		102	62 - 131	
trans-1,2-Dichloroethene	1.0	U	10.0	10.4		ug/L		104	56 - 136	
Trichloroethene	1.0	U	10.0	8.59		ug/L		86	61 - 124	
Vinyl chloride	1.0	U	10.0	10.2		ug/L		102	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	85		56 - 136
Toluene-d8 (Surr)	115		78 - 122

Eurofins TestAmerica, Canton

Page 11 of 19

2

3

4

6

8

10

11 12

13

114

11/29/2021

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS)

1.0 U

101

Lab Sample ID: MB 240-513804/6

Matrix: Water

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Vinyl chloride

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Analyte

Analysis Batch: 513804

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB **Result Qualifier** RL MDL Unit D **Prepared** Analyzed Dil Fac 1.0 U 1.0 0.49 ug/L 11/19/21 15:38 1.0 U 1.0 0.46 ug/L 11/19/21 15:38 1.0 U 1.0 0.44 ug/L 11/19/21 15:38 1.0 U 0.51 ug/L 1.0 11/19/21 15:38 1.0 U 1.0 0.44 ug/L 11/19/21 15:38

0.45 ug/L

MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 105 11/19/21 15:38 4-Bromofluorobenzene (Surr) 81 56 - 136 11/19/21 15:38 Toluene-d8 (Surr) 118 78 - 122 11/19/21 15:38

1.0

Lab Sample ID: LCS 240-513804/4

Matrix: Water

Analysis Batch: 513804

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

11/19/21 15:38

11/19/21 15:38

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 10.0 63 - 134 1,1-Dichloroethene 11.0 ug/L 110 10.0 cis-1,2-Dichloroethene 11.0 ug/L 110 77 - 123 10.0 13.0 *+ 130 Tetrachloroethene ug/L 76 - 123 75 - 124 trans-1,2-Dichloroethene 10.0 10.8 ug/L 108 Trichloroethene 10.0 9.54 ug/L 95 70 - 122 Vinyl chloride 10.0 11.1 ug/L 111 60 - 144

73-120

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 100 62 - 137 4-Bromofluorobenzene (Surr) 56 - 136 87 Toluene-d8 (Surr) 118 78-122 Dibromofluoromethane (Surr) 73-120 98

Lab Sample ID: 240-159953-2 MS

Matrix: Water

Analysis Batch: 513804

Client Sample ID: MW-103S_111021 Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Red	Limits	
1,1-Dichloroethene	1.0	U	10.0	10.4		ug/L	104	56 - 135	
cis-1,2-Dichloroethene	1.0	U	10.0	10.3		ug/L	103	66 - 128	
Tetrachloroethene	1.0	U *+	10.0	10.2		ug/L	102	62 - 131	
trans-1,2-Dichloroethene	1.0	U	10.0	10.4		ug/L	104	56 - 136	
Trichloroethene	1.0	U	10.0	8.59		ug/L	86	61 - 124	
Vinyl chloride	1.0	U	10.0	10.2		ug/L	102	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	85		56 - 136
Toluene-d8 (Surr)	115		78 - 122

Eurofins TestAmerica, Canton

11/29/2021

Page 11 of 19

Project/Site: Ford LTP - Off-Site

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-159953-2 MS

Matrix: Water

Analysis Batch: 513804

Client Sample ID: MW-103S_111021

Prep Type: Total/NA

MS MS

Surrogate **%Recovery Qualifier** Limits Dibromofluoromethane (Surr) 96 73 - 120

Lab Sample ID: 240-159953-2 MSD

Matrix: Water

Analysis Batch: 513804

Client Sample ID: MW-103S 111021

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added Result Qualifier D %Rec Limits RPD Limit Analyte Unit 1.0 U 1,1-Dichloroethene 10.0 9.86 ug/L 99 56 - 135 5 26 cis-1,2-Dichloroethene 1.0 U 10.0 9.79 ug/L 98 66 - 128 5 14 1.0 U*+ Tetrachloroethene 10.0 9.63 ug/L 96 62 - 131 6 20 trans-1.2-Dichloroethene 1.0 U 10.0 9.82 ug/L 98 56 - 136 5 15 Trichloroethene 1.0 U 10.0 8.28 ug/L 83 61 - 124 4 15 Vinyl chloride 1.0 U 10.0 10.7 ug/L 107 43 - 157 24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		62 - 137
4-Bromofluorobenzene (Surr)	87		56 - 136
Toluene-d8 (Surr)	112		78 - 122
Dibromofluoromethane (Surr)	92		73 - 120

Lab Sample ID: MB 240-513962/6 Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 513962

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/20/21 15:30 cis-1.2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/20/21 15:30 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 11/20/21 15:30 1 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 11/20/21 15:30 Trichloroethene 1.0 U 1.0 0.44 ug/L 11/20/21 15:30 1 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/20/21 15:30

MB MB

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	62 - 137		11/20/21 15:30	1
4-Bromofluorobenzene (Surr)	76	<i>56</i> - 136		11/20/21 15:30	1
Toluene-d8 (Surr)	112	78 - 122		11/20/21 15:30	1
Dibromofluoromethane (Surr)	94	73 - 120		11/20/21 15:30	1

Lab Sample ID: LCS 240-513962/4

Matrix: Water

Analysis Batch: 513962

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

Analysis Buton: 010002	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	9.62		ug/L		96	63 - 134	
cis-1,2-Dichloroethene	10.0	10.4		ug/L		104	77 - 123	
Tetrachloroethene	10.0	10.5		ug/L		105	76 - 123	
trans-1,2-Dichloroethene	10.0	10.2		ug/L		102	75 - 124	
Trichloroethene	10.0	8.81		ug/L		88	70 - 122	

Eurofins TestAmerica, Canton

Page 12 of 19

11/29/2021

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-513962/4

Matrix: Water

Analysis Batch: 513962

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits Vinyl chloride 10.0 10.0 100 60 - 144 ug/L

%Rec.

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 97 62 - 137 4-Bromofluorobenzene (Surr) 79 56 - 136 Toluene-d8 (Surr) 113 78 - 122 Dibromofluoromethane (Surr) 73-120 93

Client Sample ID: Matrix Spike

Lab Sample ID: 240-160095-B-1 MS **Matrix: Water**

Analysis Batch: 513962

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 50 U 1,1-Dichloroethene 500 457 91 56 - 135 ug/L cis-1,2-Dichloroethene 50 U 500 478 96 66 - 128 ug/L 500 90 Tetrachloroethene 50 U 451 ug/L 62 - 131 trans-1,2-Dichloroethene 50 U 500 477 95 56 - 136 ug/L 500 79 Trichloroethene 50 U 396 ug/L 61 - 124Vinyl chloride 50 U 500 476 ug/L 95 43 - 157

MS MS Qualifier Limits %Recovery 62 - 137 96

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 84 56 - 136 78 - 122 Toluene-d8 (Surr) 113 Dibromofluoromethane (Surr) 91 73-120

> **Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA**

Matrix: Water

Lab Sample ID: 240-160095-B-1 MSD

Surrogate

Analysis Batch: 513962

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	50	U	500	486	-	ug/L		97	56 - 135	6	26
cis-1,2-Dichloroethene	50	U	500	481		ug/L		96	66 - 128	1	14
Tetrachloroethene	50	U	500	459		ug/L		92	62 - 131	2	20
trans-1,2-Dichloroethene	50	U	500	487		ug/L		97	56 - 136	2	15
Trichloroethene	50	U	500	399		ug/L		80	61 - 124	1	15
Vinyl chloride	50	U	500	504		ug/L		101	43 - 157	6	24

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 95 62 - 137 85 4-Bromofluorobenzene (Surr) 56 - 136 Toluene-d8 (Surr) 103 78 - 122 Dibromofluoromethane (Surr) 88 73-120

11/29/2021

Page 13 of 19

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off-Site

Lab Sample ID: MB 240-513480/4

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analyte 1,4-Dioxane

Analysis Batch: 513480

MB	MB						
Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
 2.0	U	2.0	0.86 ug/L			11/17/21 19:58	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 66 - 120 11/17/21 19:58 1,2-Dichloroethane-d4 (Surr) 84

Lab Sample ID: LCS 240-513480/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 513480

	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Red	Limits
1,4-Dioxane	10.0	9.37	ug/L	. 94	80 - 122

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120

Lab Sample ID: 240-159642-H-3 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 513480

Amaryolo Batolii 010100	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U F1	10.0	10.3		ug/L		103	51 - 153	

MS MS

Surrogate Limits %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 66 - 120

Lab Sample ID: 240-159642-M-3 MSD

Matrix: Water

Analysis Batch: 513480

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U F1	10.0	9.57		ug/L		96	51 - 153	7	16

MSD MSD

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 87

Eurofins TestAmerica, Canton

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1 Project/Site: Ford LTP - Off-Site

GC/MS VOA

Analysis Batch: 513480

Lab Sample ID 240-159953-2	Client Sample ID MW-103S 111021	Prep Type Total/NA	Matrix Water	Method 8260B SIM	Prep Batch
MB 240-513480/4	Method Blank	Total/NA	Water	8260B SIM	
LCS 240-513480/3	Lab Control Sample	Total/NA	Water	8260B SIM	
240-159642-H-3 MS	Matrix Spike	Total/NA	Water	8260B SIM	
240-159642-M-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	

Analysis Batch: 513804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-159953-2	MW-103S_111021	Total/NA	Water	8260B	
240-159953-2	MW-103S_111021	Total/NA	Water	8260B	
MB 240-513804/6	Method Blank	Total/NA	Water	8260B	
LCS 240-513804/4	Lab Control Sample	Total/NA	Water	8260B	
240-159953-2 MS	MW-103S_111021	Total/NA	Water	8260B	
240-159953-2 MSD	MW-103S_111021	Total/NA	Water	8260B	

Analysis Batch: 513962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-159953-1	TRIP BLANK_113	Total/NA	Water	8260B	
MB 240-513962/6	Method Blank	Total/NA	Water	8260B	
LCS 240-513962/4	Lab Control Sample	Total/NA	Water	8260B	
240-160095-B-1 MS	Matrix Spike	Total/NA	Water	8260B	
240-160095-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Lab Sample ID: 240-159953-1 Client Sample ID: TRIP BLANK_113

Date Collected: 11/10/21 00:00 **Matrix: Water**

Date Received: 11/12/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	513962	11/20/21 19:36	LEE	TAL CAN

Client Sample ID: MW-103S_111021 Lab Sample ID: 240-159953-2

Date Collected: 11/10/21 10:28 Date Received: 11/12/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	513804	11/19/21 16:23	LEE	TAL CAN
Total/NA	Analysis	8260B		1	513804	11/19/21 16:45	LEE	TAL CAN
Total/NA	Analysis	8260B SIM		1	513480	11/18/21 02:20	CS	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Matrix: Water

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off-Site

Job ID: 240-159953-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-22
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-22
lowa	State	421	06-01-23
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-22
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-22
Texas	NELAP	T104704517-18-10	08-31-22
Virginia	NELAP	11570	09-14-22
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

3

4

6

g

9

10

12

13

C. JGAN

DATA VERIFICATION REPORT

November 29, 2021

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30080642.402.04 WA03 OFF-SITE GW Event Specific Scope of Work References: Sample COC

Laboratory: TestAmerica - North Canton

Laboratory submittal: 159953-1 Sample date: 2021-11-10

Report received by CADENA: 2021-11-29

Initial Data Verification completed by CADENA: 2021-11-29

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch 513804 LCS recovery was outlying biased high for the following analyte: TETRACHLOROETHENE. Associated client sample results were non-detect so qualification was not required based on this high bias QC outlier.

GCMS VOC QC batch CCV response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

Reportable Results Only

CADENA Project ID: E203631

Laboratory: TestAmerica - North Canton Laboratory Submittal: 159953-1

Valid	ualifier			1	1	;	;	;	i		1
	Units Q			l/gn	l/gn	l/gn	l/gn	ng/l	l/gn		l/gn
Report				1.0	1.0	1.0	1.0	1.0	1.0		2.0
	Result			ND	ND	ND	ND	P	ND		ND
Valid	Qualifier			ł	ł	ł	ł	ł	ł		
	Units			l/gu	l/gu	l/gn	l/gn	l/gu	l/gn		
Report	Limit			1.0	1.0	1.0	1.0	1.0	1.0		
	Result			ND	ND	ND	ND	ND	ND		
	Cas No.			75-35-4	156-59-2	127-18-4	156-60-5	79-01-6	75-01-4		123-91-1
	Analyte	GC/MS VOC	OSW-8260B	1,1-Dichloroethene	cis-1,2-Dichloroethene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride	OSW-8260BBSim	1,4-Dioxane
	Report Valid Report Valid	Report Valid Report Cas No. Result Limit Units Qualifier Result Limit Units C	Report Valid Report Result Limit Units Qualifier Result Limit	Report Valid Report Analyte Cas No. Result Limit Units Qualifier Result Limit SW-8260B	Report Valid Report Analyte Cas No. Result Limit Units Qualifier Result Limit	Report Valid Report Report	Report Valid Report Report Valid Report	Report Valid Report Result Limit Units Qualifier Result Limit Limi	SW-8260B Analyte Cas No. Result Limit Limit Units Oualifier Result Limit Limit Limit Limit Units Oualifier Result Limit Limit Limit Limit Limit Units Oualifier Result Limit	Report Valid Report Report Report Report Report	SSW-8260B Report Valid Report 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l ND 1.0 rtans-1,2-Dichloroethene 127-18-4 ND 1.0 ug/l ND 1.0 rtans-1,2-Dichloroethene 126-59-2 ND 1.0 ug/l ND 1.0 rtans-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l ND 1.0 rtrichloroethene 79-01-6 ND 1.0 ug/l ND 1.0 Vinyl chloride 75-01-4 ND 1.0 ug/l ND 1.0 NSW-8260BSim 1.0 ug/l ND 1.0 1.0 1.0

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-159953-1

CADENA Verification Report: 2021-11-29

Analyses Performed By: TestAmerica North Canton, Ohio

Report # 43709R Review Level: Tier III Project: 30080642.402.04

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-159953-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Analysis	
Sample ID	Lab ID	Matrix	Date	Parent Sample	VOC	VOC SIM
TRIP BLANK_113	240-159953-1	Water	11/10/21		Х	
MW-103S_111021	240-159953-2	Water	11/10/21		Х	Х

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	Reported		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B and 8260B SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation (Q) Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B/8260B-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial / Continuing	Lab file ID	Compound	Criteria
TRIP BLANK_113		UXJ2427.D	Vinyl chloride	+22.0%
	Continuous Calibration		Vinyl chloride	+30.0%
MW-103S_111021	Verification %D	UXJ2365.D	cis-1,2-Dichloroethene	+20.5%
			Tetrachloroethene	+21.1%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
Initial and Continuing	RRF <0.05	Non-detect	R
Calibration	KKF <0.00	Detect	J

DATA REVIEW

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.01 ¹	Non-detect	R
	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF >0.05 01 KKF >0.01	Detect	NO ACTION
	%RSD > 20% or a correlation coefficient	Non-detect	UJ
Initial Calibration	<0.99	Detect	J
miliai Calibration	0/ DCD > 000/	Non-detect	R
	%RSD > 90%	Detect	J
	0/D 200/ (increase in consist it.)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuin Collination	0/D 200/ (dans is a sasibility)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	0/D . 000/ /increase/decrease in a	Non-detect	R
	%D > 90% (increase/decrease in sensitivity)	Detect	J

Note:

Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

¹RRF of 0.01 only applies to compounds which are typically poor responding compounds

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260B/8260B-SIM		Reported		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation					<u> </u>	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD					Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		X		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: December 14, 2021

PEER REVIEW: Andrew Korycinski

DATE: December 14, 2021

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Z S

Chain of Custody Record

TestAmerica

TestAmerica Laboratory location: Brighton — 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

TestAmerica Laboratories, Inc COC No: 3 VOAs for 8260B 3 VOAs for 8260B SIM 85. 85. Sample Specific Notes / Special Instructions: 9 1 Trip Blank = 5 or lab use on Walk-ın client ab sampling fob/SDG No: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return to Client Disposal By Lab
Archive For Months Sompany Pricaclis 冰 MIS 80628 enexoiQ-P, Company: Lab Contact: Mike DelMonico Company. linyl Chloride 8260B Telephone: 330-497-9396 × \vee .CE 8500B × 809Z8 3D × × × Stayang rans-1,2-DCE 8260B × 8-1'S-DCE 8500B Received in Laboratory by: × × 1-DCE 8560B Other O=da1D \ D=site=G O 5 500 Mitered Sample (Y / N) 2 Site Contact: Julia McClafferty RCRA Other: Analysis Turnaround Time 302 Unpres Received by 2 weeks 1 week 2 days 1 day Telephone: 734-644-5131 HOAV /aAnZ HORN NPDES 0 HCI 10 day 0260 000 11-11-21 1046 EONH HSSO4 0 2 2 2 Date/fime
Date/fime Other: Š bilos tasmibs Email: kristoffer.hinskey@arcadis.com Sampler Name: COMUMENT Unknown snoanby X Client Project Manager: Kris Hinskey 414 Regulatory program: Sample Time Method of Shipment/Carrier: 92 01 Company Telephone: 248-994-2240 Submit all results through Cadena at įtomalia@cadenaco.com Cadena #E203631 Level IV Reporting requested Shipping/Tracking No: Company Pr(ad15 Poison B 102 Sample Date Company on Irritant の別 pecial Instructions/QC Requirements & Comments: gap Client Contact MW-1035_111021 Address: 28550 Cabot Drive, Suite 500 TRIP BLANK_ 113 JOHNNON Project Number: 30080642.402.04 roject Name: Ford LTP Off-Site , ک Possible Hazard Identification

Non-Hazard City/State/Zip: Novi, MI, 48377 Company Name: Arcadis PO# 30080642,402,04 Phone: 248-994-2240 clinquished by-Relinquished by-Relinquished by-

7/7 N 2000 Taskinneria Laboratoria, Inc. Al 1916 treamed Constituenta & Deapp, "se pradoments of Technorics Laboratories, Inc. 5/7 1/7 1/7

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-159953-1

Project/Site: Ford LTP - Off-Site

Client Sample ID: TRIP BLANK_113

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

1.0 U

Lab Sample ID: 240-159953-1 Date Collected: 11/10/21 00:00 **Matrix: Water**

RL

1.0

MDL Unit

0.49 ug/L

D

Prepared

Analyzed

11/20/21 19:36

Dil Fac

Matrix: Water

Date Received: 11/12/21 08:00

Analyte

1,1-Dichloroethene

cis-1,2-Dichloroethene	1.0 U	1.0	0.46 ug/L	11/20/21 19:36	1
Tetrachloroethene	1.0 U	1.0	0.44 ug/L	11/20/21 19:36	1
trans-1,2-Dichloroethene	1.0 U	1.0	0.51 ug/L	11/20/21 19:36	1
Trichloroethene	1.0 U	1.0	0.44 ug/L	11/20/21 19:36	1
Vinyl chloride	1.0 U	1.0	0.45 ug/L	11/20/21 19:36	1
Surrogate	%Recovery Qualifier	Limits		Prepared Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)		Limits 62 - 137		Prepared Analyzed 11/20/21 19:36	
1,2-Dichloroethane-d4 (Surr)	108	62 - 137		11/20/21 19:36	

Client Sample ID: MW-103S_111021 Lab Sample ID: 240-159953-2

Date Collected: 11/10/21 10:28

Date Received: 11/12/21 08:00

Method: 8260B SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/18/21 02:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		66 - 120					11/18/21 02:20	

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/19/21 16:23	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/19/21 16:23	1
Tetrachloroethene	1.0	U **	1.0	0.44	ug/L			11/19/21 16:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/19/21 16:23	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/19/21 16:23	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/19/21 16:23	1

Surrogate	%Recovery Qual	lifier Limits	Prepared Analyzed Dil	I Fac
1,2-Dichloroethane-d4 (Surr)	99	62 - 137	11/19/21 16:23	
1,2-Dichloroethane-d4 (Surr)	95	62 - 137	11/19/21 16:45	
4-Bromofluorobenzene (Surr)	75	56 ₋ 136	11/19/21 16:23	
4-Bromofluorobenzene (Surr)	73	56 ₋ 136	11/19/21 16:45	
Toluene-d8 (Surr)	108	78 - 122	11/19/21 16:23	
Toluene-d8 (Surr)	108	78 - 122	11/19/21 16:45	
Dibromofluoromethane (Surr)	94	73 - 120	11/19/21 16:23	
Dibromofluoromethane (Surr)	94	73 - 120	11/19/21 16:45	