

Environmental Quality Office Sustainability, Environment & Safety Engineering

Ford Motor Company Fairlane Plaza North 290 Town Center Drive, Suite 800 Dearborn, MI 48126

March 14, 2019

Mr. Paul Owens
District Supervisor, Southeast Michigan District Office
MDEQ Remediation and Redevelopment Division
27700 Donald Court
Warren, Michigan 48092-2793
owensp@michigan.gov

VIA E-MAIL

Re: Ford Livonia Transmission Plant

Additional Response to MDEQ Letter dated February 1, 2019

Dear Paul:

On behalf of Ford Motor Company (Ford), this letter and the attached memo from Arcadis dated March 14, 2019 provide updated information to Ford's March 11, 2019 and February 8, 2019 responses to your February 1, 2019 letter regarding MDEQ review of shallow groundwater data collected in accordance with MDEQ-approved Response Activity Plan-Vapor Intrusion Evaluation and MDEQ's November 27, 2018 letter.

We remain fully committed to protecting human health and the environment. Importantly, as previously shared with you, all indoor air sampling, sub-slab sampling, and sump sampling (if a sump exists) shows no detection of vinyl chloride in the residential neighborhood.

If you have any questions, please feel free to contact me.

Sincerely,

Todd M. Walton

Manager, Global Site Assessment & Remediation

cc: Mr. Kris Hinskey, Arcadis

Mr. Shawn Collins, The Collins Law Firm, PC

Mr. Paul Bernier, City of Livonia

Senator Dayna Polehanki

Representative Laurie Pohutsky

Mr. Brian Negele, MDAG

Mr. Aaron Cooch, DHHS

Ms. Alexandra Rafalski, DHHS

Mr. Darren Bowling, MDEQ

Ms. Cyndi Mollenhour, MDEO

Ms. Krista Reed, MDEQ

Ms. Beth Vens MDEQ

Mr. Brandon Alger, MDEO

MEMO

Paul Owens, District Supervisor MDEQ SE Michigan District Office 27700 Donald Court

Warren, Michigan 48092-2793

owensp@michigan.gov

Copies:

Mr. Brian Negele, MOAG Mr. Darren Bowling, MDEQ Ms. Cyndi Mollenhour, MDEQ

Ms. Beth Vens, MDEQ
Ms. Krista Reed, MDEQ
Mr. Brandon Alger, MDEQ

Mr. Todd Walton, Ford

Arcadis of Michigan, LLC 28550 Cabot Drive

Suite 500 Novi

Michigan 48377 Tel 248 994 2240 Fax 248 994 2241

From:

Kris Hinskey

Mitch Wacksman

Joseph Quinnan

Date: Arcadis Project No.:

March 14, 2019 MI001454.0007

Subject:

Livonia Transmission Plant
Memo – Multiple Lines of Evidence Supporting Monitoring at Specific Properties
36200 Plymouth Road, Livonia, Wayne County, Michigan MDEQ Site ID No. 82002970

On behalf of Ford Motor Company (Ford), this memo has been prepared by Arcadis of Michigan, LLC for the Livonia Transmission Plant (LTP) site (site) to update our March 11, 2019 memo based on recent shallow groundwater data results. This memo summarizes the key elements of the off-site conceptual model and provides multiple lines of evidence to support continued monitoring rather than pre-emptive mitigation at the following properties as shown on **Figure 1**:

- 34990 Beacon (Attachment 1)
- 34682 Beacon (Attachment 2)
- 34591 Beacon (Attachment 3)
- 12017 Brewster (Attachment 4)
- 34367 Capitol (Attachment 5)
- 34480 Capitol (Attachment 6)
- 34940 Beacon (Attachment 7)

In a letter dated February 1, 2019, MDEQ provided site-specific groundwater criteria for volatilization to indoor air pathway (VIAP). Based on that letter, the threshold for pre-emptive mitigation for buildings with crawlspaces or slab-on-grade construction groundwater concentrations with groundwater depths greater than 1.18 meters (3.9 ft) below grade is 1.4 μ g/L. The corresponding threshold for groundwater in contact (GWIC), or groundwater levels less than 1.18 meter (3.9 ft) is 1.0 μ g/L.

Consistent with ongoing discussions related to the implementation of the "Response Activity Plan – Vapor Intrusion Evaluation" that was approved with modification on August 30, 2018 as part of the July 27, 2017 Consent Decree for the site, additional shallow groundwater monitoring wells have been installed in the neighborhood east of the LTP to evaluate the potential vapor intrusion to indoor air pathway (VIAP). Based on agreement with Michigan Department of Environmental Quality (MDEQ), shallow groundwater wells would be installed at each property where sub-slab soil vapor samples could not be collected due to limitations in building construction (i.e., crawl spaces) or the presence of shallow groundwater that may be in contact with a structure. These shallow groundwater data were used to update the "delineation line" and 100-foot off-set line and presented to MDEQ on March 11, 2019.

The off-site conceptual site model (CSM) and property-specific CSMs are presented in the following sections.

Off-Site Conceptual Site Model

The Conceptual Site Model (CSM), Livonia Transmission Plant (August 2017) summarized the results of ongoing characterization activities on- and off-site. The following paragraphs summarize key features of the CSM, including data collected through March 8, 2019.

Figure 2 (from the 4th Quarterly Progress Report 2018) presents groundwater sampling results from the 19 off-site groundwater monitoring well network installed to monitor vinyl chloride impacts. The majority of these wells were constructed at intermediate (7 to 14 ft) and deep (14 to 20 ft) intervals to monitor the vinyl chloride impacts based on the 3D interpretations. Results indicate that wells demonstrating detectable levels of vinyl chloride north of Beacon Street are consistent in measured concentrations. Wells demonstrating non-detectable concentrations (or qualified detections less than 1 μ g/L) are also consistently non-detect. Data collected since monitoring began in the third quarter of 2017 are consistent, indicating that the lateral extents of impacts are generally stable. **Table 1** summarizes the groundwater sampling results from the quarterly events and recent shallow monitoring well sampling.

Figure 3 shows the results of shallow groundwater monitoring (i.e. water table wells with samples collected within the upper 2-feet of the water column) completed between December 2018 and March 2019 at 98 locations. The green circles indicate shallow wells where vinyl chloride was not detected above 1.0 μg/L. Orange circles highlight shallow wells where vinyl chloride was detected above 1.0 μg/L, ranging from 1.0 to 7.8 μg/L. This figure also shows a delineation line (shown as a blue dashed line), which defines the extents of vinyl chloride impacts in groundwater less than 1 μg/L, and a 100 foot off-set line (shown as an orange dashed line), which illustrates the 100-ft buffer. It is notable that concentrations of vinyl chloride greater than 1.0 μg/L are limited to two locations along Boston Post, where sumps exist, and seven locations near the northern end of Brewster Street.

Figure 4 illustrates the geologic cross section and groundwater sampling results along an east-west line parallel to Beacon Street. The vertical extents of vinyl chloride impacts were mapped using VAP sampling, quarterly monitoring wells, and recently installed shallow monitoring wells within 75 feet of the cross-section line. The geology is depicted using a gray-scale based on the hydraulic profiling (HPT) data completed as part of the initial delineation effort. In general, the gray scale illustrates the permeable sand zones (white), the silty to clayey fine-sand zones (gray) and clay zones (black). The cross-section map of

the vinyl chloride impacts in groundwater is consistent with the CSM 3D model, which shows the primary vinyl chloride impacts in the intermediate and deeper intervals of the shallow aquifer (CSM Report, 2017). Addition of the shallow monitoring well sampling results to the cross-section aids in understanding the vertical distribution of shallow vinyl chloride impacts. Near the two Boston Post well locations, the surrounding shallow wells are less than 1 ug/L; apparently the deeper impacts are pulled upward in response to pumping at sumps in this area. Near Brewster Street, the aquifer thins, and vinyl chloride distributions follow the underlying clay topography, which rises in elevation. This explains the shallow groundwater impacts on Boston Post and along Brewster Street.

The lateral extents of vinyl chloride in groundwater have been consistent over six consecutive quarters of monitoring. Recent shallow groundwater data corroborate the CSM interpretations that shallow groundwater vinyl chloride impacts are limited – 9 wells out of 98 shallow wells sampled through March 8, 2019 showed concentrations above the reporting limit of 1.0 μ g/L. The two areas of shallow groundwater impacts are explained by the off-site CSM. The two wells along Boston Post appear to be related to pumping at sumps, which would draw deeper water upward. The shallow impacts in wells along Brewster Street are caused by the thinning of the aquifer due to clay topography and shallow depths to groundwater.

Figure 5 presents the 2018 results of the soil vapor monitoring program that was implemented beginning in 2017 as part of the Response Action Plan – Vapor Intrusion (2017). None of the soil vapor monitor points (SVMPs) collected over 8 consecutive quarters have shown detectable concentrations of vinyl chloride in soil vapor. Reporting limits were consistently in single digit microgram per cubic meter (μg/m³), which is more than one order of magnitude below MDEQ provide residential volatilization to indoor air screening level of 54 μg/m³. Arcadis collected SVMPs at low flow rates using helium tracers in accordance with MDEQ Vapor Intrusion Guidance (2013). The lack of observed helium leakage above the 5% threshold prescribed in the guidance indicates that the sampling results are valid, even in shallow groundwater conditions. The fact that up to 8 repeat events at individual SVMP locations were consistently non-detect reflects the fact that only two areas vinyl chloride impacts were encountered in shallow groundwater and is consistent with the low-levels encountered.

Site Specific Conceptual Site Models

Site specific CSMs were developed for each of the 6 properties to document site conditions and evaluate multiple lines of evidence that support continued monitoring in lieu of pre-emptive mitigation at this time. Data considered in the evaluation includes depth to groundwater, groundwater quality data, indoor air and sub-slab soil vapor sampling, and exterior soil vapor sampling. Each of these properties are located between the delineation line (1 μ g/L) and the 100-foot offset. The site specific CSMs are provided in **Attachment 1** through **Attachment 7**. **Figure 6** shows the property address and building structure type superimposed on the shallow groundwater monitoring results for reference.

Quarterly groundwater gauging and elevation measurements have been performed on monitoring wells in the area since May 2017. As shown on **Figure 3**, monitoring wells MW-74S, MW-84S, MW-79SR, MW-78S, MW-80SR, MW-81S, MW-82SR, MW-83, and MW-85 are in the area under consideration for pre-emptive mitigation. Historical groundwater elevations varied across a range between approximately 1.3 and 3.1 ft at these wells since May 2017. However, groundwater elevations in the 4th quarter 2018 are higher than in 2017, resulting a range between 0.14 and 1.4 ft less than maximum observed elevations at these wells. Groundwater elevation ranges for each of the properties are presented in the site-specific CSMs.

Three of the properties have structures with crawlspaces or slab-on-grade construction with depth to water greater than 1.18 meters (3.9 feet) as prescribed in MDEQ letter dated February 1, 2019, indicating that the site-specific screening level for vinyl chloride for these properties should be 1.4 µg/L.

- 34682 Beacon
- 34367 Capitol
- 34480 Capitol

Because each of these structures is located between the 1.0 μ g/L and buffer line, the groundwater concentrations are below the 1.4 μ g/L site-specific screening level provide by MDEQ for crawlspaces and slab-on-grade structures. Both 34367 and 34480 Capitol (**Attachment 5** and **Attachment 6**, respectively) are on the 100-ft offset from the 1.0 μ g/L delineation line. 34682 Beacon (**Attachment 2**) has a monitoring well adjacent to the building that was non-detect (e.g. less than 1.0 μ g/L). Based on data collected for the vapor intrusion evaluation (indoor air and/or sub-slab as appropriate), none of the buildings on each of the properties showed vinyl chloride concentrations above detectable levels. Therefore, it is appropriate to continue to monitor groundwater and complete the vapor intrusion evaluation in accordance with the Response Activity Plan – Vapor Intrusion Evaluation.

Two properties have a partial or full basement, but groundwater depths are such that it is not in contact with the structure:

- 34990 Beacon
- 34940 Beacon

At 34990 and 34940 Beacon (**Attachment 1** and **Attachment 7**, respectively), vinyl chloride was not detected in groundwater above the reporting limit of 1.0 μ g/L. Exterior soil vapor has been collected within 100 feet of the residences and vinyl chloride has not been detected over eight rounds of sampling at SVMP-08 conducted between 2017 and 2018. Indoor air samples have been collected at the properties, and vinyl chloride has not been detected in any of the samples. Therefore, it is appropriate to continue to monitor groundwater and complete the vapor intrusion evaluation in accordance with the Response Activity Plan – Vapor Intrusion Evaluation.

Two of the properties have crawlspaces and/or slab-on-grade structures, with depth to water measured at less than 1.18 m including:

- 34591 Beacon
- 12017 Brewster

In each of these cases it is necessary to evaluate the site-specific multiple lines of evidence to determine whether pre-emptive mitigation is warranted. As presented in **Attachment 3** and **Attachment 4**, multiple lines of evidence are available to aid in the evaluation of each property. Based on soil borings and groundwater gauging, groundwater does not appear to be in contact with any of the structures or the associated footers. Vinyl chloride was not detected above the reporting limit of 1.0 µg/L in groundwater sampling at 34591 Beacon and 12017 Brewster. Exterior soil vapor has been collected within 70 feet of each residence and vinyl chloride has not been detected over eight rounds of sampling conducted between 2017 and 2018. Indoor air samples have been collected from crawl spaces, and first floors of each property, as appropriate, and vinyl chloride has not been detected in any of the samples.

Therefore, it is appropriate to continue to monitor groundwater and complete the vapor intrusion evaluation in accordance with the Response Activity Plan – Vapor Intrusion Evaluation.

Closing

All indoor air sampling, sub-slab sampling, and sump sampling (if a sump exists) shows no detection of vinyl chloride in the residential neighborhood. We believe that a data-driven, multiple lines of evidence approach is protective of the community.

Ford will continue to implement the vapor intrusion assessment including groundwater sampling consistent with the Response Action Plan - Vapor Intrusion Evaluation. If groundwater data changes or multiple lines of evidence indicate that a different approach is warranted, Arcadis will notify the MDEQ.

TABLE

					Location:	MW-72	MW-72	MW-72	MW-72	MW-72S	MW-73D	MW-73D	MW-73D	MW-73D	MW-73S	MW-73S	MW-73S	MW-73S	MW-73SR
					Date:	2/6/2018	5/9/2018	8/10/2018	10/22/2018	12/17/2018	2/6/2018	5/9/2018	8/10/2018	10/22/2018	2/6/2018	5/9/2018	8/10/2018	10/22/2018	12/17/2018
				Sa	mple Name:	MW-72-020618	MW-72_050818	MW-72_081018	MW-72_102218	MW-72S-121718	MW-73D-020618	MW-73D_050918	MW-73D_081018	MW-73D_102218	MW-73S-020618	MW-73S_050818	MW-73S_081018	MW-73S_102218	MW-73SR- 121718
			S	creen Inter	val (ft. bgs):	15-20	15-20	15-20	15-20	3-13	13.5-18.5	13.5-18.5	13.5-18.5	13.5-18.5	7-12	7-12	7-12	7-12	2.5-12.5
					Lab SDG #:	91361-1	95403-1	99859-1	103231-1	106083-1	91361-1	95547-1	99859-1	103231-1	91361-1	95403-1	99859-1	103231-1	106083-1
analytic_method	chemical_name	fraction	n cas_rn	Ford_LTF _Offsite Res DW	NON-RES														
SW8468260BBYSIM	1,4-Dioxane	T	123-91-1	7.2	350	0.78 J	0.32 J	1.1 J	1.4 J	< 2.0	1.5 J	3.0	1.9 J	3.8	< 2.0	< 2.0	< 2.0	0.86 J	0.87 J
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.43 J	0.35 J	0.56 J	0.19 J	1.3	1.3	1.5	1.7	2.3
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	0.43 J
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.33 J	0.38 J	0.51 J	0.46 J	0.29 J
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	1.3	1.5 J	1.2	1.1	< 1.0	0.79 J	0.80 J	0.75 J	< 1.0	1.1	1.2	0.62 J	0.96 J	1.7

					Location:	MW-74	MW-74	MW-74	MW-74	MW-74S	MW-75D	MW-75D	MW-75D	MW-75D	MW-75S	MW-75S	MW-75S	MW-75S	MW-75SR
					Date:	2/6/2018	5/9/2018	8/9/2018	10/22/2018	12/21/2018	2/6/2018	5/9/2018	8/9/2018	10/22/2018	2/6/2018	5/9/2018	8/9/2018	10/22/2018	12/18/2018
				Saı	mple Name:	MW-74-020618	MW-74_050918	MW-74_080918	MW-74_102218	MW-74S-122118	MW-75D-020618	MW-75D_050918	MW-75D_080918	MW-75D_102218	MW-75S-020618	MW-75S_050918	MW-75S_080918	MW-75S_102218	MW-75 SR- 121818
			S	creen Interv	val (ft. bgs):	14-19	14-19	14-19	14-19	3-13	12-17	12-17	12-17	12-17	5-10	5-10	5-10	5-10	2.5-12.5
					Lab SDG #:	91361-1	95547-1	99859-1	103231-1	106317-1	91361-1	95547-1	99859-1	103231-1	91361-1	95547-1	99859-1	103231-1	106083-2
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	T	123-91-1	7.2	350	0.66 J	0.34 J	1.6 J	2.0	< 2.0	0.91 J	0.65 J	2.0	2.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	0.42 J	0.96 J	0.41 J	0.45 J	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene) T	156-60-5	100	100	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	2.0	0.70 J	2.8	2.2	< 1.0	1.9	2.4	1.8	1.7	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0

					Location:	MW-76	MW-76	MW-76	MW-76	MW-76S	MW-77	MW-77	MW-77	MW-77	MW-77S	MW-78	MW-78	MW-78	MW-78
					Date:	2/6/2018	5/10/2018	8/9/2018	10/22/2018	12/21/2018	2/8/2018	5/11/2018	8/6/2018	10/23/2018	12/27/2018	2/8/2018	5/8/2018	8/6/2018	10/22/2018
				Sa	mple Name:	MW-76-020618	MW-76_051018	MW-76_080918	MW-76_102218	MW-76S- MS/MSD-122118	MW-77_020818	MW-77_051118	MW-77_080618	MW-77_102318	MW-77S_122718	MW-78_020818	MW-78_050818	MW-78_080618	MW-78_102218
			S	creen Inter	val (ft. bgs):	15-20	15-20	15-20	15-20	4.5-14.5	9-14	9-14	9-14	9-14	2.5-12.5	7-12	7-12	7-12	7-12
					Lab SDG #:	91361-1	95547-1	99859-1	103231-1	106318-1	91428-1	95547-1	99575-1	103472-1	106464-1	91428-1	95403-1	99575-1	103230-1
analytic_method	Land				I NON-PES I														
SW8468260BBYSIM	1,4-Dioxane	T	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	< 2.0	0.27 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.90 J
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	2.2	2.6	2.2	1.8	< 1.0	0.66 J	0.54 J	0.61 J	0.74 J	< 1.0	< 1.0	< 1.0	0.28 J	0.26 J
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	0.35 J	0.35 J	0.25 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.24 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

See Notes on Page 5

					Location:	MW-78S	MW-79D	MW-79D	MW-79D	MW-79D	MW-79S	MW-79S	MW-79S	MW-79S	MW-79SR	MW-80S	MW-80S	MW-80S	MW-80S
																_			
					Date:	12/19/2018	2/8/2018	5/8/2018	8/6/2018	10/24/2018	2/8/2018	5/8/2018	8/6/2018	10/30/2018	12/19/2018	2/8/2018	5/8/2018	8/6/2018	10/22/2018
				Sai	mple Name:	MW-78S_121918	MW-79D_020818	MW-79D_050818	MW-79D_080618	MW-79_102418	MW-79S_020818	MW-79S_050818	MW-79S_080618	MW-79S_103018	MW-79SR- 121918	MW-80S_020818	MW-80S_050818	MW-80S_080618	MW-80S_102218
			S	creen Interv	val (ft. bgs):	2.5-12.5	10-15	10-15	10-15	10-15	5-10	5-10	5-10	5-10	2.5-12.5	7-12	7-12	7-12	7-12
					Lab SDG #:	106260-1	91428-1	95403-1	99575-1	103472-1	91428-1	95403-1	99575-1	103818-1	106257-1	91428-1	95403-1	99575-1	103230-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	T	123-91-1	7.2	350	< 2.0	< 2.0	0.49 J	0.87 J	0.95 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.33 J	0.46 J	< 2.0	1.2 J
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	< 1.0	1.9	3.5	2.8	1.3	< 1.0	< 1.0	< 1.0	< 1.0	0.56 J	2.9	6.3	6.2	4.1

					Lesotions	MW-80SR	MW-81	MW-81	MW-81	MW-81	MW-81S	MW-82D	MW-82D	MW-82D	MW-82D	MW-82S	MW-82S	MW-82S	MW-82S
					Location:														
					Date:	12/27/2018	2/6/2018	5/10/2018	8/9/2018	10/23/2018	12/26/2018	2/6/2018	5/10/2018	8/8/2018	10/23/2018	2/6/2018	5/10/2018	8/8/2018	10/23/2018
				Sa	mple Name:	MW- 80SR_122718	MW-81-020618	MW-81_051018	MW-81_080918	MW-81_102318	MW-81S_122618	MW-82D-020618	MW-82D_051018	MW-82D-080818	MW-82D_102318	MW-82S-020618	MW-82S_051018	MW-82S-080818	MW-82S_102318
			S	creen Inter	val (ft. bgs):	2.5-12.5	8-13	8-13	8-13	8-13	2.5-12.5	18-23	18-23	18-23	18-23	9-14	9-14	9-14	9-14
					Lab SDG #:	106467-1	91361-1	95547-1	99859-1	103472-1	106456-1	91361-1	95547-1	99733-1	103472-1	91361-1	95547-1	99733-1	103472-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	; T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	T	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	1.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-82SR	MW-83	MW-83	MW-83	MW-83	MW-83S	MW-84	MW-84	MW-84	MW-84	MW-84S	MW-85	MW-85	MW-85
					Date:	12/26/2018	2/8/2018	5/11/2018	8/8/2018	10/22/2018	12/26/2018	2/8/2018	5/8/2018	8/6/2018	10/23/2018	12/21/2018	2/8/2018	5/8/2018	8/8/2018
				Sa	mple Name:	MW- 82SR_122618	MW-83_020818	MW-83_051118	MW-83-080818	MW-83_102218	MW-83S- MS/MSD_122618	MW-84_020818	MW-84_050818	MW-84_080618	MW-84_102318	MW-84S-122118	MW-85_020818	MW-85_050818	MW-85-080818
			S	creen Inter	val (ft. bgs):	5-15	8-13	8-13	8-13	8-13	3-13	8-13	8-13	8-13	8-13	2.5-12.5	8-13	8-13	8-13
					Lab SDG #:	106456-1	91428-1	95547-1	99733-1	103230-1	106456-1	91428-1	95403-1	99575-1	103472-1	106318-1	91428-1	95403-1	99733-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	T	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	0.92 J	< 2.0	< 2.0	< 2.0	< 2.0	0.86 J	< 2.0	0.41 J	0.45 J	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	T	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.23 J	< 1.0	< 1.0	0.14 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.5	7.5	7.2

See Notes on Page 5

					Location:	MW-85	MW-85S	MW-86	MW-86	MW-86	MW-86	MW-86S	MW-87	MW-87	MW-87	MW-87	MW-87S	MW-88S	MW-89S
					Date:	10/22/2018	12/21/2018	2/8/2018	5/10/2018	8/6/2018	10/24/2018	12/18/2018	2/8/2018	5/10/2018	8/6/2018	10/23/2018	12/21/2018	12/17/2018	12/19/2018
				Sa	mple Name:	MW-85_102218	MW-85S-122118	MW-86_020818	MW-86_051018	MW-86_080618	MW-86_102418	MW-86S-121818	MW-87_020818	MW-87_051018	MW-87_080618	MW-87_102318	MW-87S-122118	MW-88S-121718	MW-89S-121918
			S	creen Inter	val (ft. bgs):	8-13	2.5-12.5	12-17	12-17	12-17	12-17	2.5-12.5	14-19	14-19	14-19	14-19	4.5-14.5	3-13	3-13
	Ford LTP				Lab SDG #:	103230-1	106318-1	91428-1	95547-1	99575-1	103472-1	106083-2	91428-1	95547-1	99575-1	103472-1	106317-1	106083-1	106257-1
analytic_method	method chemical name fraction cas rn Offsite (D				NON-RES														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	1.0 J	1.1 J	< 2.0	1.2 J	< 2.0	1.4 J	< 2.0	< 2.0	< 2.0	< 2.0	0.88 J	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	5.5	7.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-90S	MW-91S	MW-92S	MW-93S	MW-94S	MW-94S	MW-95S	MW-96S	MW-97S	MW-98S	MW-99S	MW-100S	MW-101S	MW-102
					Date:	12/27/2018	12/28/2018	12/19/2018	12/17/2018	12/21/2018	12/21/2018	12/19/2018	12/18/2018	12/27/2018	12/19/2018	12/21/2018	12/18/2018	12/21/2018	12/19/2018
				Sa	mple Name:	MW-90S_122718	MW-91S_122818	MW-92S-121918	MW-93S-121718	MW-94S-122118	DUP-02-122118	MW-95S-121918	MW-96S-121818	MW-97S_122718	MW-98S_121918	MW-99S-122118	MW-100S- 121818	MW-101S- 122118	MW-102_121918
			S	creen Inter	val (ft. bgs):	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	3-13	3-13	4.5-14.5	10-15
					Lab SDG #:	106467-1	106462-1	106257-1	106083-1	106317-1	106317-1	106257-1	106083-2	106464-1	106260-1	106317-1	106083-2	106318-1	106260-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	1.7 J
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	0.16 J	0.18 J	< 1.0	< 1.0	< 1.0	< 1.0	0.94 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	0.22 J	< 1.0	1.6

					Location:	MW-102	MW-102S	MW-102S	MW-103S	MW-104S	MW-105S	MW-105S	MW-106S	MW-107S	MW-108S	MW-109S	MW-110S	MW-111S	MW-112S
					Date:	2/25/2019	12/19/2018	2/25/2019	2/5/2019	2/5/2019	12/26/2018	2/25/2019	12/19/2018	12/26/2018	12/26/2018	12/28/2018	2/5/2019	2/4/2019	12/28/2018
				90	mple Neme	MW-102 022519	MW-	MW-	MW-103S-	MW-104S-	MW-	MW-	MW-	MW-	MW-	MW-	MW-110S-	MW-	MW-
				Sa	imple Name.	MINA-107-05518	102S_121918	1028_022519	020519	020519	105S_122618	1058_022519	106S_121918	107S_122618	108S_122618	109S_122818	020519	1118_020419	112S_122818
			S	creen Inter	val (ft. bgs):	10-15	2.5-12.5	2.5-12.5	2-7	9-14	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	8-13	8-13	2.5-12.5
					Lab SDG #:	108565-1	106260-1	108565-1	107779-1	107781-1	106468-1	108565-1	106260-1	106456-1	106468-1	106461-1	107782-1	107780-1	106461-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	Т	123-91-1	7.2	350	1.3 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.90 J	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.45 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	: T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.25 J	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	T	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	1.7	< 1.0	< 1.0	0.58 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.28 J	< 1.0	< 1.0	< 1.0

See Notes on Page 5

					Location:	MW-115S	MW-116S	MW-117S	MW-118S	MW-118S	MW-119S	MW-121S	MW-123S	MW-123S	MW-126S	MW-127S	MW-128S	MW-128S	MW-130S
					Date:	12/26/2018	12/26/2018	12/26/2018	12/27/2018	12/27/2018	12/27/2018	12/27/2018	12/28/2018	12/28/2018	12/27/2018	12/28/2018	12/27/2018	12/27/2018	12/28/2018
				Sa	mple Name:	MW- 115S_122618	MW- 116S_122618	MW- 117S_122618	MW- 118S 122718	DUP-04_122718	MW- 119S 122718	MW- 121S_122718	MW- 123S 122818	DUP-05_122818	MW- 126S_122718	MW- 127S_122818	MW- 128S 122718	DUP-03_122718	MW- 130S_122818
			S	creen Inter	val (ft. bgs):	2.5-12.5	3-13	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	3-13	3-13	4-14	4-14	3-13
					Lab SDG #:	106465-1	106465-1	106465-1	106466-1	106466-1	106466-1	106466-1	106463-1	106463-1	106464-1	106462-1	106467-1	106467-1	106463-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	(DEQ2018)														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.19 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	0.29 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	2.7	< 1.0	0.92 J	0.68 J	0.74 J	< 1.0	< 1.0	4.6	3.2	< 1.0	1.5	< 1.0	< 1.0	1.1

					Location:	MW-131S	MW-132S	MW-133S	MW-134S	MW-135S	MW-136S	MW-137S	MW-138S	MW-139S	MW-140S	MW-141S	MW-142S	MW-143S	MW-145S
					Date:	12/26/2018	12/26/2018	2/14/2019	2/14/2019	2/14/2019	2/19/2019	2/23/2019	2/19/2019	2/26/2019	2/26/2019	2/27/2019	2/25/2019	2/20/2019	2/20/2019
				0-	I. NI	MW-	MW-	MW-	MW-	MW-	MW-	MW-137S-	MW-138S-	MW-139S-	MW-140S-	MW-	MW-	MW-143S-	MW-145S-
				Sa	mple Name:	131S_122618	132S_122618	133S_021419	134S_021419	135S_021419	136S_021919	022319	021919	022619	022619	141S_022719	142S_022519	022019	022019
			S	creen Inter	val (ft. bgs):	2.5-12.5	2.5-12.5	4-9	5-10	5-10	2-7	2-7	2-7	2-7	2-7	3-8	2.5-7.5	5.5-10.5	6-11
					Lab SDG #:	106468-1	106468-1	108101-1	108101-1	108101-1	108389-1	108500-1	108384-1	108628-1	108630-1	108722-1	108560-1	108383-1	108385-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	Т	123-91-1	7.2	350	1.0 J	< 2.0	< 2 U	< 2 U	< 2 U	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1 U	< 1 U	<1U	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1 U	< 1 U	< 1 U	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1 U	< 1 U	<1U	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	e T	156-60-5	100	100	< 1.0	< 1.0	<1U	<1U	<1U	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	<1U	<1U	<1U	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	0.98 J	< 1.0	<1U	<1U	< 1 U	< 1.0	< 1.0	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-146S	MW-147S	MW-148S	MW-149S	MW-150S	MW-151S	MW-152S	MW-153S	MW-154S	MW-155S	MW-155S	MW-156S	MW-158S	MW-159S
					Date:	2/20/2019	2/20/2019	2/23/2019	2/21/2019	2/25/2019	2/23/2019	2/21/2019	2/21/2019	2/21/2019	2/26/2019	2/26/2019	2/27/2019	2/22/2019	2/22/2019
				92	mple Name:	MW-146S-	MW-147S-	MW-148S-	MW-149S-	MW-	MW-151S-	MW-152S-	MW-153S-	MW-154S-	MW-155S-	DUP-03-022619	MW-	MW-158S-	MW-159S-
				Ja	imple Ivallie.	022019	022019	022319	022119	150S_022519	022319	022119	022119	022119	022619	DUF-03-022019	156S_022719	022219	022219
			S	creen Inter	val (ft. bgs):	6-11	2-7	2-7	2-7	2-7	2.5-7.5	2.5-7.5	2-7	2-7	2-7	2-7	3-8	2.5-7.5	4-9
					Lab SDG #:	108387-1	108386-1	108504-1	108469-1	108559-1	108502-1	108464-1	108463-1	108462-1	108631-1	108631-1	108723-1	108465-1	108467-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIN	1 1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	T	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	T	75-01-4	1.0	2	0.23 J	0.38 J	0.94 J	1.4	0.46 J	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

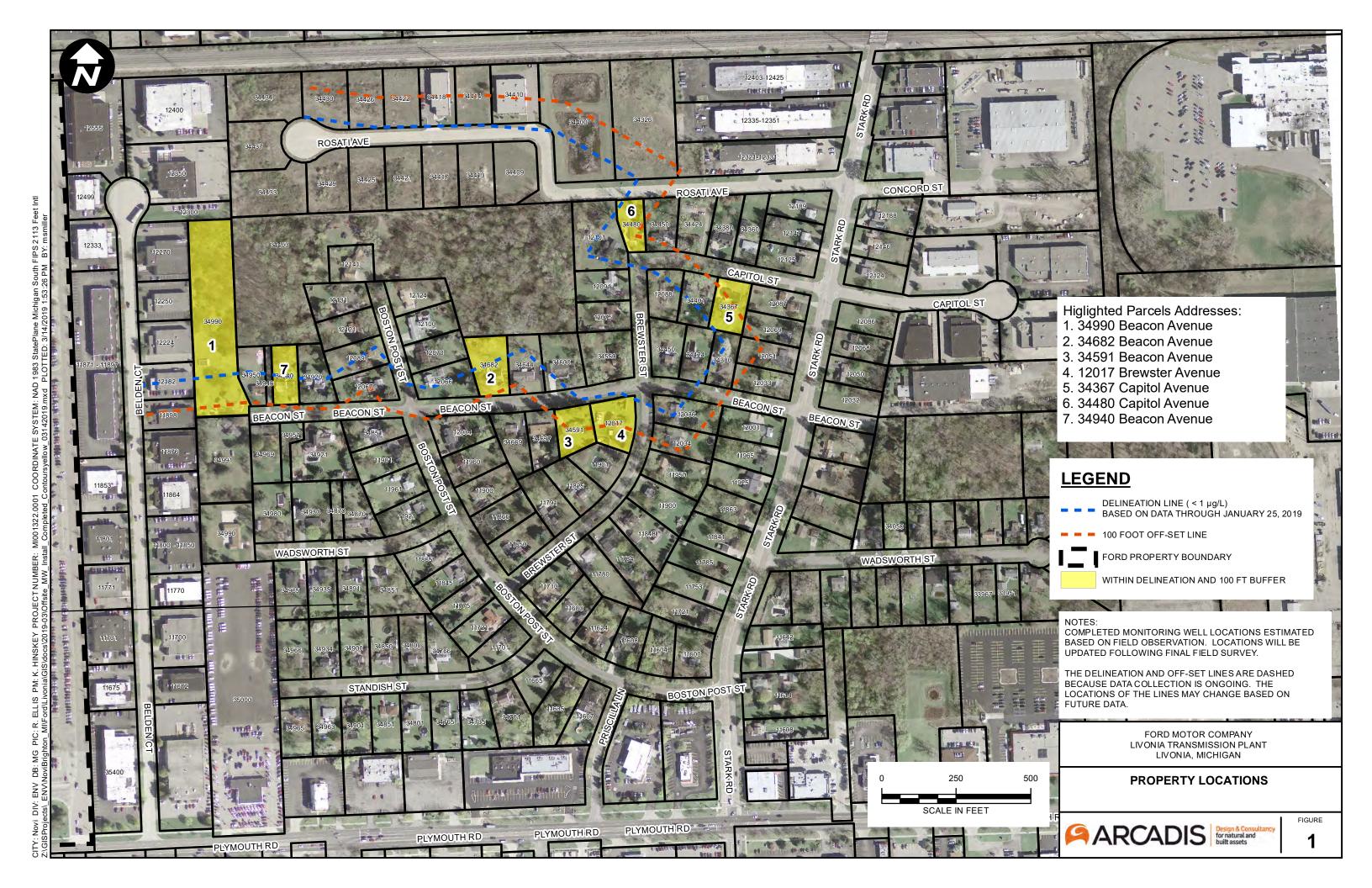
See Notes on Page 5

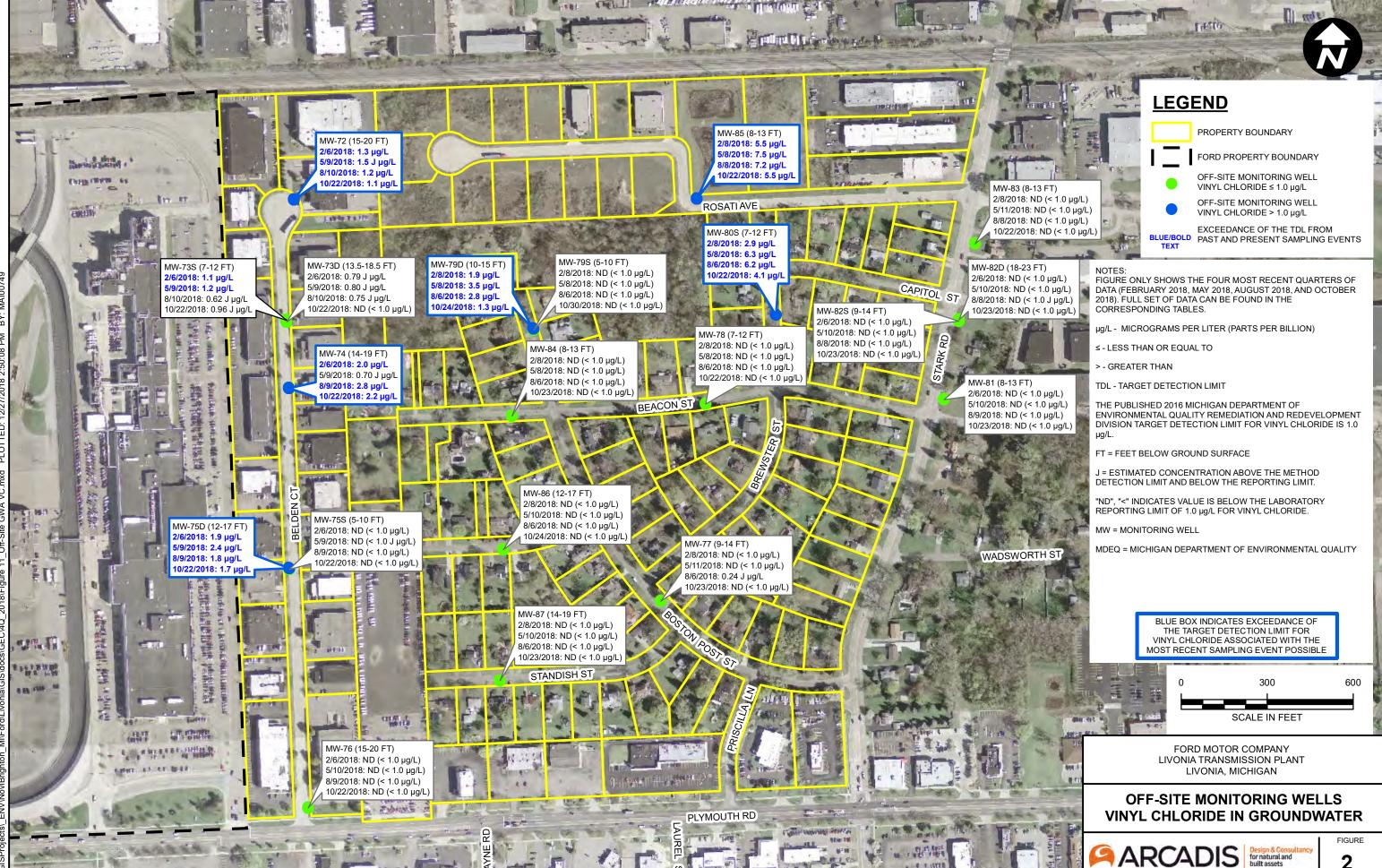
Table 1 – Summary of Off-Site Shallow Groundwater Sampling Results Ford Livonia

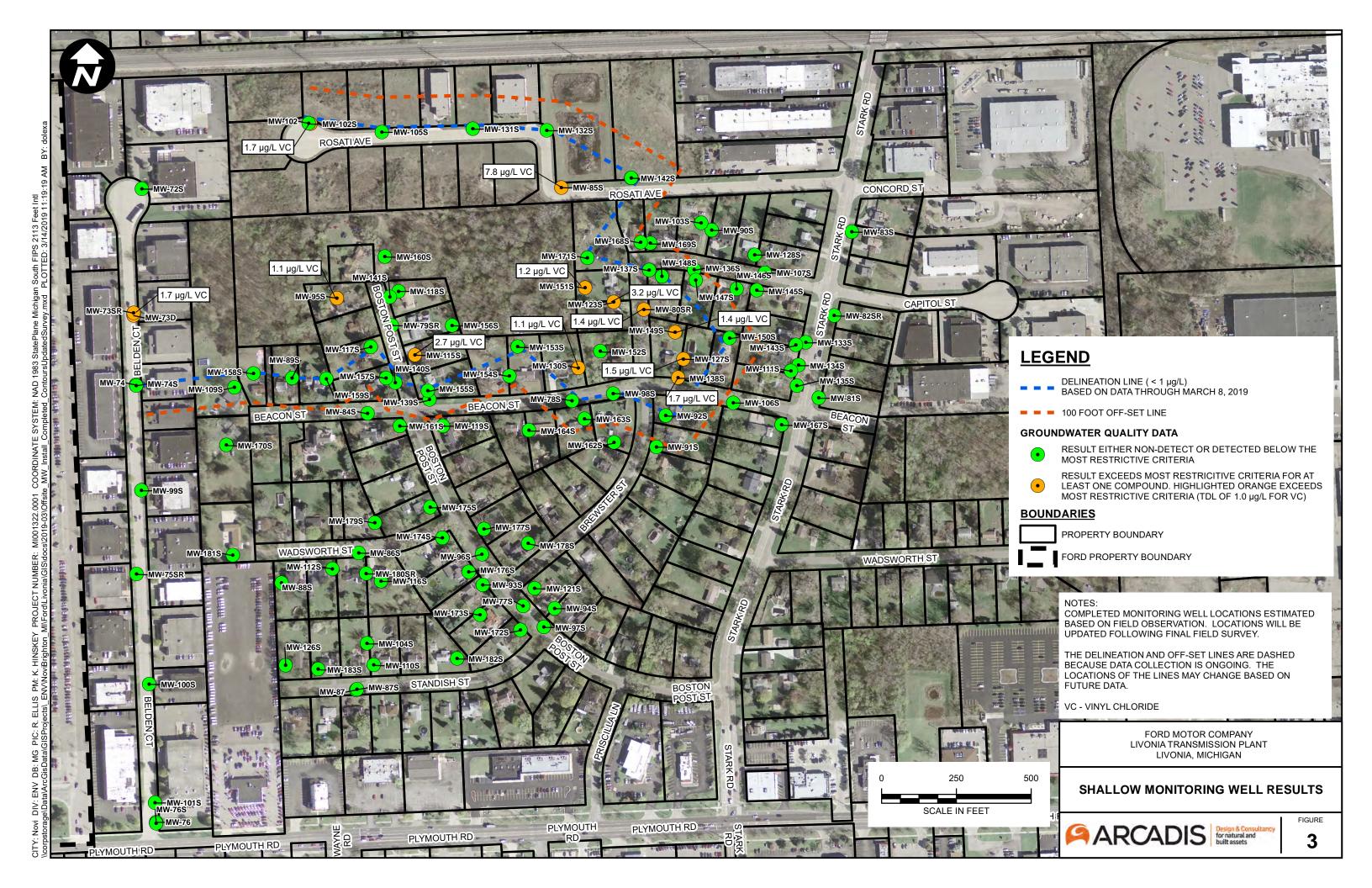
					Location: Date:	MW-160S 2/27/2019	MW-161S 2/27/2019	MW-162S 2/28/2019	MW-163S 2/28/2019	MW-163S 2/28/2019	MW-164S 2/22/2019	MW-167S 2/25/2019	MW-168S 2/25/2019
Sample Name:						MW- 160S_022719	MW- 161S_022719	MW-162S- 022819	MW-163S- 022819	DUP-04-022819	MW-164S- 022219	MW- 167S_022519	MW- 168S_022519
			S		val (ft. bgs):		2.5-7.5	3-8	2-7	2-7	3-8	5-10	2-7
					Lab SDG #:	108721-1	108720-1	108810-1	108808-1	108808-1	108468-1	108557-1	108561-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW								
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-169S	MW-170S	MW-171S	MW-172S	MW-173S	MW-174S	MW-175S	MW-176S
				Date:	2/25/2019	3/6/2019	2/23/2019	2/28/2019	2/28/2019	2/28/2019	3/1/2019	3/5/2019	
Sample Name:					MW- 169S_022519	MW- 170S_030619	MW-171S- 022319	MW-172S- 022819	MW-173S- 022819	MW-174S- 022819	MW-175S- 030119	MW- 176S_030519	
			S	creen Inter	val (ft. bgs):	2-7	4.5-9.5	2-7	4.5-9.5	5.5-10.5	5.5-10.5	6-11	5-10
					Lab SDG #:	108555-1	109088-1	108503-1	108806-1	108812-1	108804-1	108807-1	109011-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW								
SW8468260BBYSIM	1,4-Dioxane	T	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	0.21 J	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.14 J	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	0.21 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

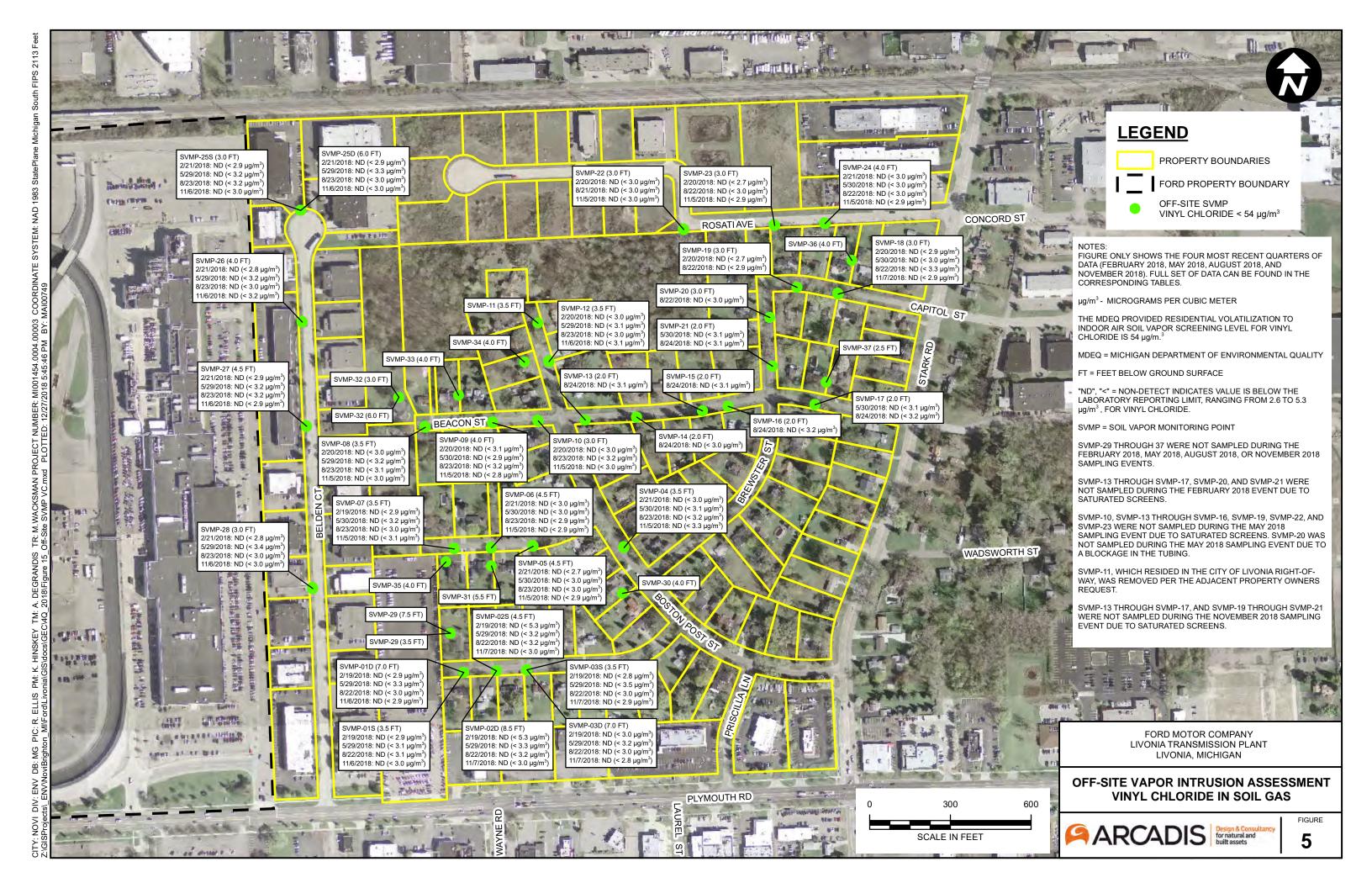
					Location:	MW-177S	MW-178S	MW-179S	MW-181S	MW-182S	MW-182S	MW-183S
					Date:	3/5/2019	3/4/2019	3/4/2019	3/4/2019	3/5/2019	3/5/2019	3/1/2019
			Sai	nple Name:	MW- 177S_030519	MW- 178S_030419	MW- 179S_030419	MW- 181S_030419	MW- 182S_030519	DUP-05_030519	MW-183S- 030119	
		S	creen Interv	/al (ft. bgs):	4-9	4.5-9.5	6-11	3.5-8.5	4-9	4-9	8-13	
					Lab SDG #:	109013-1	108923-1	108922-1	108920-1	109010-1	109010-1	108813-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP _Offsite Res DW	MI GW (DEQ2018) NON-RES DW							
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

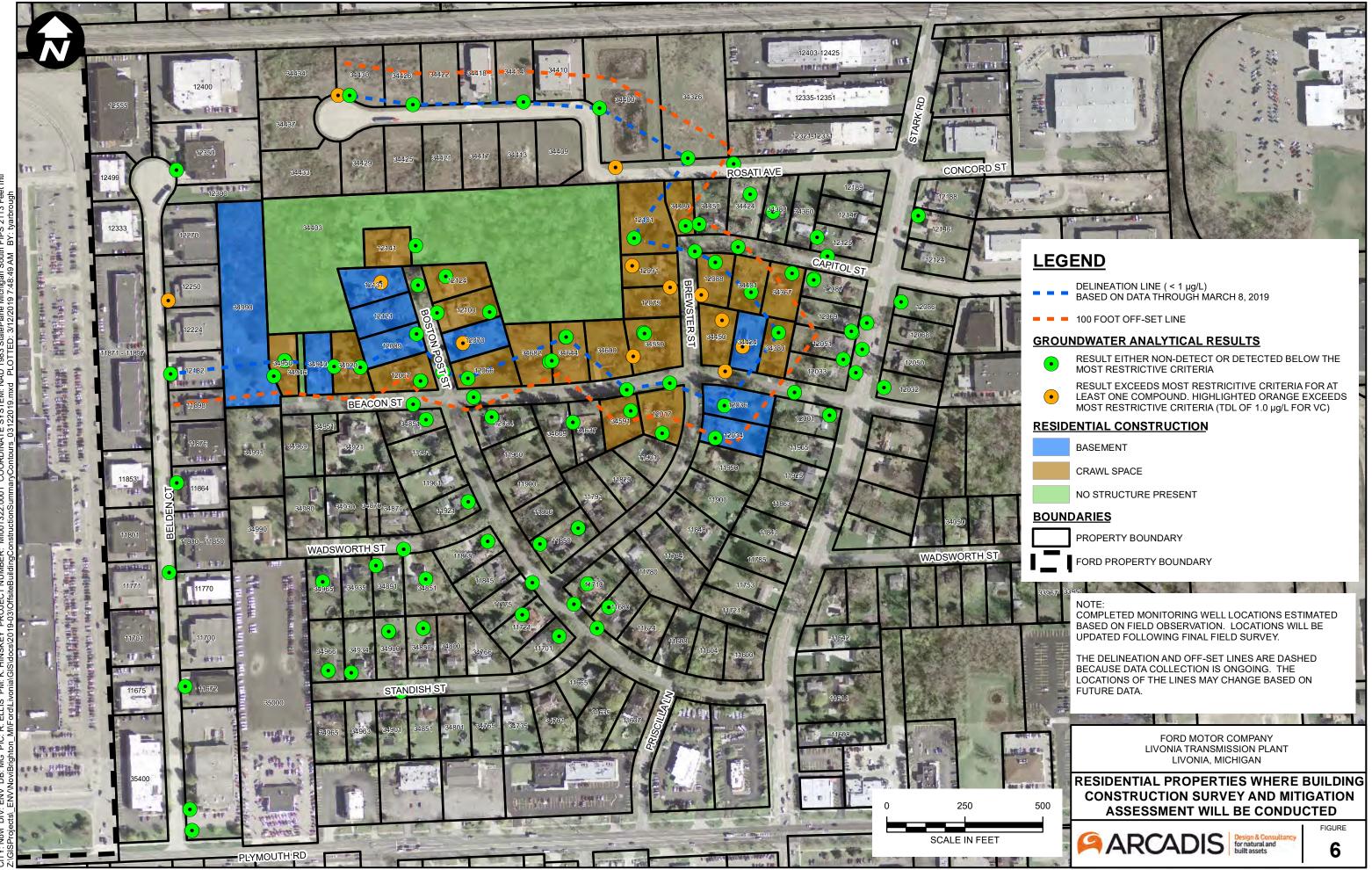

Notes:


All units are measured in micrograms per liter.


Abbreviations:

ft bgs Feet below ground surface


FIGURES



CITY: Novi DIV:ENV DB:MG PROJECT NUMBER: MI001322.0001 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet G:\COMMON\Ford\Livonia\04 Draft Reports\17-08-21 CSM\Figures\ Figure 26 - Cross Section D.pdf PLOTTED: 8/23/2017 BY:ayanites

ATTACHMENTS

ATTACHMENT 1

34990 Beacon

34990 BEACON STREET

The subject property is located at 34990 Beacon Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 1-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 1-2**. The soil boring log for monitoring well MW-109S is included as **Attachment 1-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 1-2**, and photographs of the residence are included below. Key features of the home include:

- Detached garage. Subfloor consists of a partial basement, partial crawlspace.
- Crawlspace is on grade. Approximate depth to the basement floor is approximately 4.6 feet below ground surface (ft bgs).
- Ground surface at base of residence is 667.4 feet above mean sea level (ft msl).
 Elevation of the basement floor is approximately 662.8 ft msl.

Exhibit 1. Front view of the residence at 34990 Beacon Street

Exhibit 2. Crawlspace at 34990 Beacon Street

Exhibit 3. Basement at 34990 Beacon Street

ATTACHMENT 1

Geology

A soil boring was completed at monitoring well MW-109S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 1-2**. The boring log for monitoring well MW-109S is included as **Attachment 1-1**.

- The soil boring was completed to a total depth of 15 feet below ground surface (ft bgs).
- Sediments encountered at the boring location included fine to medium sand with trace of silt to 8.5 ft bgs, fine to coarse sand with a trace of granules to 14 ft bgs, and very fine sand with a little silt to 15 ft bgs.
- Groundwater was noted in the soil boring at 7 ft bgs.

Groundwater Data

The location of monitoring well MW-109S is shown on **Figure 1-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-109S was installed with a screen depth of 2.5-12.5 ft bgs and is located 9.0 feet from the north corner of the residence.
- Depth of groundwater at MW-109S was measured at 6.20 feet below the top of the well casing (ft btoc) on December 28, 2018 (groundwater elevation: 660.21 ft msl).
- Monitoring well MW74S is located east of the property. The range in measured groundwater elevations since May 2017 is 659.90 to 662.08 ft msl. Groundwater elevations obtained in November 2018 were 661.77 ft msl, approximately 0.31 ft less than the maximum observed elevation.
- Estimated elevation of the residence subfloor is 662.8 ft msl.
- Distance of the subfloor to the water table was approximately 2.6 feet.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.0 micrograms per liter) is approximately 400 feet (MW-73SR located on Belden Court).
- All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

Elevation D	Elevation Data - 34990 Beacon Street- Partial Basement											
Well ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Base of the Residence Elevation (ft msl)	Depth to Basement Floor (ft bgs)	Elevation of Basement Floor (ft msl)	Distance from Lowest Subfloor to Water Table (ft)					
MW-109S	666.41	6.20	660.20	667.4	4.6	662.8	+ 2.6*					

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundwa	Groundwater Analytical Summary - 34990 Beacon Street												
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC			
MW-109S	MW- 109S_12/28/2018	9.0 ft	12/28/2018	< 1.0	0.45 J	0.25 J	< 2.0	< 1.0	< 1.0	0.28 J			
μg/L - micrograms per liter													

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Exterior Soil Vapor Data

The location of exterior soil vapor probe SVMP-32 and right-of way soil vapor probe SVMP-08 is included on **Figure 1-1**. Soil vapor analytical data is summarized in the table below.

- Soil vapor probe SVMP-32 was installed at a depth of 3.0 and 6.0 ft bgs at approximately 10 feet from the residence.
- Soil vapor probe SVMP-08 was installed at a depth of 3.5 ft bgs and is located approximately 90 feet from the residence.
- All soil vapor COCs were below appropriate vapor screening levels.

Soi	l Vapor	Probe A	Analytical	Summary	- 34990	Beacon	Street
-----	---------	---------	------------	---------	---------	--------	--------

Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc
		6/15/2017	NA	NA	NA	NA	NA	< 6.5	< 3.1
		9/20/2017	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0
		11/20/2017	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.2	< 3.0
SVMP-08	3.5	2/20/2018	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0
		5/29/2018	< 5.0	< 5.0	< 5.0	< 18	< 8.6	11	< 3.2
		8/23/2018	< 4.8	< 4.8	< 4.8	< 17	< 8.2	< 6.5	< 3.1
		11/5/2018	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0
CV/MD 22	3 SVMP-32 6	6/15/2017	NA	NA	NA	NA	NA	< 6.4	< 3.0
3 V IVIP-32		6/15/2017	NA	NA	NA	NA	NA	< 6.5	< 3.1

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of partial basement and partial crawl space. Interior sampling results are summarized on the table below.

- Sub-slab soil vapor monitoring points were not installed at this residence at the request of the homeowner.
- An ambient air sample was collected outside, southwest of the residence using a 24-hour flow controller.
- Indoor air samples were collected from 5 locations inside, using 24-hour flow controllers.
 - o Two samples were collected from the crawl space.

ATTACHMENT 1

- o One sample was collected from the main floor.
- o One sample was collected from the garage.
- o One sample was collected from the basement.
- All indoor air COCs were below appropriate air screening levels.

Indoor Air Analytical Summary - 34990 Beacon											
Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans -1,2- DCE	1,4- Dioxane	PCE	TCE	vc		
Main Floor IA (IAF)	IAF- 34990Beacon- 02_121818	12/19/2018	< 0.65	< 0.65	< 0.65	< 0.59	< 1.1	< 0.89	< 0.42		
Garage IA (IAG)	IAG- 34990Beacon- 01_121818	12/19/2018	< 0.62	< 0.62	< 0.62	1.1	< 1.1	< 0.84	< 0.40		
Basement IA (IAB)	IAB- 34990Beacon- 03_121818	12/19/2018	< 0.68	< 0.68	< 0.68	< 0.62	< 1.2	< 0.92	< 0.44		
Crawl Space (IACS)	IACS- 34990Beacon- 04_121818	12/19/2018	< 0.62	< 0.62	< 0.62	< 0.56	< 1.1	< 0.84	< 0.40		
Crawi Space (IACS)	IACS- 34990Beacon- 05_121818	12/19/2018	< 0.63	< 0.63	< 0.63	< 0.57	< 1.1	< 0.85	< 0.40		
Ambient Air (AA)	AA- 34990Beacon- 01_121818	12/19/2018	< 0.58	< 0.58	< 0.58	< 0.53	< 1.0	< 0.79	< 0.38		
μg/m3 - micrograms per cubic meter < denotes not detected above reporting limit											

arcadis.com

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

 \bigoplus SOIL BORING LOCATION

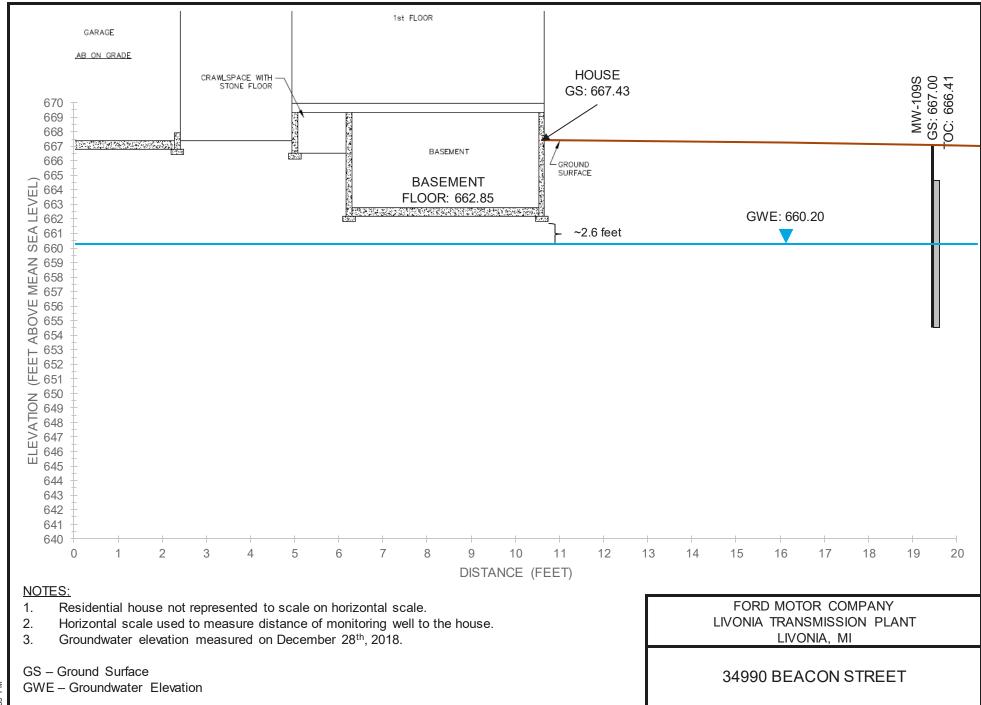
SUB-SLAB MONITORING POINT LOCATION

VAPOR PROBE

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34990 BEACON STREET SAMPLE LOCATIONS

FIGURE

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001,00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Z\GSProjects_ENVINOVBrighton_MI\Fort\Lvonia\GS\docs\2019-03\Report\34990Beacon_Locations200ft mxd PLOTTED: 3\12\2019 1:01:53 PM BY: msmiller

3/13/2019 12:16:59 PM

1-2

ARCADIS

ATTACHMENTS

ARCADI	S for ratural and built assets					Boring	No.: MW-109S	
Soil Boring							Sheet: 1 of	1
Project Name:	Ford LTP			_	Date Started: <u>12/17/2018</u>	Logger: I. Dro		
Project Number:		003.00002		Da	ate Completed: <u>12/17/2018</u>	Editor: <u>NA</u>		
Project Location:	Livonia, MI			_	Weather C	Conditions: <u>Cloud</u>	ly 55° F	
Depth Sample (feet) Interva	Blow Recover	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	60		0.0 0.0 0.0 0.0 0.0 0.0		(0.0-0.5') Topsoil, very fine to medium, sut well sorted; dry; dark brown (10YR 3/3). (0.5-2.0') SAND, very fine to medium, subtrace sand; poorly sorted; dry; brown (10Yl (2.0-8.5') SAND, fine to medium, subround sorted; dry; yellowish brown (10YR 5/8). Note: color change to grayish brown (10YR 5/4).	rounded; little silt; R 4/3). ded; trace silt; well	Flush mount — Cement (0-1ft)— 6" dia. drilled / hole Bentonite — Pellets (1-2 ft) 2" dia. PVC — Casing Sand Pack — (2-15 ft) 2" dia. Stainless- Steel Sch 40 PVC	
8 8 9 10 10 10	48		0.0		(8.5-14.0') SAND, fine to coarse, subround some very coarse sand, subangular; trace subangular; poorly sorted; wet; grayish brounds and subangular.	granules,	0.010" slot Well Screen (2.5-12.5 ft)	
11	52		0.0					
15			0.0		(14.0-15.0') SAND, very fine; rounded; little wet; grayish brown (10YR 5/2).	e silt; well sorted;		
16					End of boring at 15.0 ft bgs.			
Drilling Co.:	Fibertech				Sampling Method: 5' Macr	ocore		
Driller:	-	an/Jake Turnage			Sampling Interval: Continu			
Drilling Method:	Hand Auger				Water Level Start (ft. bgs.)	:7.0		
Drilling Fluid:	None				Water Level Finish (ft. btoo			
Remarks:	•	in = inch; bgs = below g				Yes	No	
	lion; NA = not av	ailable or not applicable	e. Hand A	uger to 5.				
bgs.					North Coor: NA			
<u> </u>					East Coor: NA			

ATTACHMENT 2

34682 Beacon

34682 BEACON STREET

The subject property is located at 34682 Beacon Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 2-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 2-2**. The soil boring log for monitoring well MW-154S is included as **Attachment 2-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 2-2**, and photographs of the residence are included below. Key features of the home include:

- Attached garage. Subfloor consists of a partial crawlspace and partial concrete slab.
- Crawlspace is approximately 2.2 feet below ground surface (ft bgs) and the concrete slab is on-grade.
- Ground surface at base of residence is 664.77 feet above mean sea level (ft msl).
 Elevation of the crawlspace floor is approximately 662.6 ft msl.

Exhibit 1. Front view of the residence at 34682 Beacon Street

Exhibit 2. Crawlspace at 34682 Beacon Street

Exhibit 3. Attached Garage at 34682 Beacon Street

ATTACHMENT 2

Geology

A soil boring was completed at monitoring well MW-154S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 2-2**. The boring log for monitoring well MW-154S is included as **Attachment 2-1**.

- The soil boring was completed to a total depth of 10 feet below ground surface (ft bgs)
- Sediments encountered at the boring location included very fine sand and silt to 6.3 ft bgs, fine to coarse sand to 8.5 ft bgs and very fine to fine sand with some silt to 10 ft bgs.
- Groundwater was noted in the soil boring at 4.0 ft bgs.

Groundwater Data

The location of monitoring well MW-154S is shown on **Figure 2-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-154S was installed with a screen depth of 2-7 ft bgs and is located 23 feet east of the residence.
- Depth of groundwater at MW-154S was measured at 3.65 feet below the top of the well casing (ft btoc) on February 21, 2019 (groundwater elevation: 656.65 ft msl).
- Estimated elevation of the residence subfloor is 662.6 ft msl.
- Distance of the subfloor to the water table was approximately 6.0 feet.
- Monitoring well MW84S is located south of the property. The range in measured groundwater elevations since May 2017 is 656.90 to 659.68 ft msl. Groundwater elevations obtained in November 2018 were 658.94 ft msl, approximately 0.66 ft less than the maximum observed elevation.
- Due to the depth of the water table below the residence (i.e. greater than 1.18 meters [3.9 ft]) the groundwater screening criteria of 1.4 μg/L for vinyl chloride applies.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.4 micrograms per liter) is approximately 250 feet (MW-115S located at 12070 Boston Post Street).
- All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

Elevation	Elevation Data - 34682 Beacon - Crawlspace												
Well ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Ground Surface Elevation at Residence (ft msl)	Depth of Crawlspace (ft)	Elevation of Crawlspace Floor (ft msl)	Distance from Subfloor to Water Table (ft)						
MW-154S	660.30	3.65	656.65	664.77	2.2	662.6	+ 6.0*						

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundwater Analytical Summary - 34682 Beacon												
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	vc		
MW- 154S	MW- 154S_022119	23 ft	2/21/2019	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		
μg/L - micro	µg/L - micrograms per liter											
< denotes no	ot detected above reporti	ng limit										

Exterior Soil Vapor Data

The locations of nearby exterior soil gas probes are included on **Figure 2-1**. Soil gas analytical data is summarized in the table below.

- Soil vapor probe SVMP-14 was installed at a depth of 2.0 ft bgs at approximately 85 feet from the residence
- All soil vapor COCs were below appropriate vapor screening levels

Soil Vapor	Soil Vapor Analytical Summary - 34682 Beacon												
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc				
		6/16/2017	NA	NA	NA	NA	NA	< 6.4	< 3.0				
		9/19/2017	< 4.5	< 4.5	< 4.5	< 16	< 7.8	< 6.2	< 2.9				
					11/21/2017	< 4.1	< 4.1	< 4.1	< 15	< 7.0	< 5.6	< 2.6	
SVMP-14	2	2/19/2018	NS	NS	NS	NS	NS	NS	NS				
	V IVIF - 14 2	5/31/2018	NS	NS	NS	NS	NS	NS	NS				
		8/24/2018	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0				
		11/7/2018	NS	NS	NS	NS	NS	NS	NS				

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NS = not sampled

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a combination slab-on-grade and crawl space. Interior sub slab and indoor air sampling results are summarized on the table below.

- Sub-slab samples:
 - SSMP-34682 Beacon-01 was installed in the garage.
 - SSMP-34682 Beacon-02 was installed in the laundry room.
- Indoor air samples were collected from four locations, using 24-hour flow controllers.
 - o Two samples were collected from the first floor.
 - One sample was collected from the crawl space.
 - One sample was collected from the garage.
- All sub-slab and indoor air COCs were below appropriate vapor screening levels.

Indoor Air Analytica	Indoor Air Analytical Summary - 34682 Beacon											
Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	vc			
Main Floor IA (IAF)	IAF- 34682BEACON- 02_103018	10/31/2018	< 0.66	< 0.66	0.64 J	0.098 J	0.16 J	< 0.89	< 0.42			
Main Floor IA (IAL)	IAF- 34682BEACON- 03_103018	10/31/2018	< 0.67	< 0.67	0.72	0.17 J	0.16 J	< 0.91	< 0.43			
Garage IA (IAG)	IAG- 34682BEACON- 01_103018	10/31/2018	< 0.66	< 0.66	< 0.66	< 0.60	0.31 J	< 0.89	< 0.42			
Crawl Space (IACS)	IACS- 34682BEACON- 04_103018	10/31/2018	< 0.64	< 0.64	4.8	< 0.58	0.21 J	< 0.87	< 0.41			
Garage Sub-slab (SSMP)	SSMP- 34682BEACON- 01_103118	10/31/2018	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0			
Laundry Room Sub- slab (SSMP)	SSMP- 34682BEACON- 02_103118	10/31/2018	< 4.8	< 4.8	4.0 J	< 18	< 8.2	< 6.5	< 3.1			

μg/m3 - micrograms per cubic meter

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

< denotes not detected above reporting limit

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

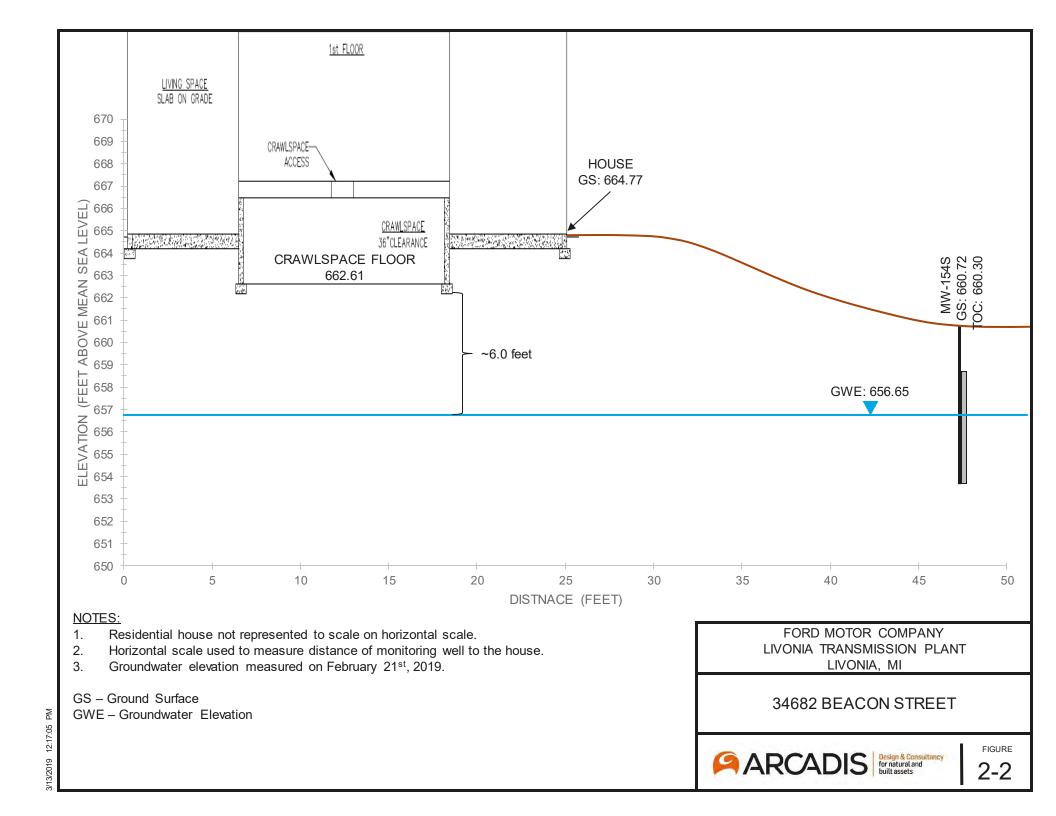
SUB-SLAB MONITORING POINT LOCATION

■ VAPOR PROBE

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34682 BEACON STREET SAMPLE LOCATIONS

FIGURE 2-1

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373.0001.00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet 2:46SProjects_ENVINovBrighton_MIFord\Livonia\GS\docs\2019-03\Report\34682Beacon_Locations.mxd PLOTTED: 3/13/2019 2:25:13 PM BY: msmiler

ARC	וחמ	S Design	& Consultancy rail and					Boring	No.: <u>MW-154S</u>	
Soil B	Oring	g LC	og Liveria	Automatic Transm	:: !	Dlast	Data Ctartad: 00/40/2040			11
Project No							Date Started: 02/18/2019 te Completed: 02/18/2019	Logger: <u>S. Joł</u> Editor: <u>Troy S</u>		
Project Lo				03		Da 		conditions: <u>Cloud</u>		
		Plow								
Depth (feet)	Sample Interval		Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
<u> </u>	1				0.0	71 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	(0.0-0.3') TOPSOIL (0.3-1.0') SAND, very fine, subangular to	subrounded: some	(0.0-2.0')	V// V/
1	1						silt; well sorted; dry; grayish brown (10Y	R 3/2).	PVC riser	
	1				0.0		(1.0-3.0') SAND, very fine, subangular to SILT; well sorted; dry; yellowish brown (subrounded; and 10YR 5/6).	(0.5-2.0' / bgs)	
2	F								Bentonite	
	F		60		0.0					
3	\$						(3.0-6.3') SILT, rapid dilatency, non-plast	ic; and SAND, very		
	I				0.0		fine, subangular to subrounded; soft; mo (10YR 5/2).	oist; grayish brown	(2.0-10.0'	
·]				0.0		NOTE: Wet at 4.0' bgs.		bgs) Sand	
5	1				0.0				Filter /	
⊢ -	1 /				0.0				Pack (2.0-7.0'	
6	\								bgs) / Well	
	\				0.0		(6.3-8.2') SAND, fine to coarse, angular t some granule to small pebbles, subangu		Screen	
7	1 \/						poorly sorted; wet; dark gray (10YR 4/1)			
	1)		58		0.0					
0	1 / \					******	(8.2-8.5') SAND, fine to medium, subang	ular to		
 9] / \				0.0		subrounded; trace granule; well sorted; (10YR 4/1).	wet; dark gray		
_]/ \				0.0		(8.5-10.0') SAND, very fine to fine, subar	ngular to		
10	/ \				0.0		subrounded; some silt; well sorted; wet; (10YR 4/1).	stiff; dark gray		
							End of boring at 10.0' bgs.			
11	-									
12										
13										
14										
15	1									
	1									
16	1									
	1									
]									
18]									
	1									
19	1									
	1									
20 Drilling Co		Caso	ade	I	Ш		Sampling Method <u>: 5' Macr</u>	ocore		<u>I</u>
Driller:	•••		and Adri	an			Sampling Interval <u>: Continu</u>			
Drilling Me	ethod:			Hollow Stem Auge	rs for W	ell Instal				
Drilling Flเ		None)				Water Level Finish (ft. bto	c.) <u>: NA</u>		
Remarks:			_	o 5.0' bgs.					No	
		3468	2 Beaco	n Street						
							North Coor:			
							East Coor:			

34591 Beacon

34591 BEACON STREET

The subject property is located at 34591 Beacon Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 3-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 3-2**. The soil boring log for monitoring well MW-163S is included as **Attachment 3-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 3-2**, and photographs of the residence are included below. Key features of the home include:

- Subfloor consists of a partial crawlspace and slab-on-grade.
- Crawlspace is approximately 2.3 feet below ground surface (ft bgs) at its deepest point.
- Ground surface at base of residence is 659.2 feet above mean sea level (ft msl).
 Elevation of the crawlspace floor is approximately 656.8 ft msl.

Exhibit 1. Front view of the residence at 34591 Beacon Street

Exhibit 2. Crawlspace at 34591 Beacon Street

Geology

A soil boring was completed at monitoring well MW-163S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 3-2**. The boring log for monitoring well MW-163S is included as **Attachment 3-1**.

- The soil boring was completed to a total depth of 10 feet below ground surface (ft bgs)
- Sediments encountered at the boring location included very fine to coarse sand with trace
 of silt to 4.0 ft bgs, then interbedded silty sands and coarser sands to a depth of 10 ft bgs.
- Groundwater was noted in the soil boring at 3.0 ft bgs.

Groundwater Data

The location of monitoring well MW-163S is shown on **Figure 3-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-163S was installed with a screen depth of 2-7 ft bgs and is located 16 feet east of the residence.
- Depth of groundwater at MW-163S was measured at 3.00 feet below the top of the well casing (ft btoc) on February 28, 2019 (groundwater elevation: 655.48 ft msl).

- Estimated elevation of the residence subfloor is 656.8 ft msl.
- Distance of the subfloor to the water table was approximately 1.4 feet.
- Monitoring well MW78S is located northwest of the property. The range in measured groundwater elevations since May 2017 is 653.68 to 655.69 ft msl. Groundwater elevations obtained in November 2018 were 655.55 ft msl, approximately 0.14 ft less than the maximum observed elevation.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.0 micrograms per liter) is approximately 170 feet (MW-130S located at 34600 Beacon Street).
- All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

Elevation Data - 34591 Beacon, Crawlspace												
Well ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Ground Surface Elevation at Residence (ft msl)	Depth of Crawlspace (ft)	Elevation of Lowest Subfloor (ft msl)	Distance from Crawlspace to Water Table (ft)					
MW- 163S	658.48	3.00	655.48	659.2	2.3	656.8	+ 1.4*					

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundw	Groundwater Analytical Summary - 34591 Beacon												
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC			
μg/L - microg	μg/L - micrograms per liter												

Exterior Soil Vapor Data

The locations of nearby exterior soil gas probes are included on **Figure 3-1**. Soil gas analytical data is summarized in the table below.

- Soil probe SVMP-15 was installed at a depth of 2.0 ft bgs at approximately 70 feet from the residence
- Soil probe SVMP-16 was installed at a depth of 2.0 ft bgs at approximately 100 feet from the residence.
- All soil vapor COCs were below appropriate vapor screening levels.

Soil Vapor	r Analytical Sum	nmary - 34591	Beacon						
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc
		6/16/2017	NA	NA	NA	NA	NA	< 6.3	< 3.0
		9/19/2017	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0
		11/20/2017	< 4.4	< 4.4	< 4.4	< 16	< 7.6	< 6.0	< 2.9
SVMP-15	2-15 2	2/19/2018	NS	NS	NS	NS	NS	NS	NS
		5/31/2018	NS	NS	NS	NS	NS	NS	NS
		8/24/2018	< 4.8	< 4.8	< 4.8	< 17	< 8.2	< 6.5	< 3.1
		11/7/2018	NS	NS	NS	NS	NS	NS	NS
		6/16/2017	NA	NA	NA	NA	NA	< 6.4	< 3.0
		9/19/2017	< 4.5	< 4.5	< 4.5	< 16	< 7.8	< 6.2	< 2.9
		11/20/2017	< 4.3	< 4.3	< 4.3	< 16	< 7.4	< 5.9	< 2.8
SVMP-16	2	2/19/2018	NS	NS	NS	NS	NS	NS	NS
		5/31/2018	NS	NS	NS	NS	NS	NS	NS
		8/24/2018	< 5.0	< 5.0	< 5.0	< 18	< 8.5	< 6.8	< 3.2
		11/7/2018	NS	NS	NS	NS	NS	NS	NS

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NS = not sampled

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a combination of slab-on-grade and crawl space. Interior sub-slab and indoor air sampling results are summarized on the table below.

- Sub-slab monitoring points were not installed at this property given the presence of a false floor above the concrete floor precluding installation.
- An ambient air sample was collected outside, north of the residence using a 24-hour flow controller.

- Indoor air samples were collected from three locations, using 24-hour flow controllers.
 - o One sample was collected from the crawl space.
 - o Two samples were collected from the first floor.
- All sub-slab and indoor air COCs were below appropriate vapor screening levels.

Indoor Air Analytical	Summary - 34591 E	Beacon							
Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	vc
Main Floor IA (IAF)	IAF-34591Beacon- 01_102518	10/26/2018	< 0.63	< 0.63	< 0.63	0.087 J	0.30 J	< 0.85	< 0.40
IVIAIII FIOOI IA (IAF)	IAF-34591Beacon- 02_102518	10/26/2018	< 0.64	< 0.64	< 0.64	0.13 J	0.24 J	< 0.86	< 0.41
Crawl Space (IACS)	IACS- 34591Beacon- 03_102518	10/26/2018	< 0.76	< 0.76	< 0.76	< 0.69	0.22 J	< 1.0	< 0.49
Ambient Air (AA)	AA-34591Beacon- 01_102518	10/25/2018	< 0.62	< 0.62	< 0.62	< 0.56	0.28 J	< 0.84	< 0.40

μg/m3 - micrograms per cubic meter

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

< denotes not detected above reporting limit

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

⊕ SOIL BORING LOCATION

SUB-SLAB MONITORING POINT LOCATION

■ VAPOR PROBE

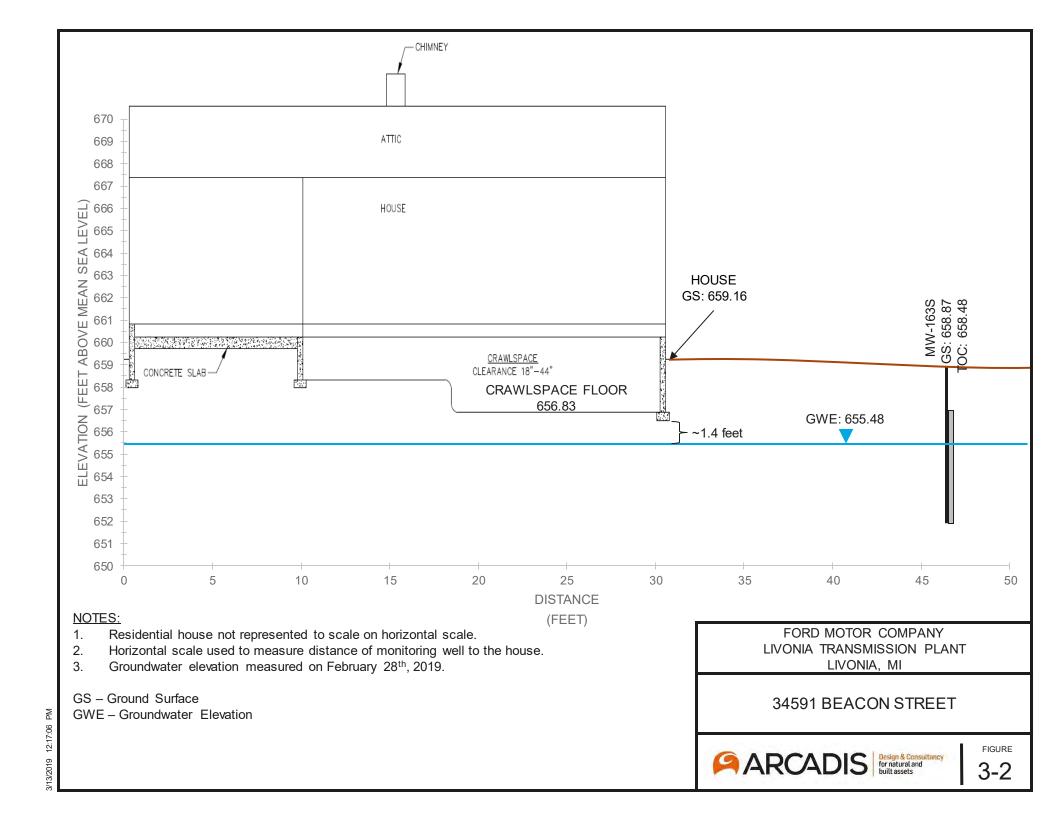
•

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

BUILDING

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34591 BEACON STREET SAMPLE LOCATIONS

FIGURE

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001,00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet 2:\(\text{CIGNPOjects}\)_ENGISPOjects_ENVINOVBrighton_MI\Fort_Lvonia\(\text{GIS}\)\)StatePlane Michigan South FIPS 2113 Feet

AR	CADI	S Design of for matter built ass	Consultancy rail and ets					Boring	No.: <u>MW-163S</u>	
Soil B									Na	4
Project N				Automatic Transmi	ssions F	<u>Pla</u> nt	Date Started: 02/19/2019	Logger: Christi	Sheet: 1 of na Weaver	1
Project N							ate Completed: <u>02/19/2019</u>	_ Editor: <u>Troy S</u>		
Project Lo	ocation:	Livon	ia, MI				Weather C	onditions: P. Clo	udy, 22F	
Depth (feet)	Sample Interval	Blow Counts	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
	4				0.0	7/1 N	(0.0-0.3') TOPSOIL (0.3-3.0') SAND, very fine to medium, sul	angular to	(0.0-2.0')	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1	1				0.0		subrounded; little silt; poorly sorted; dry	; brown (10YR 5/3).	PVC riser (0.5-2.0'	
2	1		60		0.0				bgs) Bentonite	
3	1				0.0		(3.0-4.0') SAND, fine to coarse, subangul trace silt; poorly sorted; wet; yellowish b	ar to subrounded;		
4	1						(4.0-5.5') SILT, little clay, slow dilatency,	medium plasticity;	(2.0-10' bgs)	
5	1				0.0		trace medium to coarse sand; trace med poorly sorted; wet; grayish brown (10YR		Sand — Filter Pack (2.0-7.0'	
6	1\ /				0.0		(5.5-6.0') SAND, very fine to very coarse, trace small pebbles, subrounded to suba poorly sorted; wet; grayish brown (10YR	ngular; litle silt;	bgs) / Well Screen	
7	\/				0.0		(6.0-7.5') SILT, slow dilatency, non-plasti to medium; subrounded to subangular; p pale brown (10YR 6/3).	; and SAND, fine	Sercen	
8			60		0.0		(7.5-8.0') SAND, very fine to very coarse, subangular; some granule, trace small pe	ebbles; trace silt;		
9	$\frac{1}{2}$				0.0		poorly sorted; wet; pale brown (10YR 6/ (8.0-10.0') SAND, very fine to medium, su subrounded; little silt; poorly sorted; we	ibangular to		
	/ \				0.0		(10YR 5/2).			
							End of boring at 10.0' bgs.			
12										
13										
14										
15										
16										
17										
18										
19	1									
Drilling Co	0.:	Casc	ade				Sampling Method: 5' Macr	ocore		
Driller:			ossman				Sampling Interval: Continu			
Drilling M				Hollow Stem Auger	rs for W	ell Insta	, - ,			
Drilling Fl Remarks:		None		o 5.0' bgs.			Water Level Finish (ft. bto Converted to Well:		No	
Remarks:	•		1 <u>Beaco</u> i							
		U-103	. <u>Dodool</u>	•			North Coor:			
							East Coor:			

12017 Brewster

12017 BREWSTER STREET

The subject property is located at 12017 Brewster Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 4-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 4-2**. The soil boring log for monitoring well MW-162S is included as **Attachment 4-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 4-2**, and photographs of the residence are included below. Key features of the home include:

- Attached garage. Subfloor consists of crawlspace and slab-on-grade.
- Crawlspace is approximately 0.8 feet below ground surface (ft bgs) at its deepest point.
- Ground surface at base of residence is 657.1 feet above mean sea level (ft msl).
 Elevation of the crawlspace floor is approximately 656.4 ft msl.

Exhibit 1. Front view of the residence at 12017 Brewster Street

Exhibit 2. Crawlspace at 12017 Brewster Street

Exhibit 3. Attached Garage at 12017 Brewster Street

Geology

A soil boring was completed at monitoring well MW-162S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 4-2**. The boring log for monitoring well MW-162S is included as **Attachment 4-1**.

- The soil boring was completed to a total depth of 10 feet below ground surface (ft bgs)
- Sediments encountered at the boring location included very fine to medium sand with trace of silt to 6.5 ft bgs, a thin layer of silt and clay to 6.8 ft bgs, and fine to coarse sand with a trace of silt and granules to 10 ft bgs.
- Groundwater was noted in the soil boring at 5.0 ft bgs.

Groundwater Data

The location of monitoring well MW-162S is shown on **Figure 4-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-162S was installed with a screen depth of 3-8 ft bgs and is located 23 feet south of the residence.
- Depth of groundwater at MW-162S was measured at 4.41 feet below the top of the well casing (ft btoc) on February 28, 2019 (groundwater elevation: 655.08 ft msl).
- Estimated elevation of the residence subfloor is 656.4 ft msl.
- Distance of the subfloor to the water table was approximately 1.4 feet.
- Monitoring well MW78S is located north of the property. The range in measured groundwater elevations since May 2017 is 653.68 to 655.69 ft msl. Groundwater elevations obtained in November 2018 were 655.55, approximately 0.14 ft less than the maximum observed elevation.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.0 micrograms per liter) is approximately 190 feet (MW-130S located at 34600 Beacon Street).
- All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

E	Elevation Data - 12017 Brewster, Crawlspace												
W	Vell ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Ground Surface Elevation at Residence (ft msl)	Depth of Crawlspace (ft)	Elevation of Lowest Subfloor (ft msl)	Distance from Crawlspace to Water Table (ft)					
	MW- 162S	659.49	4.41	655.08	657.1	0.7	656.4	+ 1.4*					

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundwa	Groundwater Analytical Summary - 12017 Brewster											
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	vc		
MW-162S	MW- 162S_022819	23 ft	2/28/2019	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		
μg/L - microgr	ams per liter											
< denotes not	detected above repor	ting limit										

Exterior Soil Vapor Data

The location of exterior soil gas probes near the residence are included on **Figure 4-1**. Soil gas analytical data is summarized in the table below.

- Soil probe SVMP-16 was installed at a depth of 2.0 ft bgs at approximately 50 feet from the residence.
- All soil vapor COCs were below appropriate vapor screening levels.

Soil Vapor Analytical Summary - 12017 Brewster										
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc	
SVMP-16	2	6/16/2017	NA	NA	NA	NA	NA	< 6.4	< 3.0	
		9/19/2017	< 4.5	< 4.5	< 4.5	< 16	< 7.8	< 6.2	< 2.9	
		11/20/2017	< 4.3	< 4.3	< 4.3	< 16	< 7.4	< 5.9	< 2.8	
		2/19/2018	NS	NS	NS	NS	NS	NS	NS	
		5/31/2018	NS	NS	NS	NS	NS	NS	NS	
		8/24/2018	< 5.0	< 5.0	< 5.0	< 18	< 8.5	< 6.8	< 3.2	
		11/7/2018	NS	NS	NS	NS	NS	NS	NS	

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NS = not sampled

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a combination crawl space and slab-on-grade. Interior sub slab and indoor air sampling results are summarized on the table below.

- Sub-slab sample SSMP-12017 Brewster-01 was installed in the garage.
- An ambient air sample was collected outside, south of the residence using a 24-hour flow controller.
- Indoor air samples were collected from three locations, using 24-hour flow controllers
 - o One sample was collected from the garage.
 - One sample was collected from the first floor.
 - One sample was collected from the crawl space.
- All sub-slab and indoor air COCs were below appropriate vapor screening levels.

Indoor Air Analytical Summary - 12017 Brewster											
Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC		
Main Floor IA (IAF)	IAF- 12017Brewster- 03_110718	11/8/2018	< 0.68	< 0.68	< 0.68	< 0.62	< 1.2	< 0.92	< 0.44		
Garage IA (IAG)	IAG- 12017Brewster- 01_110718	11/8/2018	< 0.65	< 0.65	< 0.65	< 0.59	< 1.1	< 0.89	< 0.42		
Crawl Space (IACS)	IACS- 12017Brewster- 02_110718	11/8/2018	< 0.67	< 0.67	< 0.67	< 0.61	< 1.2	< 0.91	< 0.43		
Garage Sub-slab (SSMP)	SSMP- 12017Brewster- 01_110818	11/8/2018	< 4.8	< 4.8	< 4.8	< 17	< 8.1	< 6.4	< 3.1		
Ambient Air (AA)	AA- 12017Brewster- 01_110718	11/7/2018	< 0.58	< 0.58	< 0.58	< 0.53	< 1.0	< 0.79	< 0.38		
μg/m3 - micrograms per cubic meter < denotes not detected above reporting limit											

< denotes not detected above reporting limit

FIGURES

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001,00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet 2/16/SProjects_ENVINOVBrighton_MIFord\Livonial\GS\docs\2019-03\Report\2017Brewster_Locations.mxd PLOTTED: 3/12/2019 2:10:10 PM BY: msmiller

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

⊕ SOIL BORING LOCATION

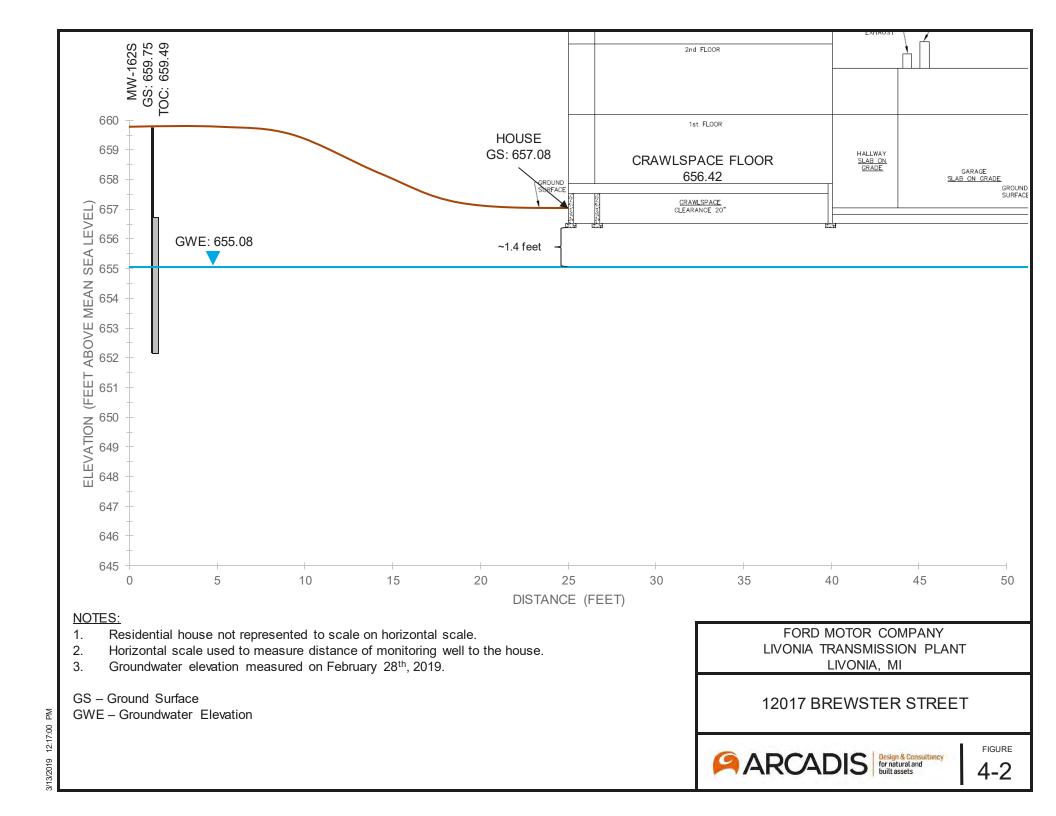
SUB-SLAB MONITORING POINT LOCATION

■ VAPOR PROBE

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

BUILDING


PROPERTY BOUNDARIES

FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

12017 BREWSTER STREET SAMPLE LOCATIONS

FIGURE 4-1

ARCADIS for a Constant of the							Boring No.: MW-162S			
Soil B				۸	:: !	Dlass	Date Started: <u>02/20/2019</u>			11
Project Na Project Na				<u>Automatic Transm</u> กร	<u>ISSIONS I</u>		te Completed: 02/20/2019	Logger: <u>S. Joh</u> Editor: <u>Troy S</u>		
Project Lo				03		0	•	Conditions: Cloud		
		Plow	· ·			<u> </u>			•	1
Depth (feet)	Sample Interval	Blow Counts	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
<u> </u>	1				0.0	71/2 71/2	(0.0-0.3') TOPSOIL (0.3-3.0') SAND, very fine, subangular to	subrounded: little	(0.0-3.0') 2"	
1	Æ						silt; well sorted; dry; dark yellowish brow	wn (10YR 4/6).	PVC riser	
	₩				0.0				(1.0-3.0'	
2	1 ■								bgs) — Bentonite	
_	1		60		0.0				Dentonite	
3	▍█						(3.0-4.0') SAND, very fine to fine, subang	gular to		
	 				0.0		subrounded; well sorted; dry; yellowish	brown (10YR 5/4).		
·]				0.0		(4.0-6.5') SAND, fine to medium, subang subrounded; well sorted; moist; yellowis	gular to		
5	1				0.0		5/4).	III DIOWII (101K	(3.0-10'	
	1 /				0.0				bgs) Sand —	
6	-								Filter Pack	1::=::
	$ \cdot $				0.0		(6.5-6.8') SILT and CLAY, medium plastic	ity slow dilatency:	(3.0-8.0' / bgs)	
7						*******	wet; soft; gray (10YR 5/1).		Well	
	∤		54		0.0	• • • • • •	(6.8-7.5') SAND, fine to coarse, subangu some granule to small pebbles, little me	dium pebble.	Screen	
8	/\						subangular to subrounded; poorly sorte (10YR 4/1).	d; moist; dark gray		
 9	1 / \				0.0		(7.5-8.7') SAND, fine to medium, subang	gular to		
9	1/ \						subrounded; trace medium pebbles, subsubangular; well sorted; moist; gray (10	YR 5/1).		
	7 \				0.0		(8.7-10.0') SAND, fine to medium, subar subrounded; trace granule; well sorted;	igular to		
							(5/1). End of boring at 10.0' bgs.	moist, gray (1011		
11							Life of borning at 10.0 bgs.			
	-									
12	-									
	1									
13	1									
 14										
14	1									
 15										
16	_									
	-									
17	1									
	1									
18	1									
	1									
13	1									
Drilling Co	 D.:	Caso	ade				Sampling Method: 5' Mac	rocore		
Driller:			and Adr				Sampling Interval: Continu			
Drilling Me			•	Hollow Stem Auge	rs for W	<u>'ell Insta</u>	,	•		
Drilling Flu	uid:	None					Water Level Finish (ft. bto		7 No	
Remarks:			_	o 5.0' bgs.					No	
		1201	7 Brewst	<u>ter</u>						
							North Coor: East Coor:			
							East 0001.			

34367 Capitol

34367 CAPITOL STREET

The subject property is located at 34367 Capitol Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 5-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 5-2**. The soil boring log for monitoring well MW-146S is included as **Attachment 5-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 5-2**, and photographs of the residence are included below. Key features of the home include:

- Detached garage. Subfloor consists of crawlspace and slab-on-grade.
- Crawlspace is approximately 0.2 ft bgs.
- Ground surface at base of residence is 657.5 feet above mean sea level (ft msl).
 Elevation of the crawlspace floor is approximately 657.3 ft msl.

Exhibit 1. Front view of the residence at 34367 Capitol Street

Exhibit 2. Crawlspace at 34367 Capitol Street.

Exhibit 3. Attached Garage at 34367 Capitol Street

Geology

A soil boring was completed at monitoring well MW-146S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 5-2**. The boring log for monitoring well MW-146S is included as **Attachment 5-1**.

- The soil boring was completed to a total depth of 10 feet below ground surface (ft bgs).
- Sediments encountered at the boring location included very fine to medium sand with trace of pebbles to 6.0 ft bgs, a layer of silt 7.0 ft bgs, and fine to coarse sand with a trace of silt and granules to 10 ft bgs.
- Groundwater was noted in the soil boring at 7.5 ft bgs.

Groundwater Data

The location of monitoring well MW-146S is shown on **Figure 5-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-146S was installed with a screen depth of 6-11 ft bgs and is located
 12 feet north of the residence.
- Depth of groundwater at MW-146S was measured at 5.38 feet below the top of the well casing (ft btoc) on February 20, 2019 (groundwater elevation: 652.43 ft msl).
- Estimated elevation of the residence subfloor is 657.3 ft msl.
- Distance of the subfloor to the water table was approximately 4.9 feet.
- Monitoring well MW82S is located east of the property. The range in measured groundwater elevations since May 2017 is 649.55 to 651.70 ft msl. Groundwater elevations obtained in November 2018 were 651.01 ft msl, approximately 0.69 ft less than the maximum observed elevation.
- Due to the depth of the water table below the residence (i.e. greater than 1.18 meters [3.9 ft]) the groundwater screening criteria of 1.4 μg/L for vinyl chloride applies.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.4 micrograms per liter) is approximately 360 feet (MW-123S located at 12075 Brewster Street).

 All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

Elevation Data - 34367 Capitol - Crawlspace										
Well ID	Top of Casing Elevation (ft msl) Casing Elevation (ft btoc) Casing Cas		Ground Surface Elevation at Residence (ft msl)	Depth of Crawlspace (ft)	Elevation of Lowest Subfloor (ft msl)	Distance from Crawlspace to Water Table (ft)				
MW- 146S	657.81	5.38	652.43	657.5	0.2	657.3	+ 4.9*			

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundwater Analytical Summary - 34367 Capitol											
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC	
MW- 146S	MW- 146S_022019	12 ft	2/20/2019	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	0.23 J	

μg/L - micrograms per liter

Exterior Soil Vapor Data

The locations of exterior soil vapor probes near the residence are included on **Figure 5-1**. Soil gas analytical data is summarized in the table below.

- Soil vapor monitoring point SVMP-18 was installed at a depth of 3.0 ft bgs at a distance of approximately 60 feet from the residence.
- All soil vapor COCs were below appropriate vapor screening levels.

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

< denotes not detected above reporting limit

Soil Vapor A	nalytical	Summary - 3	4367 Capit	tol					
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	VC
		6/16/2017	NA	NA	NA	NA	NA	< 6.6	< 3.2
		9/18/2017	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0
	3	11/17/2017	< 4.3	< 4.3	< 4.3	< 16	< 7.3	< 5.8	< 2.8
SVMP-18		2/20/2018	< 4.5	< 4.5	< 4.5	< 16	< 7.8	< 6.2	< 2.9
		5/30/2018	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0
		8/22/2018	< 5.1	< 5.1	< 5.1	< 18	< 8.8	< 6.9	< 3.3
		11/7/2018	< 4.6	< 4.6	< 4.6	< 16	< 7.8	< 6.2	< 2.9

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NS = not sampled

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a crawl space. Interior sub slab and indoor air sampling results are summarized on the table below.

- Sub-slab sample SSMP-34367 Capitol-01 was installed in the garage.
- An ambient air sample was collected outside, north of the residence using a 24-hour flow controller.
- Indoor air samples were collected from three locations, using 24-hour flow controllers.
 - Two samples were collected from the first floor.
 - One sample was collected from the garage.
- All sub-slab and indoor air COCs were below appropriate vapor screening levels.

Indoor Air Analytical Summary - 34367 Capitol St

Sample Location	Sample ID	Sample Date	1,1- DCE	Cis-1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	vc
Main Floor IA	IAF- 34367Capitol- 01_120318	12/4/2018	< 0.64 [<0.65]	< 0.64 [<0.65]	< 0.64 [<0.65]	0.27 J [<0.59]	< 1.1 [<1.1]	< 0.86 [<0.88]	< 0.41 [<0.42]
(IAF)	IAF-34367Capitol- 02_120318	12/4/2018	< 0.61	< 0.61	< 0.61	< 0.56	< 1.0	< 0.83	< 0.40
Garage IA (IAG)*	IAG* [DUP- 34367Capitol- 02_120318]	12/4/2018	[< 0.61]	[< 0.61]	[< 0.61]	[< 0.55]	[< 1.0]	[< 0.82]	[< 0.39]
Ambient Air (AA)*	AA* [DUP- 34367Capitol- 03_120318]	12/4/2018	[< 0.62]	[< 0.62]	[< 0.62]	[< 0.56]	[< 1.0]	[< 0.84]	[< 0.40]
Garage Sub-slab (SSMP)	SSMP- 34367Capitol- 01_120418	12/4/2018	< 4.4	< 4.4	< 4.4	< 16	2.8 J	< 6.0	< 2.9

μg/m3 - micrograms per cubic meter

- J Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value
- [] represents analytical results from a duplicate sample
- * duplicate results present, parent sample rejected for not meeting data quality objectives

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

SOIL BORING LOCATIONSUB-SLAB MONITORING POINT LOCATION

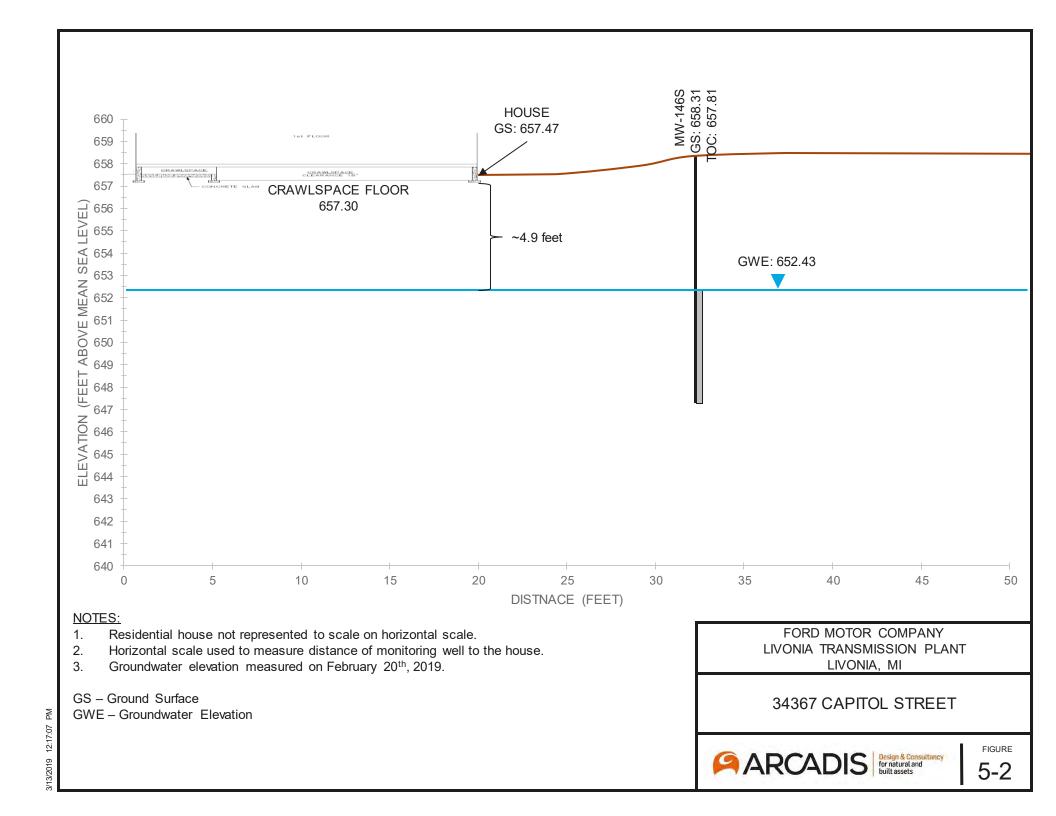
■ VAPOR PROBE

•

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34367 CAPITOL STREET SAMPLE LOCATIONS

FIGURE **5-1**

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001,00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet 2/13/2019 2:56:15 PM BY: msmiller

ARCADI	S best & Consultance for restration to built assets					Boring	No.: <u>MW-146S</u>	
Soil Boring							Sheet: 1 of	1
Project Name:	Ford Livonia	Automatic Transmis	sions F		Date Started: 02/15/2019	Logger: Christ	tina Weaver	
Project Number: Project Location:		03		Dat	e Completed: 02/15/2019 Weather C	_ Editor: <u>Troy S</u> onditions: <u>Cloud</u>		
Project Location.		I	1	_ 		oriditions. <u>Cloud</u>	ıy, 3 IF	T
Depth Sample (feet) Interval	Blow Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
			0.0		(0.0-0.3') TOPSOIL (0.3-6.2') SAND, very fine to medium, sul subangular; trace small pebbles, round t	orounded to subangular; well	(0.0-6.0') 2" PVC	
			0.0		sorted; dry; yellowish brown (10YR 5/6).	.	riser	
	60		0.0					
- 3 - 4			0.0				(1.0-6.0' bgs) —	
			0.0				Bentonite	
5			0.0					
6			0.0		(6.2-7.1') SILT, slow dilatency, no plastici	ty; little very fine		
7 — \					to fine sand; well sorted; wet; light gray (7.1-7.2') SAND, very fine to very coarse,	subrounded to		
8 \	58		0.0		subangular; little small pebbles, subroun trace silt; poorly sorted; wet; light gray ((7.2-7.4') SILT, rapid dilatency, no plastic	10YR 7/1).	(6.0-11.0' bgs)	
9/ \			0.0		fine to fine; well sorted; wet; light gray (; (7.4-9.0') SILT, slow dilatency, no plastici coarse sand, trace granule to small pebb	10YR 7/1). ty; some fine to	Sand — Filter / Pack	
10			0.0		subanguar; poorly sorted; wet; light gray (9.0-9.2') SAND, fine to very coarse, subr subangular; some silt; trace granule; poo	(10YR 7/1). ounded to	(6.0-11.0' / bgs) Well	
11					grayish brown (10YR 5/2). (9.2-9.8') SILT, rapid dilatency, no plastic	ity: trace very fine	Screen	
12					to fine sand; well sorted; wet; gray (10YF (9.8-10.0') CLAY, trace silt, slow dilatancy plasticity; wet, soft; gray (10YR 5/1).			
					End of boring at 10.0' bgs.			
16 2								
17								
18								
19								
20								
Drilling Co.:	Cascade				Sampling Method: 5' Macr			
Driller:	M. Leadingha			-11.1	Sampling Interval: Continu			
Drilling Method:	,	Hollow Stem Augers	s tor We	<u>eii Install</u>	, , ,			
Drilling Fluid: Remarks:	None Hand Auger t	:ο 5 0' bas			Water Level Finish (ft. bto Converted to Well: ⊠	C.) <u>: NA</u> Yes	No	
TITOTHAINS.	34367 Capito				Converted to Well <u></u> Surface Elev.:NA			
OS CANA	J.OUT OUPILO				North Coor:			
					East Coor:			

34480 Capitol

34480 CAPITOL STREET

The subject property is located at 34480 Capitol Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 6-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 6-2**. The soil boring log for monitoring well MW-168S is included as **Attachment 6-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 6-2**, and photographs of the residence are included below. Key features of the home include:

- Detached garage. Subfloor consists of crawlspace and slab-on-grade.
- Crawlspace is approximately 0.6 feet below ground surface (ft bgs).
- Ground surface at base of residence is 663.1 feet above mean sea level (ft msl).
 Elevation of the crawlspace floor is approximately 662.5 ft msl.

Exhibit 1. Front view of the residence at 34480 Capitol Street

Exhibit 2. Crawlspace at 34880 Capitol Street.

Exhibit 3. Detached Garage at 34880 Capitol Street

Geology

A soil boring was completed at monitoring well MW-168S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 6-2**. The boring log for monitoring well MW-168S is included as **Attachment 6-1**.

- The soil boring was completed to a total depth of 10 feet below ground surface (ft bgs)
- Sediments encountered at the boring location included very fine to medium sand with trace of pebbles and silt to 3.0 ft bgs, very fine to very coarse sand and granules and pebbles to 4.0 ft bgs, and very fine to coarse sand and silt 10 ft bgs.
- Groundwater was noted in the soil boring at 4.0 ft bgs.

Groundwater Data

The location of monitoring well MW-168S is shown on **Figure 6-1**. Groundwater elevation and analytical data are summarized in tables included below.

- Monitoring well MW-168S was installed with a screen depth of 2-7 ft bgs and is located 11 feet south of the residence.
- Depth of groundwater at MW-168S was measured at 2.15 feet below the top of the well casing (ft btoc) on February 25, 2019 (groundwater elevation: 654.88 ft msl).
- Estimated elevation of the residence subfloor is 662.5 ft msl.
- Distance of the subfloor to the water table was approximately 7.6 feet.
- Monitoring well MW80SR is located south of the property. The range in measured groundwater elevations since May 2017 is 651.89 to 654.85 ft msl. Groundwater elevations obtained in November 2018 were 653.91 ft msl, approximately 0.94 ft less than the maximum observed elevation.
- Due to the depth of the water table below the residence (i.e. greater than 1.18 meters [3.9 ft]) the groundwater screening criteria of 1.4 μg/L for vinyl chloride applies.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.4 micrograms per liter) is approximately 210 feet (MW-123S located at 12075 Brewster Street).

All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels.

Elevation D	Oata - 34480 (Capitol, Crawls	расе				
Well ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Ground Surface Elevation at Residence (ft msl)	Depth to Crawlspace Floor (ft bgs)	Elevation of Lowest Subfloor (ft msl)	Distance from Crawlspace Floor to Water Table (ft)
MW-168S	657.03	2.15	654.88	663.1	0.6	662.5	+ 7.6*

^{*}a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundw	Groundwater Analytical Summary - 34480 Capitol										
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC	
MW- 168S	MW- 168S_022519	11 ft	2/25/2019	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	

μg/L - micrograms per liter

ND - Analyte/compound tested for, but not

detected

< denotes not detected above reporting limit

Exterior Soil Vapor Data

The locations of exterior soil vapor probes near the residence are included on Figure 6-1. Soil vapor analytical data is summarized in the table below.

- Soil vapor monitoring point SVMP-23 was installed at a depth of 3.0 ft bgs at approximately 110 feet from the residence.
- Soil vapor monitoring point SVMP-19 was installed at a depth of 3.0 ft bgs at approximately 130 feet from the residence.
- All soil vapor COCs were below appropriate vapor screening levels.

Soil Vapo	r Analytical S	ummary - 344	180 Capitol						
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc
		6/16/2017	NA	NA	NA	NA	NA	< 6.4	< 3.0
		9/18/2017	< 5.1	< 5.1	< 5.1	< 18	< 8.8	< 6.9	< 3.3
		11/17/2017	< 4.3	< 4.3	< 4.3	< 16	< 7.4	< 5.9	< 2.8
SVMP-19	3	2/20/2018	< 4.1	< 4.1	< 4.1	< 15	< 7.1	< 5.6	< 2.7
		5/31/2018	NS	NS	NS	NS	NS < 7.7	NS	NS
		8/22/2018	< 4.5	< 4.5	< 4.5	< 16		< 6.1	< 2.9
		11/7/2018	NS	NS	NS	NS	NS	NS	NS
		6/19/2017	NA	NA	NA	NA	NA	< 6.4	< 3.1
		9/18/2017	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0
		11/17/2017	< 4.3	< 4.3	< 4.3	< 16	< 7.4	< 5.8	< 2.8
SVMP-23	3	2/20/2018	< 4.2	< 4.2	< 4.2	< 15	< 7.2	< 5.7	< 2.7
		5/31/2018	NS	NS	NS	NS	NS	NS	NS
		8/22/2018	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0
		11/5/2018	< 4.5	< 4.5	< 4.5	< 16	< 7.7	< 6.1	< 2.9

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NS = not sampled

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a partial crawl space, partial slab-on-grade. Interior sub slab soil vapor and indoor air sampling results are summarized on the table below.

- Sub-slab samples:
 - o SSMP-34480 Capitol-01 was installed in the garage.
 - SSMP-34480 Capitol-02 was installed in the living room.
- An ambient air sample was collected outside, northwest of the residence using a 24-hour flow controller.

- Indoor air samples were collected from four locations, using 24-hour flow controllers
 - o One sample was collected from the garage.
 - o One sample was collected from the crawl space.
 - o Two samples were collected from the first floor.
- All sub-slab and indoor air COCs were below appropriate screening levels.

Indoor Air	Analytical	Summary	- 34480	Capitol St

Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc
Main Floor IA	IAF- 34480CAPITOL- 01_102918	10/30/2018	< 0.71	< 0.71	< 0.71	0.24 J	0.32 J	< 0.96	< 0.46
(IAF)	IAF- 34480CAPITOL- 02_102918	10/30/2018	< 0.69	< 0.69	< 0.69	< 0.63	0.29 J	< 0.94	< 0.45
Garage IA (IAG)	IAG- 34480CAPITOL- 03_102918	10/30/2018	< 0.63	< 0.63	< 0.63	< 0.57	0.23 J	< 0.85	< 0.40
Crawl Space (IACS)	IACS- 34480CAPITOL- 01_102918	10/30/2018	< 0.72	< 0.72	< 0.72	< 0.66	0.29 J	< 0.98	< 0.47
Garage Sub-slab (SSMP)	SSMP- 34480CAPITOL- 01_103018	10/30/2018	< 4.7	< 4.7	< 4.7	< 17	< 8.0	< 6.3	< 3.0
Living Room Sub-slab (SSMP)	SSMP- 34480CAPITOL- 02_103018	10/30/2018	< 4.8	< 4.8	< 4.8	< 18	< 8.3	< 6.6	< 3.1
Ambient Air (AA)	AA- 34480CAPITOL- 01_102918	10/29/2018	< 0.60	< 0.60	0.14 J	< 0.55	0.34 J	< 0.82	< 0.39

μg/m3 - micrograms per cubic meter

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

⊕ SOIL BORING LOCATION

SUB-SLAB MONITORING POINT LOCATION

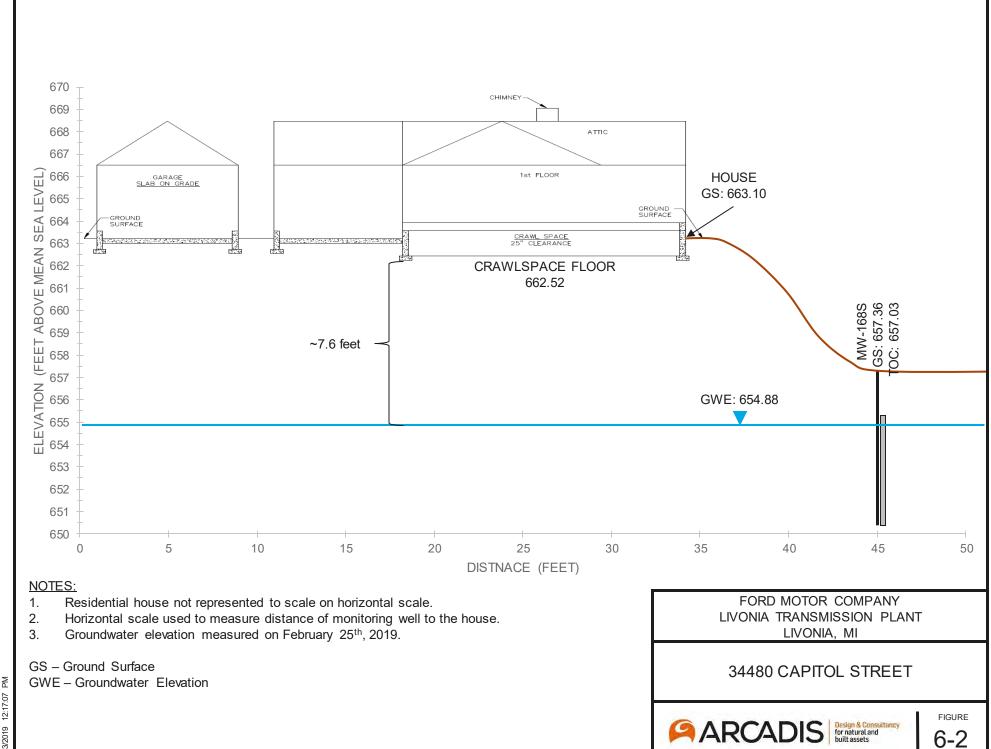
■ VAPOR PROBE

•

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICTIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34480 CAPITOL STREET SAMPLE LOCATIONS

FIGURE

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001,00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet 2./GISProjects_ENVINOVBrighton_MIFord\Livonial\GS\docs\2019-03\Report\3480Capitol_Locations.mxd PLOTTED: 3/12/2019 2:15:24 PM BY: msmiller

ARCADI	S for extural and built assets					Boring	No.: <u>MW-168S</u>		
Soil Borin							Sheet: 1 of	1	
	Ford Livonia Au		issions I		ate Started: 02/20/2019	Logger: Christ	ina Weaver		
Project Number: Project Location	MI001454.0003 : Livonia. MI	3		Date	Completed: 02/20/2019 Weather C	Editor: Troy Solutions: P. Clo			
	DIa		PID	LISCS			Construction		
Depth Sample (feet) Interva	Counts (in.)	Sample ID	(ppm)		Description		Details	Well	
1 -			0.0	(0. su	0-0.3') TOPSOIL 3-2.0') SAND, very fine to medium, sul brounded; trace small pebbles; well so own (10YR 3/3).	bangular to orted; dry; dark	(0.0-3.0') 2" PVC riser (0.5-2.0' bgs)		
- 2 - 4	60		0.0	su (10	0-3.0') SAND, very fine to medium, sul brounded; trace silt; well sorted; wet; DYR 6/2).	ligh brownish gray	Bentonite		
_ 4 _ }			0.0	su po	0-4.0') SAND, very fine to very coarse, brounded to subangular; trace small p orly sorted; wet; dark yellowish browr 0-7.0') SAND very fine to very coarse,	ebbles; trace silt; n (10YR 4/4).	(2.0-10' bgs)		
5 - 1			0.0	su	bangular; and SILT, rapid dilatency, no anule; poorly sorted; wet; grayish brov	n-plastic; trace	Sand Filter Pack (2.0-7.0'		
6			0.0				bgs) / Well Screen		
/ \/	60		0.0	(7.	0-9.0') SILT, rapid dilatency, non-plast e sand; well sorted; wet; very dark gra	ic; little very fine to by (10YR 3/1).		· · · · · · · · · · · · · · · · · · ·	
9/ \			0.0	22222 (9.	0-10.0') SILT, some clay, rapid dilatenc	cv. medium			
	ackslash		0.0	pla	esticity; wet; gray (10YR 5/1).	,,,,			
				En	d of boring at 10.0' bgs.				
11									
12									
13									
14									
15									
16									
[17									
18									
19									
20									
Drilling Co.:	Cascade		. '	•	Sampling Method: 5' Macr	ocore	•	•	
Driller:	T. Grossman				Sampling Interval: Continu				
Drilling Method:	,	ollow Stem Auge	ers for W	ell Installat	,				
Drilling Fluid: Remarks:	None Hand Auger to	5.0' bgs.			Water Level Finish (ft. btoc.) <u>: NA</u> Converted to Well: ⊠ Yes □ No				
internality.	34480 Capitol	o.o bys.			Surface Elev.:NA				
					N 0				
					East Coor:				

34940 Beacon

34940 BEACON STREET

The subject property is located at 34940 Beacon Street. The location of the residence, surrounding properties, other nearby monitoring wells, and relevant analytical results are summarized on **Figure 7-1**. A cross-section illustrating the home construction, local geology and groundwater elevation is included as **Figure 7-2**. The soil boring log for monitoring well MW-109S is included as **Attachment 7-1**. Each section below includes tables summarizing the groundwater, soil vapor and indoor air data, as appropriate.

Home Construction

The home construction is illustrated on **Figure 7-2**, and photographs of the residence are included below. Key features of the home include:

- Attached garage. Subfloor consists of a basement.
- Approximate depth to the basement floor is approximately 5.5 feet below ground surface (ft bgs).
- Ground surface at base of residence is 665.2 feet above mean sea level (ft msl).
 Elevation of the basement floor is approximately 659.7 ft msl.

Exhibit 1. Front view of the residence at 34940 Beacon Street

Exhibit 2. Basement at 34940 Beacon Street

Geology

A soil boring was completed at monitoring well MW-89S. A cross-section depicting the location of the soil boring relative to the residence is included as **Figure 7-2**. The boring log for monitoring well MW-89S is included as **Attachment 7-1**.

- The soil boring was completed to a total depth of 15 feet below ground surface (ft bgs)
- Sediments encountered at the boring location included fine sand and silt to 8.5 ft bgs, fine
 to coarse sand with a trace of granules and pebbles to 14 ft bgs, and fine sand and silt to
 15 ft bgs.
- Groundwater was noted in the soil boring at 5 ft bgs.

Groundwater Data

The location of monitoring well MW-89S is shown on **Figure 7-1**. Groundwater elevation and analytical data are summarized in tables included below.

Monitoring well MW-89S was installed with a screen depth of 3-13 ft bgs and is located
 11.5 feet northeast of the residence.

- Depth of groundwater at MW-89S was measured at 4.43 feet below the top of the well casing (ft btoc) on December 19, 2018 (groundwater elevation: 659.30 ft msl).
- Estimated elevation of the residence subfloor is 659.7 ft msl
- Distance of the subfloor to the water table was approximately 0.4 feet.
- Monitoring well MW74 is located east of the property. The range in measured groundwater elevations since May 2017 is 659.90 to 662.08 ft msl. Groundwater elevations obtained in November 2018 were 661.77 ft msl, approximately 0.31 ft less than the maximum observed elevation.
- Distance from the residence to the nearest shallow groundwater exceedance (i.e. vinyl chloride > 1.0 micrograms per liter) is approximately 300 feet (MW-95S located at 12131 Boston Post).
- A sump is located in the north-eastern section of the basement. A water sample was collected from the sump and is included on the table below.
- All groundwater contaminants of concern (COCs) were below appropriate groundwater vapor intrusion screening levels

Elevation D	ata - 34940 B	eacon - Basem	ent				
Well ID	Top of Casing Elevation (ft msl)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft msl)	Ground Surface Elevation at Residence (ft msl)	Depth to Basement Floor (ft bgs)	Elevation of Basement Floor (ft msl)	Distance from Lowest Subfloor to Water Table (ft)
MW-89S	663.73	4.43	659.30	665.2	5.5	659.7	+ 0.4*

*a negative (-) value represents a water table above the lowest subfloor, a positive (+) value represents water table below the lowest subfloor

ft msl = feet above mean sea level

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft = feet

Groundy	ater Analytical Su	mmary - 34	1940 Beacon	Street						
Sample Location	Sample ID	Distance to House	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2- DCE	1,4- Dioxane	PCE	TCE	VC
MW-89S	MW-89S_121918	11.5 ft	12/19/2018	< 1.0	1.2	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0

SUMP	SUMP- 34940BEACON- 100418		10/4/2018	< 1.0	0.75 J	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	
------	---------------------------------	--	-----------	-------	--------	-------	-------	-------	-------	-------	--

μg/L - micrograms per liter

Exterior Soil Vapor Data

The location of exterior soil vapor probe SVMP-33 and SVMP-08 is included on **Figure 7-1**. Soil gas analytical data is summarized in the table below.

- Soil vapor monitoring point SVMP-33 was installed at a depth of 4.0 ft bgs at approximately 10 feet from the residence
- Soil vapor monitoring point SVMP-08 was installed at a depth of 3.5 ft bgs at approximately 105 feet southwest of the residence.
- All soil vapor COCs were below appropriate vapor screening levels

Soil Vapor Analytical Summary - 34940 Beacon											
Sample Location	Sample Depth (ft bgs)	Sample Date	1,1-DCE	Cis-1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	vc		
	3.5	6/15/2017	NA	NA	NA	NA	NA	< 6.5	< 3.1		
		9/20/2017	< 4.7	< 4.7	< 4.7	< 17	< 8.1	< 6.4	< 3.0		
		11/20/2017	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.2	< 3.0		
SVMP-08		2/20/2018	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0		
		5/29/2018	< 5.0	< 5.0	< 5.0	< 18	< 8.6	11	< 3.2		
		8/23/2018	< 4.8	< 4.8	< 4.8	< 17	< 8.2	< 6.5	< 3.1		
		11/5/2018	< 4.6	< 4.6	< 4.6	< 17	< 7.9	< 6.3	< 3.0		
SVMP-33	4	42901	NA	NA	NA	NA	NA	< 6.5	< 3.1		

Samples analyzed via US EPA Method TO-15

μg/m3 = micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

< denotes not detected above reporting limit

Indoor Air and Sub-Slab Sample Results

The building construction consists of a full basement construction. Interior sub slab and indoor air sampling results are summarized on the table below.

- Sub-slab sample SSMP-34940 Beacon-01 was installed in the garage
- An ambient air sample was collected outside, east of the residence using a 24-hour flow controller.

< denotes not detected above reporting limit

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

- Indoor air samples were collected from three locations, using 24-hour flow controllers
 - o One sample was collected from the first floor.
 - o One sample was collected from the basement.
- All sub-slab and indoor air COCs were below appropriate vapor screening levels

Indoor Air Analytical Summary - 34940 Beacon											
Sample Location	Sample ID	Sample Date	1,1- DCE	Cis- 1,2- DCE	Trans- 1,2-DCE	1,4- Dioxane	PCE	TCE	VC		
Main Floor IA (IAF)	IAF-34940Beacon- 01_100318	10/4/2018	< 1.4	< 1.4	< 1.4	< 1.3	< 2.4	< 1.9	< 0.90		
Basement IA (IAB)	IAB-34940Beacon- 02_100318	10/4/2018	< 0.69	< 0.69	< 0.69	< 0.63	< 1.2	< 0.94	< 0.44		
Garage Sub-slab (SSMP)	SSMP- 34940Beacon- 01_100318	10/4/2018	< 4.7	< 4.7	< 4.7	< 17	2.4 J	< 6.4	< 3.0		
Ambient Air (AA)	AA-34940Beacon- 01_100318	10/3/2018	< 0.70	< 0.70	< 0.70	< 0.64	< 1.2	< 0.96	< 0.46		

μg/m3 - micrograms per cubic meter

J - Result less than the RL but greater than or equal to the MDL and the concentration is an approximate value

< denotes not detected above reporting limit

FIGURES

INDOOR AIR LOCATION

AMBIENT AIR LOCATION

⊕ SOIL BORING LOCATION

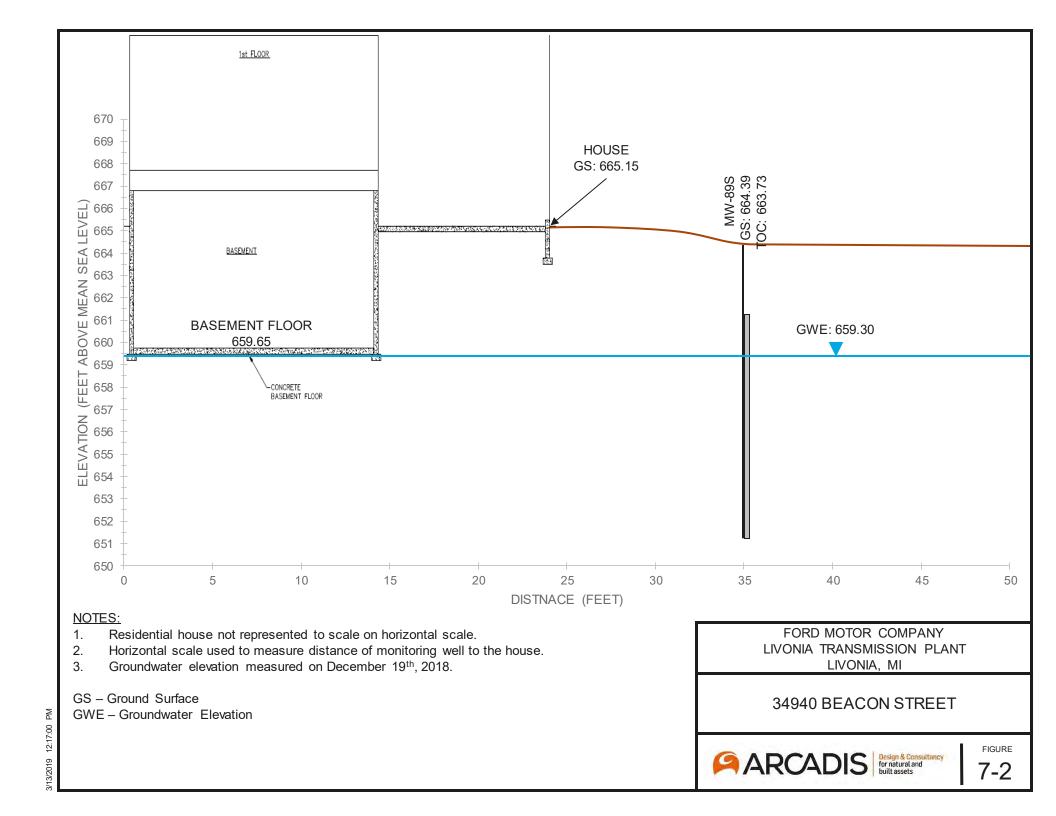
SUB-SLAB MONITORING POINT LOCATION

VAPOR PROBE

SHALLOW GROUNDWATER RESULT EITHER NON-DETECT OR DETECTED BELOW THE MOST RESTRICTIVE CRITERIA

SHALLOW GROUNDWATER RESULT EXCEEDS MOST RESTRICITIVE CRITERIA FOR AT LEAST ONE COMPOUND. HIGHLIGHTED ORANGE EXCEEDS MOST RESTRICITIVE CRITERIA (TDL OF 1.0 µg/L FOR VC)

PROPERTY BOUNDARIES


FORD MOTOR COMPANY LIVONIA TRANSMISSION PLANT LIVONIA, MICHIGAN

34940 BEACON STREET SAMPLE LOCATIONS

FIGURE 7-1

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373,0001.00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Z.IGISProjects_ENVINOVBrighton_MIYFord\Livonia\GS\docs\2018-03\Report\34940Beacon_Locations. mxd PLOTTED: 3/13/2019 2:15:46 PM BY: msmiller

ARCAE	DIS for rish, built as	S Consultance ral and sets					Boring	No.: MW-89S	
Soil Borin								Sheet: 1 of	1
Project Name:	Ford	LTP			_	Date Started: <u>10/31/2018</u>	_ Logger: <u>J. Bar</u>		
Project Number			03.00002		_ Da	ate Completed: 10/31/2018	Editor: NA	50° E	
Project Locatio	n: <u>Livon</u>	ia, ivii				vveatner C	onditions: <u>Cloud</u>	<u>y 50° F</u>	
Depth Samp (feet) Inter	ole Blow val Counts	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
		60		5.7 3.1 5.3	2 k 3 l 3	(0.0-0.5') Topsoil. (0.5-1.0') SAND, fine, subangular; well sort brown (10YR 2/2). (1.0-2.0') SAND, very fine, subrounded; we dark grayish brown (10YR 3/2). Note: Root (2.0-3.0') SAND, subangular to subrounder sorted; moist; dark grayish brown (10YR 3/2).	ill sorted; moist; very s. d; and SILT; well (2). Note: Roots.	Flush mount — 8" dia. drilled _ hole Backfill (0.5-1ft)— Bentonite _ Pellets (1-2.5 ft) 2" dia. PVC _ Casing	
4 5				2.4		(3.0-4.0') SAND, subangular to subrounder sorted; moist; dark grayish brown (10YR 4, (4.0-8.5') SAND, subangular to subrounder sorted; moist; dark grayish brown (10YR 4, Weter start at 5.0' bag.	d; and SILT; well	Sand Pack (2.5-15 ft)	
6 6 7 8 9 9		42		0.7 0.6 0.6 0.7		Water start at 5.0' bgs. (8.5-9.5') SAND; some pebble, coarse grai pebble, subangular to subrounded; wet; ye		2" dia. Stainless- Steel Sch 40 PVC — 0.010" slot Well Screen (3-13 ft)	
10		42		0.6 0.7 0.7 0.7 0.7		(10YR 5/8). (9.5-14.0') SAND, coarse, angular to suban moist; dark grayish brown (10YR 4/2). (14.0-14.2') SAND, fine grain, subangular to SILT; poorly sorted; moist; brown (10YR 5/14.2-15.0') SILT; some fine sand, subang poorly sorted; moist; gray (10YR 5/1).	o subrounded; and 3).		
						End of boring at 15.0 ft bgs.			
16	T::	took				Compline Matter to 51 M	00000		<u> </u>
Drilling Co.: Driller:	<u>Fiber</u> Nick		n/ lake Turnage			Sampling Method: <u>5' Macr</u> Sampling Interval: <u>Continu</u>			
Drilling Fluid:	None					Water Level Start (it. bgs.) Water Level Finish (ft. btoo			
Remarks:			= inch; bgs = below g	round su	rface;		Yes [No	
ppm = parts per n	nillion; NA	. = not ava	ilable or not applicable	. Hand A	uger to 5	.0' Surface Elev.: NA			
bgs.						North Coor: NA			
<u> </u>						East Coor: NA			

Arcadis of Michigan, LLC

28550 Cabot Drive

Suite 500

Novi, Michigan 48377

Tel 248 994 2240

Fax 248 994 2241

www.arcadis.com