

To: Beth Vens, District Supervisor EGLE Warren District Office 27700 Donald Court Warren, Michigan 48092-2793 vensb@michigan.gov

From:

Kris Hinskey

Date:

December 13, 2019

Arcadis Project No.:

30016340

Copies:

Mr. Paul Owens, EGLE

Mr. Todd Walton, Ford

Ms. Cyndi Mollenhour, EGLE

Ms. Alexandra Rafalski, MDHHS

Mr. Brandon Alger, EGLE

Subject: Livonia Transmission Plant 36200 Plymouth Road, Livonia, Wayne County, Michigan EGLE Site ID No. 82002970 Response to EGLE Comments for 12001 Stark Received December 9, 2019 Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 Novi Michigan 48377 Tel 248 994 2240 Fax 248 994 2241

On behalf of Ford Motor Company (Ford), Arcadis of Michigan, LLC (Arcadis) has prepared this response to comments received from the Michigan Department of Environment, Great Lakes, and Energy (EGLE) via email on December 9, 2019. The email received from EGLE discusses two specific residential properties located east of the Livonia Transmission Plant (LTP) site (the site).

The original comments from EGLE are listed below in italics with responses to each to follow.

Comment on 34934 Standish

At 34934 Standish where there was an indoor air exceedance in the garage in October 2019; DHHS said that since previous sampling did not detect this, that they are only requesting expedited re-sampling of this location. Please schedule re-sampling of this location and provide results to EGLE and DHHS ASAP.

Response on 34934 Standish

Arcadis is working on scheduling a resampling event at 34934 Standish as soon as possible that will include the resampling of all locations (sub-slab, indoor, and ambient air).

During the chemical inventory for the October 2019 vapor intrusion sampling event, the homeowner removed chemicals from the garage on his own that included aerosol cleaners, solvents, and household products and placed them in his own tote. Arcadis then placed these chemicals in an Arcadis tote and stored the tote outside of the garage. No products containing trichloroethene were noted during the chemical inventory. The property owner indicated that all chemicals from the garage were placed in the tote he provided Arcadis. The property owner would not allow Arcadis to perform a chemical inventory in the garage to identify potential additional sources of volatile organic compounds (VOCs). The property owner indicated twas sufficient in order to complete the testing. The property owner did however, allow Arcadis access to properly place the indoor air cannisters in the same lo cations as previous rounds of sampling were conducted.

Comment on 12001 Stark

At 12001 Stark DHHS and EGLE noted there have been exceedances in the sub-slab soil gas from several rounds of sampling. The exceedances are well above the criteria for PCE and presumptive mitigation of this residence is requested from Ford on an expedited basis by DHHS.

Response on 12001 Stark

Arcadis has reviewed available data collected from 12001 Stark and the surrounding residential properties based on the request detailed above from EGLE and Michigan Department of Human Health and Services (MDHHS). Multiple lines of evidence are available including chemical usage at this property, past vapor intrusion sampling results, groundwater sampling results, and vapor intrusion sampling results from the neighboring properties. These multiple lines of evidence indicate the tetrachloroethene (PCE) noted in sub-slab soil gas at 12001 Stark is the result of activities at the property and is not related to the site. Each line of evidence is discussed below.

Three rounds of vapor intrusion sampling have been completed at 12001 Stark on October 30, 2018, April 18, 2019, and November 13, 2019. Arcadis provided EGLE and the MDHHS a 24-hour notification email on November 10, 2018, September 6, 2019, and November 13, 2019 due to exceedances of PCE above the Recommended Interim Action Screening Levels (RIASL). The 24-hour notifications provided evidence that the PCE exceedances in sub-slab soil gas collected from the permanent sub-slab monitoring point in the garage were not related to the vinyl chloride impacts east of the site. In addition, there have been no exceedances of PCE in indoor air samples collected at the property, only low-level detections (0.70 J micrograms per cubic meter (ug/m³)– 1.4 ug/m³). The emails are included in **Attachment 1** and the data packages have been included in **Attachment 2**. Due to quality assurance and quality control issues, the first round of data has been removed from the data set, but the results were similar to the second and third round of vapor intrusion sampling.

During the building survey and chemical inventory, it was noted that the homeowner keeps various degreasers and cleaners on shelves in the garage that could be a source of PCE. The garage was also observed to have cracks and floor drains. Based on these observations, there is a potential for products from the garage to contribute to the sub-slab detections.

In addition, all sample results for sump water, sub-slab, indoor air, and ambient air samples collected from all rounds of vapor intrusion sampling at all properties surrounding 12001 Stark (12033 Stark, 12034 Boston Post, 12036 Brewster, and 34380 Capitol Street) have never exceeded applicable criteria for PCE or any other target constituent of concern, refer to **Table 1**.

Finally, groundwater samples were collected on September 23, 2019 and September 20, 2019 from groundwater wells MW-106S and MW-167S, respectively. Refer to **Figure 1** for the monitoring well locations. MW-106S is located upgradient of the property and MW-167S is located on the property. PCE was not detected in MW-106S or MW-167S (laboratory detection limit = 1 microgram per liter (ug/L), method detection limit = 0.15 ug/L for both groundwater wells). The source of the PCE in soil gas does not appear to be related to groundwater. Based on Henry's Law at 15 degrees Celsius, a concentration of ~4.67 - 5.83 ug/L would be needed to generate the 2,400 - 2,500 ug/m³ noted in sub-slab soil gas beneath the garage.

Three to ten rounds of groundwater sampling have been collected to date from 122 monitoring wells that h ave been installed east of the site within the Alden Village. PCE has never exceeded site-specific criteria in any of the monitoring wells within Alden Village. Refer to **Attachment** 3 that contains all analytical results collected to date.

Multiple lines of evidence clearly indicate that the PCE exceedances identified in sub-slab soil gas sample results collected from under the slab of the garage are not related to the vinyl chloride groundwater impacts in the Alden Village Subdivision. Therefore, the request from MDHHS to install a preemptive mitigation system for this property is not warranted.

Enclosures:

Tables

1 Table 1 – Residential Vapor Intrusion Analytical Results

Figures

1 Residential Monitoring Wells

Attachments

- 1 Livonia Transmission Plant 24 Hr Notices
- 2 12001 Stark Road Data Packages
- 3 Off-Site Groundwater Analytical Data

TABLE

Table 1 Vapor Intrusion Analytical Results Ford Livonia Transmission Plant

ARCADIS Design & Consultancy for rothural and built assets

					coc	1,1-Dichloro-	1,4-Dioxane	cis-1,2- Dichloro-	Tetrachloro-	trans-1,2- Dichloro-	Trichloro-	Vinyl chloride
					Unit	ua/m3	ua/m3	ethene ua/m3	ua/m3	ethene ua/m3	ua/m3	ua/m3
	Resi	idential Vo	platilization to Indoor Air RIASLs (Indoor//	Ambier	t Air) - Provided 7/22/2017 in CD (Residential Indoor Air) (ug/m3):	210	5.1	8.3	41	270	2.0	1.6
	Residential V	olatilizatio	on to Indoor Air Criteria - house with a ba	isemen	t. Provided by MDEQ 10/30/2018 (Residential Soil Cas) (ug/m3):	7000	170	290	1400	2900	67	54
			Of	fsite R	esidential Drinking Water (ug/L):	7.0	7.2	70	5.0	100	1.0	1.0
		Sample										
Location	Sample Date	Туре	Sample Location	Matrix	Parent Sample	<10	< 2.0	<10	<10	<10	<10	<10
12034 Boston Post Rd	10/23/2018	N	AA-12034BOSTONPOST-01_102218	AA		R R	R R	R R	R	R R	R	R R
12034 Boston Post Rd	10/23/2018	N	IACS-12034BOSTONPOST-01_102218	AI		R	R	R	R	R	R	R
12034 Boston Post Rd	10/23/2018	N	IAF-12034BOSTONPOST-01_102218	AI		R	R	R	R	R	R	R
12034 Boston Post Rd	10/23/2018	N	IAG-12034BOSTONPOST-01_102218	AI		R	R	R	R	R	R	R
12034 Boston Post Rd 12034 Boston Post Rd	10/23/2018	N	SSMP-12034BOSTONPOST-01_102318 SSMP-12034BOSTONPOST-02_102318	GS		R	R	R	R	R	R	R
12034 Boston Post Rd	3/5/2019	N	SUMP-12034BOSTONPOST-01_030519	WG		< 1.0	< 2.0	< 1.0	< 1.0 J	< 1.0	< 1.0 J	< 1.0
12034 Boston Post Rd 12034 Boston Post Rd	3/6/2019	N	IAF-12034BOSTONPOST-01_030519	AA		< 0.65	< 0.59	< 0.66	< 1.1	< 0.65	< 0.89	< 0.42
12034 Boston Post Rd	3/6/2019	N	IAG-12034BOSTONPOST-01_030519	AI		< 0.67	< 0.61	< 0.67	< 1.1	< 0.67	< 0.91	< 0.43
12034 Boston Post Rd 12034 Boston Post Rd	3/6/2019 3/6/2019	N N	SSMP-12034BOSTONPOST-01_030619 SSMP-12034BOSTONPOST-02_030619	GS		< 4.6	<17	< 4.6	2.9 J 11	< 4.6	< 6.3	< 3.0
12034 Boston Post Rd	10/23/2019	N	AA-12034BOSTONPOST-01_102319	AA		< 0.67	< 0.61	< 0.67	< 1.2	< 0.67	< 0.91	< 0.43
12034 Boston Post Rd 12034 Boston Post Rd	10/23/2019	N N	IAF-12034BOSTONPOST-01_102319	AI		< 0.70	< 0.63	< 0.70	< 1.2	< 0.70	< 0.94	< 0.45
12034 Boston Post Rd	10/23/2019	N	SSMP-12034BOSTONPOST-01_102319	GS		< 5.0	< 18	< 5.0	6.0 J	< 5.0	< 6.8	< 3.2
12034 Boston Post Rd	10/23/2019	FD N	DUP-12034BOSTONPOST-01_102319 SSMP-12034BOSTONPOST-02_102319	GS	SSMP-12034BOSTONPOST-01_102319	< 5.3	< 19	< 5.3	6.4 J	< 5.3	< 7.2	< 3.4
12034 Boston Post Rd	10/23/2019	N	SUMP-12034BOSTONPOST-01_102319	WG		< 1.0	1.0 J	0.34 J	< 1.0	< 1.0	< 1.0	< 1.0
12036 Brewster	10/24/2018	N	AA-12036BREWSTER-01_102318	AA		< 0.74	< 0.67	< 0.74	< 1.3	< 0.74	< 1.0	< 0.48
12036 Brewster	10/24/2018	N	IAB-12036BREWSTER-02_102318	AI		< 0.65	0.53 J	< 0.65	< 1.1	< 0.65	< 0.88	< 0.42
12036 Brewster	10/24/2018	N	IAG-12036BREWSTER-03_102318	AI		< 0.63	< 0.57	< 0.63	< 1.1	< 0.63	< 0.85	< 0.40
12036 Brewster 12036 Brewster	3/1/2019	N	AA-12036BREWSTER-01_102418	AA		< 0.58	< 0.53	< 0.58	0.20 J	< 0.58	к 1.1	< 0.38
12036 Brewster	3/1/2019	N	IAB-12036BREWSTER-02_022819	AI		< 0.68	< 0.62	< 0.68	< 1.2	< 0.68	0.37 J	0.18 J
12036 Brewster 12036 Brewster	3/1/2019	N	IAF-12036BREWSTER-01_022819 IAG-12036BREWSTER-03_022819	AI		< 0.70	< 0.64	< 0.70	0.20 J < 1.1	< 0.70	< 0.95	0.20 J < 0.42
12036 Brewster	3/1/2019	N	SSMP-12036BREWSTER-01_030119	GS		< 4.9	< 18	< 4.9	2.0 J	< 4.9	< 6.7	< 3.2
12036 Brewster	5/31/2019	N	AA-12036BREWSTER-01_053019	AA AI		< 0.71	< 0.65	< 0.71	0.11 J	< 0.71	< 0.97	< 0.46
12036 Brewster	5/31/2019	FD	DUP-12036BREWSTER-01_053019	AI	IAB-12036BREWSTER-02_053019	< 0.79	< 0.72	< 0.79	< 1.3	< 0.79	< 1.1	0.64
12036 Brewster	5/31/2019	N	IAF-12036BREWSTER-01_053019	AI		< 0.67	< 0.61	< 0.67	0.18 J	< 0.67	< 0.91	0.48
12036 Brewster	5/31/2019	N	SSMP-12036BREWSTER-01_053119	GS		< 5.1	< 18	< 5.1	16	< 5.1	< 6.9	< 3.3
12036 Brewster	9/5/2019 0/5/2010	N	AA-12036BREWSTER-01_090519	AA		< 0.70	< 0.64	< 0.70	< 1.2	< 0.70	< 0.96	< 0.46
12036 Brewster	9/5/2019	N	IAB-12036BREWSTER-02_090519	AI		< 0.65	0.12 J 0.16 J	< 0.65	< 1.1	< 0.65	< 0.88	< 0.42
12036 Brewster	9/5/2019 0/5/2010	N	IAG-12036BREWSTER-03_090519	AI		< 0.67	0.10 J	< 0.67	< 1.1	< 0.67	0.30 J	< 0.43
34380 Capitol St	10/17/2018	N	SUMP-34380 CAPITOL-01-101718	WG		< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
34380 Capitol St	10/18/2018	N	AA-34380CAPITAL-01_101718	AA		< 0.63	< 0.57	< 0.63	0.56 J	< 0.63	0.47 J	< 0.41
34380 Capitol St	10/18/2018	N	IAF-34380CAPITAL-03_101718	AI		< 0.03	< 0.64	< 0.71	< 1.2	< 0.03	< 0.96	< 0.42
34380 Capitol St	10/18/2018	N	IAG-34380CAPITAL-01_101718	AI		< 0.63	< 0.57	< 0.63	< 1.1	< 0.63	< 0.85	< 0.40
34380 Capitol St 34380 Capitol St	2/28/2019	N	SUMP-34380CAPITAL-01_101818 SUMP-34380CAPITOL-01-022819	WG		< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
34380 Capitol St	3/1/2019	N	IAB-34380CAPITAL-03_022819	AI		< 0.68	< 0.62	< 0.68	0.20 J	< 0.68	< 0.92	< 0.44
34380 Capitol St 34380 Capitol St	3/1/2019 3/1/2019	N	IAF-34380CAPITAL-02_022819 IAG-34380CAPITAL-01_022819	AI		< 0.68	< 0.62	< 0.68	0.20 J 1.8	< 0.68	< 0.92	< 0.44
34380 Capitol St	3/1/2019	N	SSMP-34380CAPITAL-01_030119	GS		< 4.8	< 18	< 4.8	6.0 J	< 4.8	< 6.5	< 3.1
34380 Capitol St 34380 Capitol St	6/12/2019 6/12/2019	N N	AA-34380CAPITOL-01_061119 IAB-34380CAPITOL-03_061119	AA		< 0.74	< 0.67	< 0.74	< 1.3	< 0.74	< 1.0	< 0.48
34380 Capitol St	6/12/2019	FD	DUP-34380CAPITOL-01_061119	AI	IAB-34380CAPITOL-03_061119	< 0.68	< 0.62	< 0.68	< 1.2	2.5	< 0.92	< 0.44
34380 Capitol St 34380 Capitol St	6/12/2019	N	IAF-34380CAPITOL-02_061119 IAG-34380CAPITOL-01_061119	AI		< 0.72	< 0.66	< 0.72	< 1.2	< 0.72	< 0.20	< 0.47
34380 Capitol St	6/12/2019	N	SSMP-34380CAPITOL-01_061219	GS		< 5.0	< 18	< 5.0	5.2 J	< 5.0	< 6.8	< 3.2
34380 Capitol St 34380 Capitol St	6/12/2019	N	SUMP-34380CAPITOL-01_061219	WG		< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
34380 Capitol St	9/25/2019	N	IAB-34380CAPITOL-03_092519	AI		< 0.72	0.13 J	< 0.72	< 1.2	< 0.72	< 0.98	< 0.46
34380 Capitol St	9/25/2019	N	IAF-34380CAPITOL-02_092519	AI		< 0.72	< 0.65	< 0.72	< 1.2	< 0.72	< 0.97	< 0.46
34380 Capitol St 34380 Capitol St	9/25/2019	N	SSMP-34380CAPITOL-01_092519	GS		< 5.1	< 18	< 5.1	6.1 J	< 5.1	< 6.9	< 3.3
34380 Capitol St	9/25/2019	N	SUMP-34380CAPITOL-01_092519	WG		< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
12033 Stark Rd	3/20/2019	FD	DUP-12033STARK-01_031919	AA	AA-12033STARK-01_031919	< 0.71	< 0.56	< 0.71	0.18 J 0.17 J	< 0.71	< 0.90	< 0.40
12033 Stark Rd	3/20/2019	N	IAG-12033STARK-03_031919	AI	IAG-12022STARK 02 021010	< 0.67	< 0.60	< 0.67	0.17 J	< 0.67	< 0.90	< 0.43
12033 Stark Rd 12033 Stark Rd	3/20/2019 3/20/2019	N FD	IAF-12033STARK-02_031919	AI	IAG-1203351 AKK-03_031919	< 0.63	< 0.57	< 0.63	< 1.1 0.16 J	< 0.63	< 0.85	< 0.40
12033 Stark Rd	3/20/2019	N	IAF-12033STARK-02_031919	AI		< 0.69	< 0.63	< 0.69	< 1.2	< 0.69	< 0.94	< 0.45
12033 Stark Rd 12033 Stark Rd	3/20/2019 3/20/2019	N	SSMP-12033STARK-01_032019 SSMP-12033STARK-02_032019	GS		< 4.6	< 17	< 4.6	11	< 4.6	< 6.3	< 3.0
12033 Stark Rd	7/2/2019	N	IAF-12033STARK-02_070119	AI		< 0.71	< 0.64	< 0.71	< 1.2	< 0.71	< 0.96	< 0.46
12033 Stark Rd	7/2/2019	FD N	DUP-12033STARK-01_070119	AI	IAF-12033STARK-02_070119	< 0.71	< 0.64	< 0.71	< 1.2	< 0.71	< 0.96	< 0.46
12033 Stark Rd	7/2/2019	N	IAG-12033STARK-03_070119	AI		< 0.71	< 0.64	< 0.71	< 1.2	< 0.71	< 0.96	< 0.46
12033 Stark Rd	7/2/2019	N	SSMP-12033STARK-01_070219	GS		< 5.0	< 18	< 5.0	< 8.5 UB	< 5.0	< 6.8	< 3.2
12000 Oldik I\u	11212013	1 11	50m 120000 /ANN-02_070219	00		~ 0.0	~ 10	~ 0.0	1 100	~ 0.0	0.40	~ 0.2

Abbreviations:

N FD COC ug/m3 AA IA SSMP GS SDG J

Normal Not Applicable Field Duplicate Chain of Custody Microgram per cubic meter Ambient Air

< UB B

Ambient Air Indoor Air Subslab Monitoring Point Subslab Soil Gas Sample Delivery Group Estimated result Denotes not detected above reporting limit. Analyte considered non-detect at the listed value due to associated blank contamination Compound also found in blank Pesult expreset. Besidential Volailitzation to Indoor Air Criteria - house with a basement P

Compound also tound in blank Result exceeds Residential Volatilization to Indoor Air Criteria - house with a basement. Provided by MDEQ 10/30/2018 (Soil Gas) (Residential) or result exceeds the Residential Volatilization to Indoor Air RIASLs (Indoor/Ambient Air) - Provided 7/22/2017 in CD (residential). Analytical method is modified EPA Method TO-15 GC/MS Bold

Notes:

FIGURE

ATTACHMENT 1

Livonia Transmission Plant - 24 Hr Notices

Archived: Friday, December 13, 2019 2:05:33 PM From: To: Cc: Subject: Livonia Transmission Plant - 24 Hr Notice Sensitivity: Normal Attachments: E203631_1811046A_20181031_report.pdf 203631_1811046B_20181031_report.pdf

Brandon –

This email serves as the 24-hour notification for an exceedance as it relates to offsite vapor intrusion assessment conducted under the approval letter provided by the MDEQ for the VI RespAP.

Analytical results collected at 12001 Stark (residential property) were received and reviewed yesterday. The results indicated an exceedance of tetrachloroethene in soil gas collected at SSMP-01, which is located in the garage. Indoor air samples were collected in the crawl space of the home, first floor of the home, and within the garage. The indoor air results indicated that there were **no exceedances** and only low detections for tetrachloroethene.

The property owner will be notified of the exceedance and next steps will be discussed with the MDEQ.

Thank you

Kris Hinskey | Certified Project Manager | <u>kristoffer.hinskey@arcadis.com</u> Arcadis | Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 Novi MI | 48377 | USA T. +1 269 579 5402

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

Archived: Friday, December 13, 2019 2:05:39 PM From: To: Cc: Subject: RE: Livonia Transmission Plant - Notification 12001 Stark Sensitivity: Normal

Correction the address is 12001 Stark.

Thank you

From: Hinskey, Kristoffer Sent: Friday, September 6, 2019 7:35 PM

To: Brandon Alger (AlgerB@michigan.gov) <AlgerB@michigan.gov>

Cc: 'Vens, Beth (DEQ)' <VENSB@michigan.gov>; 'Rafalski, Alexandra (DHHS)' <RafalskiA@michigan.gov>; 'Cooch, Aaron (DHHS-Contractor)' <CoochA@michigan.gov>; 'Merritt, Lawrence (L.H.)' <lmerrit2@ford.com>; Walton, Todd (T.M.) <twalton@ford.com>; Pinter, Chuck (C.H.) <cpinter@ford.com>; Quinnan, Joseph <Joseph.Quinnan@arcadis.com> Subject: Livonia Transmission Plant - Notification 12001 Bost Post

Brandon -

We are writing to notify EGLE of an exceedance of screening levels for sub-slab soil vapor for an assessment conducted under the approval letter provided by the EGLE for the VI RespAP.

Analytical results from the residential property at 12001 Stark indicated that PCE was detected in sub-slab soil vapor collected from the garage above the screening level presented by EGLE in the Consent Decree. PCE was detected in the garage (sample SSMP-12001STARK-01_041919) of the home at a concentration of 2,800 ug/m³, which exceeded the residential screening level of 1,400 ug/m³. For PCE the sub-slab screening level and the time-sensitive screening level are the same at 1,400 ug/m³. PCE was detected in indoor air samples collected from the property at very low levels (0.70 J ug/m3 to 1.4 ug/m3), which were well below the indoor air screening level of 41 ug/m3.

A groundwater sample was collected May 20, 2019 from groundwater well MW-167S which is located on the property and tetrachloroethene was not detected (laboratory detection limit = 1 ug/L).

The source of the tetrachloroethene in soil gas is unclear at this point but does not appear to be related groundwater. Based on Henry's Law at 15 degrees C, a concentration of ~6.5 ug/L would be needed to generate the 2,800 ug/m3 noted in sub-slab soil gas beneath the garage.

The property owner was provided the data package (attached), that contains the analytical results.

Thank you

Kris Hinskey | Certified Project Manager | <u>kristoffer.hinskey@arcadis.com</u> Arcadis | Arcadis of Mchigan, LLC 28550 Cabot Drive Suite 500 Novi MI | 48377 | USA T. +1 269 579 5402

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

Brandon -

This email serves as the notification for an exceedance as it relates to offsite vapor intrusion assessment conducted under the approval letter provided by the MDEQ for the VI RespAP.

Analytical results from the residential property at 12001 Stark indicated that tetrachloroethene (PCE) was detected in the sub-slab soil vapor collected from the garage above the screening level presented by EGLE in the Consent Decree. PCE was detected in the garage (sample SSMP-12001STARK-01_101819 and sample duplicate DUP-12001STARK-01_101819) of the home at concentrations of 2,500 ug/m³ and 2,400 ug/m³, respectively, which exceed the residential screening level of 1,400 ug/m³. For PCE, the sub-slab screening level and the time-sensitive screening level are the same at 1,400 ug/m³. PCE was detected in an indoor air sample collected from the property at a very low level (0.92 J ug/m³), which is well below the indoor air screening level of 41 ug/m³. These results have been consistent with the last round of sampling.

Groundwater samples were collected on September 23, 2019 and September 20, 2019 from groundwater wells MW-106S and MW-167S, respectively. MW-106S is located upgradient of the property and MW-167S is located on the property. PCE was not detected in MW-106S or MW-167S (laboratory detection limit = 1 ug/L, method detection limit = 0.15 ug/L for both groundwater wells). The source of the PCE in soil gas does not appear to be related to groundwater. Based on Henry's Law at 15 degrees C, a concentration of ~4.67 - 5.83 ug/L would be needed to generate the 2,400 - 2,500 ug/m³ noted in sub-slab soil gas beneath the garage.

During the building survey and chemical inventory, it was noted that the homeowner keeps various degreasers and cleaners on shelves in the garage that could be a source of PCE. The garage was also observed to have cracks and floor drains. Negative differential pressure readings were also recorded from the sub-slab monitoring point (-0.00018 iwc) that was sampled. Based on these observations, there is potential for products from the garage to contribute to the sub-slab detections.

Arcadis will continue to evaluate groundwater concentrations upgradient (MW-106S) and downgradient (MW-167S) of the home and will continue the vapor intrusion assessment in 2020.

The property owner was provided the data package (attached) that contains the analytical results.

Thank you

Kris Hinskey | Certified Project Manager | <u>kristoffer.hinskey@arcadis.com</u> Arcadis | Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 Novi MI | 48377 | USA T. +1 269 579 5402

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

ATTACHMENT 2

12001 Stark Road Data Packages

TRANSMITTAL LETTER

To:	
George Al-Husari	

From: Kris Hinskey

Date:

Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 Novi Michigan 48377 Tel 248 994 2240 Fax 248 994 2241

November 10, 2018

^{Copies:} Shawn Collins Brandon Alger (MDEQ) Todd Walton (Ford) Chuck Pinter (Ford) Rob Boley (Schiff Hardin LLP)

Subject:

Vapor Intrusion Assessment Data Package

We are sending you hard copies:

\boxtimes	Attached		Under Separat	e Cover V	ia the Following Items:		
	Shop Dra Prints Other:	awings 🗌 🖂	Plans Samples	□ Sp □ Co	ecifications Change Order py of Letter Reports		
	Copies	Date	Drawing No.	Rev.	Description		Action*
	1	11/13/2018			Analytical Results		
	1	11/13/2018			Field Notes and Drawings		
۸c	tion*						
	A Ap AN Ap AS As Other:	proved proved As Noted Requested			CR Correct and Resubmit F File FA For Approval	Resubmit C Return C Review and Co	_ Copies Copies mment
Ma □ □ ⊠	iling Metl U.S. Post Certified/ Other: ei	nod tal Service 1 st Cla Registered Mail mail	iss Courier/ United F	Hand Deliv Parcel Serv	very	☐ FedEx 2-Day [☐ FedEx Econom	Delivery ny

Thank you for cooperating with the air sampling at your property on October 30 and 31, 2018. Attached is your data package.

11/9/2018 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Project #: Workorder #: 1811046A

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 11/2/2018 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630 T | 916-985-1000 F | 916-985-1020 www.airtoxics.com

Air Toxics

WORK ORDER #: 1811046A

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129
PHONE:	517-819-0356	P.O. #	MI001454.0003
FAX:		PROJECT #	Ford LTP
DATE RECEIVED:	11/02/2018	CONTACT:	Ausha Scott
DATE COMPLETED:	11/09/2018		

			KECEH I	LUAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AA-12001Stark-01_103018	Modified TO-15	6.5 "Hg	5.5 psi
02A	IACS-12001Stark-01_103018	Modified TO-15	5.5 "Hg	5.1 psi
03A	IAG12001Stark-02_103018	Modified TO-15	5.5 "Hg	5.1 psi
04A	IAF-12001Stark-03_103018	Modified TO-15	7.1 "Hg	5.2 psi
05A	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Lau

DATE: <u>11/09/18</u>

DECEIDT

TINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020 **Air Toxics**

LABORATORY NARRATIVE Modified TO-15 Arcadis U.S., Inc. Workorder# 1811046A

Four 6 Liter Summa Canister (100% Certified) samples were received on November 02, 2018. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Initial Calibration	=30% RSD with 2<br compounds allowed out to < 40% RSD	=30% RSD with 4 compounds allowed out to < 40% RSD</td
Blank and standards	Zero Air	UHP Nitrogen provides a higher purity gas matrix than zero air

Receiving Notes

🛟 eurofins

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. All The canisters used for this project have been certified to the Reporting Limit for the target analytes included in this workorder. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates

Page 3 of 12

as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	AA-12001Stark-01_103018 1811046A-01A 10/31/18 11:08 AM 6 Liter Summa Canister (100% Certified)	Date/Time Ar Dilution Fact Instrument/F	nalyzed: tor: ilename:	11/5/18 06:34 PM 1.76 msd22.i / 22110512	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.13	0.35	0.70	Not Detected
1,4-Dioxane	123-91-1	0.15	0.32	0.63	Not Detected
cis-1,2-Dichloroether	e 156-59-2	0.15	0.35	0.70	Not Detected
Tetrachloroethene	127-18-4	0.072	0.60	1.2	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.11	0.35	0.70	Not Detected
Trichloroethene	79-01-6	0.10	0.47	0.94	Not Detected
Vinyl Chloride	75-01-4	0.064	0.22	0.45	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	110
4-Bromofluorobenzer	ne 460-00-4			70-130	92
Toluene-d8	2037-26-5			70-130	86

🔅 eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IACS-12001Stark-01_103018 1811046A-02A 10/31/18 10:49 AM 6 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: 1 tor: 1 Filename: r	11/5/18 07:10 PM I.65 nsd22.i / 22110513	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.12	0.33	0.65	Not Detected
1,4-Dioxane	123-91-1	0.14	0.30	0.59	Not Detected
cis-1,2-Dichloroether	e 156-59-2	0.14	0.33	0.65	Not Detected
Tetrachloroethene	127-18-4	0.068	0.56	1.1	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.10	0.33	0.65	Not Detected
Trichloroethene	79-01-6	0.096	0.44	0.89	Not Detected
Vinyl Chloride	75-01-4	0.060	0.21	0.42	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	109
4-Bromofluorobenzer	ne 460-00-4			70-130	93
Toluene-d8	2037-26-5			70-130	85

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAG12001Stark-02_103018 1811046A-03A 10/31/18 11:06 AM 6 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fact Instrument/F	nalyzed: 11/ cor: 1.6 ilename: ms	/5/18 08:21 PM 55 5d22.i / 22110514	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.12	0.33	0.65	Not Detected
1,4-Dioxane	123-91-1	0.14	0.30	0.59	Not Detected
cis-1,2-Dichloroether	ie 156-59-2	0.14	0.33	0.65	Not Detected
Tetrachloroethene	127-18-4	0.068	0.56	1.1	1.6
trans-1,2-Dichloroeth	ene 156-60-5	0.10	0.33	0.65	Not Detected
Trichloroethene	79-01-6	0.096	0.44	0.89	Not Detected
Vinyl Chloride	75-01-4	0.060	0.21	0.42	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	110
4-Bromofluorobenzer	ne 460-00-4			70-130	101
Toluene-d8	2037-26-5			70-130	86

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001Stark-03_103018 1811046A-04A 10/31/18 11:05 AM 6 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	11/5/18 08:57 PM 1.78 msd22.i / 22110515	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit) (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	75-35-4	0.13	0.35	0.70	Not Detected
1,4-Dioxane	123-91-1	0.15	0.32	0.64	Not Detected
cis-1,2-Dichloroethen	ie 156-59-2	0.16	0.35	0.70	Not Detected
Tetrachloroethene	127-18-4	0.073	0.60	1.2	0.59 J
trans-1,2-Dichloroeth	ene 156-60-5	0.11	0.35	0.70	Not Detected
Trichloroethene	79-01-6	0.10	0.48	0.96	Not Detected
Vinyl Chloride	75-01-4	0.065	0.23	0.46	Not Detected
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	112
4-Bromofluorobenzer	ne 460-00-4			70-130	106
Toluene-d8	2037-26-5			70-130	86

🔅 eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP **Client ID:**

Lab ID:

Media:

Lab Blank 1811046A-05A

NA - Not Applicable

Date/Time Collected: NA - Not Applicable

Date/Time Analyzed: **Dilution Factor:** Instrument/Filename:

1.00

msd22.i / 22110506a

11/5/18 01:26 PM

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.075	0.20	0.40	Not Detected
1,4-Dioxane	123-91-1	0.084	0.18	0.36	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.088	0.20	0.40	Not Detected
Tetrachloroethene	127-18-4	0.041	0.34	0.68	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.062	0.20	0.40	Not Detected
Trichloroethene	79-01-6	0.058	0.27	0.54	Not Detected
Vinyl Chloride	75-01-4	0.036	0.13	0.26	Not Detected
D: Analyte not within the DoD scope	e of accreditation.				

%Recovery Limits Surrogates CAS# 70-130 1,2-Dichloroethane-d4 105 17060-07-0 70-130 88 4-Bromofluorobenzene 460-00-4 Toluene-d8 70-130 85 2037-26-5

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Г

Client ID: Lab ID: Date/Time Collected: Media:	CCV 1811046A-06A NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	11/5/18 09:09 AM 1.00 msd22.i / 22110502
---	---	---	--

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	90
1,4-Dioxane	123-91-1	100
cis-1,2-Dichloroethene	156-59-2	92
Tetrachloroethene	127-18-4	112
trans-1,2-Dichloroethene	156-60-5	93
Trichloroethene	79-01-6	112
Vinyl Chloride	75-01-4	92

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	107
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	95

🔅 eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Г

Client ID:	LCS		
Lab ID:	1811046A-07A	Date/Time Analyzed:	11/5/18 10:01 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd22.i / 22110503

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	92
1,4-Dioxane	123-91-1	102
cis-1,2-Dichloroethene	156-59-2	86
Tetrachloroethene	127-18-4	111
trans-1,2-Dichloroethene	156-60-5	104
Trichloroethene	79-01-6	113
Vinyl Chloride	75-01-4	100

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	107
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	96

🔅 eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Г

Client ID:	LCSD		
Lab ID:	1811046A-07AA	Date/Time Analyzed:	11/5/18 11:18 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd22.i / 22110504

🛟 eurofins

Air Toxics

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	93
1,4-Dioxane	123-91-1	101
cis-1,2-Dichloroethene	156-59-2	87
Tetrachloroethene	127-18-4	113
trans-1,2-Dichloroethene	156-60-5	107
Trichloroethene	79-01-6	112
Vinyl Chloride	75-01-4	102

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	105
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	96

November 09, 2018

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1811046A Sample date: 2018-10-31 Report received by CADENA: 2018-11-09 Initial Data Verification completed by CADENA: 2018-11-09

4 Air samples were analyzed for TO-15 parameters.

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than $10x$ the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

11/9/2018 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Project #: Workorder #: 1811046B

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 11/2/2018 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

WORK ORDER #: 1811046B

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129
PHONE:	517-819-0356	P.O. #	MI001454.0003
FAX:		PROJECT #	Ford LTP
DATE RECEIVED:	11/02/2018	CONTACT:	Ausha Scott
DATE COMPLETED:	11/09/2018		

			KEULIP I	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
05A	SSMP-12001Stark-01_103118	TO-15	4.9 "Hg	15.6 psi
06A	Lab Blank	TO-15	NA	NA
07A	CCV	TO-15	NA	NA
08A	LCS	TO-15	NA	NA
08AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

Lau

DATE: <u>11/09/18</u>

DECEIDT

ETNIAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8 , LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Arcadis U.S., Inc. Workorder# 1811046B

One 1 Liter Summa Canister sample was received on November 02, 2018. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

Sample SSMP-12001Stark-01_103118 was not received at Eurofin Air Toxics, LLC on 11/02/18 despite notation on the Chain of Custody (COC). The sample was subsequently received on 11/05/18 and was added to the analytical request.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Dilution was performed on sample SSMP-12001Stark-01_103118 due to the presence of high level target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

🔅 eurofins

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	SSMP-12001Stark-01_1031181811046B-05ADate/Time Analyzed:ted:10/31/20 11:18 AMDilution Factor:1 Liter Summa CanisterInstrument/Filename:		llyzed: r: ename:	11/7/18 12:21 AM 3.08 msd3.i / 3110621			
			MDL	LOD	Rpt. L	imit Aı	nount
Compound		CAS#	(ug/m3)	(ug/m	3) (ug/m	13) (u	g/m3)
1,1-Dichloroethene		75-35-4	2.2	3.7	6.1	Not	Detected
1,4-Dioxane		123-91-1	2.0	11	22	Not	Detected
cis-1,2-Dichloroether	ne	156-59-2	1.3	3.7	6.1	Not	Detected
Tetrachloroethene		127-18-4	2.1	6.3	10		3300
trans-1,2-Dichloroeth	ene	156-60-5	1.8	3.7	6.1	Not	Detected
Trichloroethene		79-01-6	1.3	5.0	8.3	Not	Detected
Vinyl Chloride		75-01-4	2.2	2.4	3.9	Not	Detected
D: Analyte not within	the DoD scope of accred	litation.					
Surrogates		CAS#			Limi	ts %R	ecovery
1,2-Dichloroethane-d	4	17060-07-0			70-13	30	121
4-Bromofluorobenzer	ne	460-00-4			70-13	30	100
Toluene-d8		2037-26-5			70-13	30	101

🔅 eurofins

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP **Client ID:**

Lab ID:

Media:

Lab Blank 1811046B-06A Date/Time Collected: NA - Not Applicable

NA - Not Applicable

Date/Time Analyzed:

Dilution Factor: Instrument/Filenam

	1.00
ne:	msd3.i / 3110606c

11/6/18 12:59 PM

		ND		Dat Limit	Amount
		MDL	LOD	κρι. Liniit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.71	1.2	2.0	Not Detected
1,4-Dioxane	123-91-1	0.65	3.6	7.2	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.44	1.2	2.0	Not Detected
Tetrachloroethene	127-18-4	0.68	2.0	3.4	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.59	1.2	2.0	Not Detected
Trichloroethene	79-01-6	0.43	1.6	2.7	Not Detected
Vinyl Chloride	75-01-4	0.72	0.77	1.3	Not Detected
D: Analyte not within the DoD scope	e of accreditation.				

Limits %Recovery Surrogates CAS# 70-130 1,2-Dichloroethane-d4 118 17060-07-0 70-130 98 4-Bromofluorobenzene 460-00-4 Toluene-d8 70-130 100 2037-26-5

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Air Toxics

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	97
1,4-Dioxane	123-91-1	102
cis-1,2-Dichloroethene	156-59-2	102
Tetrachloroethene	127-18-4	109
trans-1,2-Dichloroethene	156-60-5	107
Trichloroethene	79-01-6	112
Vinyl Chloride	75-01-4	100

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	112
4-Bromofluorobenzene	460-00-4	70-130	106
Toluene-d8	2037-26-5	70-130	101

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Air Toxics

Client ID:	LCS		
Lab ID:	1811046B-08A	Date/Time Analyzed:	11/6/18 09:47 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd3.i / 3110603

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	99
1,4-Dioxane	123-91-1	101
cis-1,2-Dichloroethene	156-59-2	95
Tetrachloroethene	127-18-4	104
trans-1,2-Dichloroethene	156-60-5	117
Trichloroethene	79-01-6	112
Vinyl Chloride	75-01-4	102

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	117
4-Bromofluorobenzene	460-00-4	70-130	103
Toluene-d8	2037-26-5	70-130	100

* % Recovery is calculated using unrounded analytical results.

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Air Toxics

Client ID:	LCSD	Date/Time Analyzed:	11/6/18 10·11 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd3.i / 3110604

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	98
1,4-Dioxane	123-91-1	104
cis-1,2-Dichloroethene	156-59-2	90
Tetrachloroethene	127-18-4	104
trans-1,2-Dichloroethene	156-60-5	119
Trichloroethene	79-01-6	112
Vinyl Chloride	75-01-4	105

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	115
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	102

* % Recovery is calculated using unrounded analytical results.

November 09, 2018

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1811046B Sample date: 2018-10-31 Report received by CADENA: 2018-11-09 Initial Data Verification completed by CADENA: 2018-11-09

1 Air samples was analyzed for TO-15 parameters.

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description					
<	Less than the reported concentration.					
>	Greater than the reported concentration.					
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.					
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.					
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.					
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.					
J-	The result is an estimated quantity, but the result may be biased low.					
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED					
JH	The sample result is considered estimated and is potentially biased high.					
JL	The sample result is considered estimated and is potentially biased low.					
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED					
NJ	Tentatively identified compound with approximated concentration.					
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)					
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.					
U	Indicates that the analyte / compound was analyzed for, but not detected.					
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.					
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.					

ARCADIS Converting

Daily Log		
Project No.:	NED01454.0003.00002	Page of
Site Location:	12001 Stark Rd.	
Prepared By:	Harden Ladel	

Date	Time	Description of Activities
10-29-18 - Purpose: Visit 1 - Rida Survey, SIMP install		
		Acudi: Hayden Law Donnie Richmond; Fibertec
	-	Werther- Partly cloudy-high 405 - Dusk
	1615	Arradis on Site; Fibertee on Site
	1670	Corduct Bldg Survey
	1625	Donnie Richmond on Ste
	1630	Caroluct Soil Baring
	1740	Install SSMP-Ol (ggrage)
	-	Note-There is an elevated stab inside the house. That It was
	-	decided no SSMP-O2 would be installed inside. The slab
	\sim	inside was ~3.5" thick. The remainder (~2.5') underneath slab
		could not be determined.
	1830	Arradis off Site
		Note - Home owner was unaware of potential time needed
	-	to conduct Vist 1. He notified Arradis that he needed to leave
		and Areades where the had to stop work.
10-30-18	1205	Onsite (M. Scymp, Z. Westphal, S. Johnson)
	1210	DEQ, K. Hinskey onsite, Resident amves home
		-Begin deployment
	1237	OFFSITE
10/31/18	1040	Areadis Onsite (Hayden, Shankel, Zuch) ZW
	-	Areadis offsile * Note: Possible varing and smoking during 20
N		

ZW 13/24 m Constrain -

Document #ENFM009, Revision 01

DAILY LOG

Project No.: Site Location: Prepared By:	MI001454.0003 Livonia, MI 12001 Stark Rd.	Page of
Date	Time Description of Activities	
102118	Long Swill & Lin S Light	
10-21-10	Furble, VDIF. 2 - Lanister Pick up E DIMI Sample	
	Agradis land Law, Cuch Vestphal, Shentel Johnson	
	He low Weather: light ruin showers - 505	
	MOB Arulis on Site	
	1102 Sample SSMP-OL in grage	
	1049 Pick 40 24 hour, canisferr (4 total)	
	1135 Arcelis off Site	
	*Note-Possible varios and smaking during 24-lin	15 Sando Decial
	-Steen some colocore part inter hours	a sumple percourt
	STORE TOTOLOGIS AND TOTOLOGIS	٤
·		
/		

ARCADIS	lestate*	des a	3 22		5	Boring No.: SB-12001 (Jack-ul
Soil Boring L	od					Sheet 1 of
Project Name:	Ford LTP			Date	Started: 10/29/12	Logger: Draith Rahmand
Project Number:	MF120145	4.0003		Date Co	mpleted: 10/34/12	Editor:
Project Location:	Livonia, MI			-	Weather C	Conditions: Gd F / Sunn
Depth	Sample ID	Recovery	PID	USCS	1	Deparintion
(feet)	& Time	(in.)	(ppm)	Class.		Description
				3/1,514	Send Tup soil ~	nix - 0.25 -0.5 mm, will sorted (41-3)
	-			ļ ´ .	MUST MERT	comentation, No reaction
				512	1-DinSond Fourt	" sected in the wet Wer comentate
2				-1.3	Vir loss Arv	<u>Aur 1-4</u>
				c.	21-2mm, 1	wet, Vern base N volue 1-4. Care
3				5/3	< comentatio	Por Porting and and and a
					4 water	southan co que 6
4						
	-			1		
5						
	4					
6		┨────┤				
	4			ļ		
7	•					
	-					
8						
	1					
9						
11						
12						
	-					
13						
-						
14			-			
15						
	1			. 8		
16		1000 00 10				
17	1					
18						
19						
_	!					
20						
Drilling Co.		1000	10000		Compling Mathe	
Driller:	-				Sampling Method:	Continuous
Drilling Method:					Water Level Start:	55
Drilling Fluid:					Water Level Finish:	NA
Remarks:					Converted to Well:	C Yes C No
					Surface Elev:	NA
					North Coor:	NA
					East Coor:	INA

Utilities and Structures Checklist ARCADIS

During the site inspection look for the following: ("YES" requires additional investigation and the utility must be marked properly prior to beginning subsurface intrusive work):

Sit	e Inspection	Utility Color Codes		Present		
a)	Natural gas line present (evidence of a gas meter)?	Yellow	🕡 Yes		No	
	i) Feeder Lines to buildings or homes?		d' Yes		No	
b)	Evidence of electric lines:	Red				
	i) Conduits to ground from electric meter or along wall?		V Yes	. 0	No	
	iii) Conduits from power poles running into ground?		Yes	K 🗹	No	
	ii) Light poles, electric devices with no overhead lines?		Tr Yes		No	
	iii) Overhead electric lines present? (See Section I)		D∕ Yes		No	
c)	Evidence of sewer drains:	Green				
	i) Restrooms or kitchen on site?		🗹 Yes	. 🗆	No	
	ii) Sewer cleanouts present?	l	🛛 Yes	Ø	No	
	iii) Combined sewer /storm lines or multiple sewer lines?		🗋 Yes		No	
d)	Evidence of water lines:	Blue				
	i) Water meter on site or multiple water lines?		Yes		No	
	ii) Fire hydrants in vicinity of work?		VYes		No	
	iii) Irrigation systems? (Sprinkler heads, valve boxes, controls in	building)	🗆 Yes		No	
e)	Evidence of storm drains:	Green				
	i) Open curbside or slotted grate storm drains		🛛 Yes	. B	No	
	ii) Gutter down spouts going into ground	1	🗆 Yes	9	No	
f)	Evidence of telecommunication lines:	Omnger				
	i) Fiber optic warning signs in areas?		□ Yes	, d	No	
	iv) Aboveground cable boxes or housings or wires in work area?	(Yes		No	
g)	Underground storage tanks:					
	i) Tank pit present, tank vent present?	ſ	🗆 Yes		No	
	ii) Product lines running to dispensers/buildings?	I	🗆 Yes		No	
h)	Do utilities enter or exit existing structures/buildings?					
	If Yes, confirm the utility markings outside of structure/building	g match up.	🗗 Yes		No	
i)	Proposed excavation marked in white?	White	Yes		No	
j)	Unclassed utilities / anomalies marked in pink?	Pink	🗹 Yes		No	
k)	Overhead Utilities/Communication Lines - Look Up:			122		
	i) Overhead electrical conduit, pipe chases, cable trays, produc	t lines?	🗆 Yes	Ì.	No	
	ii) Overhead fire sprinkler system?	I	🛛 Yes	dr.	No	
1)	Overhead Power lines in or near the work area:					
	i) < 50 kV within 10 ft. of work area?	l	□ Yes	d⁄	No	
	ii) >50 - 200 kV within 15 ft. of work area?	I	🗆 Yes		No	
	iii) >200-350 kV within 20 ft. of work area?	Į.	🛛 Yes		No	
	iv) >350-500 kV within 25 ft. of work area?	I	🛛 Yes	∎ v ∕	No	
	v) >500-750 kV within 35 ft. or work area?	I	Yes	9	No	
	vi) >750-1000 kV within 45 ft. of work area?	I	🗆 Yes	Ø	No	
m)	Other:					
	i) Evidence of linear asphalt or concrete repair?	I	D'Yes		No	
	ii) Evidence of linear ground subsidence or change in vegetation	ו? [□ Yes		' No	
	iii) Unmarked manholes or valve covers in work area?	ſ	□ Yes	Q	No	
	iv) Warning signs ("Call Before you Dig", etc.) on or adjacent to s	site?	□ Yes	۵,	No	
	v) Utility color markings not illustrated in this checklist?	i.e. Purple	□ Yes		No	
n)	Has the Utilities & Structures Checklist been reviewed by the PM PM or Designee Name:	or Designee	Yes		No	
No	Nome and Signature of parson completing the checklist:					
Dat	e: $10 \text{ AP}/12$	ald tubmed of	4	pla	-	

Do not perform mechanized intrusive work within 30 inches of a utility marking without receiving pre-approval by Corporate H&S ..

During the site inspection look for the following: ("YES" requires additional investigation and the utility must be marked properly prior to beginning subsurface intrusive work):

Sit	e Inspection	Utility Color Codes	Pres	ent	
a)	Natural gas line present (evidence of a gas meter)?	Yellow	🗘 Yes		No
	i) Feeder Lines to buildings or homes?		🕑 Yes		No
b)	Evidence of electric lines:	Red			
	i) Conduits to ground from electric meter or along wall?		D'Yes		No
	iii) Conduits from power poles running into ground?		Yes	9	No
	ii) Light poles, electric devices with no overhead lines?		D Yes		No
	iii) Overhead electric lines present? (See Section I)		☑ Yes		No
C)	Evidence of sewer drains:	Green			
	 Restrooms or kitchen on site? 		1 Yes		No
	ii) Sewer cleanouts present?		Yes	Ø	No
	iii) Combined sewer /storm lines or multiple sewer lines?		Yes	D2	No
d)	Evidence of water lines:	Blue			
	i) Water meter on site or multiple water lines?		Yes		No
	ii) Fire hydrants in vicinity of work?		⊡⁄ Yes		No
	iii) Irrigation systems? (Sprinkler heads, valve boxes, controls in	building)	Yes	D	No
e)	Evidence of storm drains:	Green			
	 Open curbside or slotted grate storm drains 		Yes	Ø	No
	ii) Gutter down spouts going into ground		Yes	6-	No
f)	Evidence of telecommunication lines:	Orange			
	 Fiber optic warning signs in areas? 		Yes		'No
	iv) Aboveground cable boxes or housings or wires in work area?	,	Yes		No
g)	Underground storage tanks:				
	i) Tank pit present, tank vent present?		Yes		No
	ii) Product lines running to dispensers/buildings?		Yes	12	No
h)	Do utilities enter or exit existing structures/buildings?				
	If Yes, confirm the utility markings outside of structure/buildin	g match up.	Q Yes		No
i)	Proposed excavation marked in white?	White	Yes		No
j)	Unclassed utilities / anomalies marked in pink?	Rink	D Yes		No
k)	Overhead Utilities/Communication Lines - Look Up:			х.	
	 i) Overhead electrical conduit, pipe chases, cable trays, product 	t lines?	□ Yes	Q.	No
	ii) Overhead fire sprinkler system?		Yes		No
I)	Overhead Power lines in or near the work area:			,	
	i) < 50 kV within 10 ft. of work area?		Yes	0	No
	ii) >50 - 200 kV within 15 ft. of work area?		Yes		No
	iii) >200-350 kV within 20 ft. of work area?		Yes	Q	No
	iv) >350-500 kV within 25 ft. of work area?		□ Yes		No
	v) >500-750 kV within 35 ft. or work area?		□ Yes	g	No
	vi) >750-1000 kV within 45 ft. of work area?		Yes		No
m)	Other:		-1	_	
	 Evidence of linear asphalt or concrete repair? 		Lr Yes		No
	II) Evidence of linear ground subsidence or change in vegetation	n?	U Yes		NO
	III) Unmarked manholes or valve covers in work area?		L Yes	4	No
	iv) Warning signs ("Call Before you Dig", etc.) on or adjacent to s	site?	U Yes		No
	v) Utility color markings not illustrated in this checklist?	i.e. Purple	LI Yes	M.	NO
n)	Has the Utilities & Structures Checklist been reviewed by the PM PM or Designee Name:	or Designee	Yes		No
Nan Date	ne and Signature of person completing the checklist: \underline{D}_{ec}	reld Richmond /	2.21	~	

Do not perform mechanized intrusive work within 30 inches of a utility marking without receiving pre-approval by Corporate H&S .

п с к

R

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM

Date:	10-29-1	6	Survey Performed by:	1	when	Lull	
					-6		

1. OCCUPANT:

Rent:		
Resident Name:	George Husari	
Address:	12001 Stark Rd.	
Telephone:	Home: 734468 7934 Work:	
How long have yo	ou lived at this location? Since August 7011	

List current occupants/occupation below (attach additional pages if necessary):

Age (If under 18)	Sex (M/F)	Occupation			
Norie					
V					
2. OWNER OR LAI	NDLORD: (If same a	is occupant, check here $$ and go to Item No. 3).			
Last Name: First Name;					
Address:		<u></u>			
City and State:					
County:					
Home Phone:		Office Phone:			

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

3. SENSITIVE POPULATION:

Daycare/Nursing Home/Hospital/School/Other (specify);	Non	7
· · · · · · · · · · · · · · · · · · ·		

4. BUILDING CHARACTERISTICS:

Residential/Multi-family Residential/Office/Strip	Mall/Commercial/Industrial/School
Describe Building: Kischertial	Year Constructed
Number of floors at or above grade:	
Number of floors below grade: (full bas	sement crawl space/slab on grade)
Depth of structure below grade ft.	Basement size: ft ²

If the property is residential, what type? (Circle all appropriate responses.)

(Ranch)	
Split Level	
Mobile Home	
Modular	

2-Family
Colonial
Duplex
Log Home

3-Family Cape Cod Apartment House Other:

Raised Ranch Contemporary Townhouses/Condos

If multiple units, how many? ____

If the property is commercial:

Business type(s)

Does it include residences (i.e., multi-use)? Yes No

If yes, how many? _____

5. OCCUPANCY:

Is basement/lowest level occupied? (Circle one)

Full-time

Occasionally

Almost Never

Seldom

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

Level	General Use (e.g., family room, bedroom, laundry, workshop, storage)
Basement	NA
1 st Floor	General WC
2 nd Floor	
3 rd Floor	
4th Floor	(i lse additional nage/s) as necessary)
6 CONSTRUCTIO	N CHARACTERISTICS: (Circle all that apply)
a. Above Grad	le Construction: (Describe type: wood frame, concrete, stone, brick),
b. Basement T	ype: Full Crawlspace Stab Other:
c. Basement F	loor: Concrete Dirt Stone Other: Sund
d. Finished Ba	sement Floor: Uncovered Covered A/A
If cove	ered, what with?
e. Foundation	Walls: Poured Block Stone Other:
f. Foundation \	Nalls Unsealed Sealed with:
g. The Basemo	ent is: Wet Damp Dry 1/1+
h. The Baseme	ent is: Finished Unfinished Partially Finished 1/14
i. Sump Prese	nt (Y /(10) If yes, how many?///
Where Dis	charged?
Water in S	ump? Yes No Not Applicable

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

Identify all potential soil vapor entry points and estimated size (e.g., cracks, utility parts, drains).

Are the basement walls or floor sealed with waterproof paint or epoxy coatings? Yes No	
Type of ground cover outside of building: Grass Concrete Asphalt Other	
Is an existing subsurface depressurization (radon) system in place? Yes	No
If yes, is it active, or passive?	
Is a sub-slab vapor/moisture barrier in place? Yes	No

7. HEATING, VENTING, and AIR CONDITIONING

Type of heating system(s) used in this building: (Circle all that apply: Note the primary).

(Hot Air Circulation	Heat Pump	Hot Water Baseboard	
Space Heaters	Steam Radiation	Radiant Floor	
Electric Baseboard	Wood Stove	Outdoor Wood Boiler	
Other:			

The primary type of fuel used is:

Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar			
Domestic hot water tank	fueled by: Natives	1495			
Location of Boiler/Furnad	e: Basement	Outdoors	Main Floor	Other	_

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

Air Conditioning: Central Air	Window Units	Open Windows	None	
Are air distribution ducts present?			Yes	No
Is there a whole house fan?			Yes	No

Describe the air intake system (outside air supply, cold air return, ductwork, etc.) and its condition where visible. Indicate the locations on the floor plan diagram.

aco ſæ

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a)	Is there an attached garage?	Yes No
	If yes, does it have a separate heating unit?	Yes No
b)	Are any petroleum-powered machines or vehicles stored in an attached garage (e.g., lawn mower, ATV, car)	Yes No
c)	Has the building ever had a fire?	Yes No
d)	Is there a fuel burning or unvented gas space heater?	Yes No
e)	Is there a workshop or hobby/craft area?	Yes No
	If yes, where and what type?	
f)	Is there smoking in the building?	Yes No
	If yes, how frequently?	

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

g)	Have cleaning products been used recently?	Yes No
	If yes, when and what type? Gave Durpose	
h)	Have cosmetic products been used recently?	Yes No
	If yes, when and what type?	
i)	Has there been painting or staining in the last six months?	Yes No
	If yes, when and where?	
j)	Is there new carpet, drapes, or other textiles?	Yes No
	If yes, when and where?	
k)	Have air fresheners been used recently?	(Yes) No
	If yes, when and what type?) Day (an)	
I)	Is there a kitchen exhaust fan?	Yes No
	If yes, where is it vented?	
m)	Is there a clothes dryer?	Yes No
	If yes, is it vented outside?	Yes No
n)	Has there been a pesticide application?	Yes No
	If yes, when and what type? Bug Spray un ut	Summe
0)	Are there odors in the building?	Yes No
	If yes, please describe:	
		-

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

p) Do any of the building occupants use solvents at work (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetology)?

If yes, what types of solvents are used?	Yes No
If yes, are their clothes washed at work?	Yes No
Do any of the building occupants regularly use or work at a dry-cleanin response.)	g service? (Circle appropriate
No Unknown	
Yes, use dry-cleaning regularly (weekly)	
Yes, use dry-cleaning infrequently (monthly or less)	
Yes, work at a dry-cleaning service	
Is there a radon mitigation system for the building/structure?	Yes No
If yes, what is date of installation?	Active Passive
Additional mitigation system information (fan size, location, operating s	status, liner installed, etc.):
Is there an irrigation well, or any other well, present at the property: If yes, please describe placement, use, and history below. MA	Yes No
-	

PRODUCT INVENTORY FORM:

Make and Model of field instrument used: <u>pb</u> <u>life</u> <u>y</u><u>(a)</u> List specific products found in the residence of area that have the potential to affect indoor air quality (e.g., gasoline or kerosene storage cans, glues, paints, cleaning solvents/products, polishes/waxes, new furniture/ carpet, nail polish/hairspray/cologne).

Potential Source	Location	Size and Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Gasoline Storage Cans and Equipment	Gurage				
Kerosene Storage Cans					
Paints/Thinners/Strippers	(WAG 0				
Cleaning Solvents	Loca AL				8
Hobby Supplies – Glue, Paint, Etc.	1				
Öven Cleaner	~				
Carpet/Uphoistery Cleaners	Kitchen		_		
Household Cleaners (non- solvent)	Kitchen				
Moth Balls	Genar			1	
Polishes/Waxes	-			1	
Insecticides	Guma l				
Fumiture/Floor Polish	Ţ				
Hairspray				<u> </u>	
Cologne/Perfume	Bathman				
Air Fresheners	Rithan				
Interior Fuel Tank					
Wood Stove/Fireplace	Ming com				
New Furniture/Upholstery					
New Carpeting/Flooring					
Others (fill in below)					
Metorcycle					
SIONDENNE					
Weed Worker					
Note - Chemicals	of ronur	Moved	linte tote and pla	cid	
Outside 9	progl		/		

Product Inventory Form

I.e. gasoline cans/equipment, kerosene, paints/thinners/strippers, cleaning solvents, hobby supplies (glues), oven cleaner, carpet/upholstery cleaners, household cleaners, moth balls, polishes/waxes, insecticides, furniture/floor polish, hairspray, cologne/perfume, air fresheners, interior fuel tank, wood stove/fireplace, new furniture/upholstery, new carpet/flooring

Location	Product Description	Chemical Ingredients	Quantity	PID Reading (ppb)	Photo	Removed (Y/N)
Guiare	Moth bolls	VDC3		0	1	4
Gunhe	Ortho How defuse	insecticides	2 cartas	. 0	V	F
(Su cand	Rust practice it	Vari	Mattin	C	Y	Y Au
First Thoo	6 hde-Soldar	V0Cs	Mullide	0	J.	Fr Y
Gerrand IIL	Fresherer					
Quiane	Brakleen	VOC		0	L Y	1
Firt floor	Reidui -Pit Excet	Varians	1	0		Y
Fish Flue	Scotch-gue Anto	Various	1	0		Y
	Dan'n cleaner					
Gringe	Kustoleum - High	i Vas	1	0	L N	Y
<u> </u>	Perlowing Engal				L	<u> </u>
Grane	Gunk-Engin dein	NUC VOLS	/	\mathcal{C}	N_	I K
ami	Bratilling Carmento	\sim Vac	1		11	Y
	Cleaner Wax	······································				
LINICGE	WD-40	VDLs	l.	Ŭ	N.	. F.,
Beinge	Bullskye		1	Q	/V	ľ
	Shellar					
penne	Hexful	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>
rof floor	Kiw, - Jamp Dry	1/0(5	/ /		$ \Lambda $	1
bonge	Guyching (Vill	<u>`</u>	\$500	- Y	1
					ļ	
·		<u> </u>				
·						
			+			
		· _ · · · · · · · · · · · · · · · · · ·		<u> </u>		
		· · · · · · · · · · · · · · · · · · ·	+			
				<u>_</u>		
		· · · · · · · · · · · · · · · · · · ·	1			
					-	
				·· <u>··</u> ······		
				-		

Real Time Exposure Monitoring Data Collection Form

Document all air monitoring conducted on the Site below. Keep this form with the project file.

Site Name: 120	01 Stark Rd. Date: 10-79-18
Instrument: PLI) Model: <u>pph { </u>
Calibration Method: (Material used settings, etc.)	Isobutyleni (100, pm)
Calibration Results:	Pals
Calibrated By:	l NA

Activity Being Monitored	Compounds/Hazards Monitored	Time	Reading	Action Required? Y/N
SSMPDI	VCCs	1740	Ozzb	N

Describe Any Actions Taken as a Result of this Air Monitoring and Why (does it match Table 5-1);

ARCADIS

Soil Vapor Collection Log Sheet

																	Page1 c/1
Office Name & Address (Reporting Information 28550 Cabol Drive Suite 500	nj					-	Project Name	Ford									
Novi, MI 48377							Projeci Number	MI001454,	0003.								
Faild Manager Adam Richmond							Address	- 1 - 0									
Phone Fax	Speciel Instruction	ns				-	1100	017	tark.	-							
(248) 994-2240 Email Address for Result Reporting							Sampler Name P	hane Humber Emai				_	_				
Kristoffer Hinskey@arcadis.com Nelum Decetor Used	Halum Look Test	Merrod					Summe Canadar	Ser (11. 27 L 6L)			(
	Bucket/Shi	roud	1			Le	1L sk/Tracer Test				Eurofins		1	1	T		
Sample ID	Sample Location De	scription	Date	Shul in Test Pass/Fail?	Pre-sample Putge Reading (ppm)	Shroud Helium Concentration (%)	Post-Sample Purge Reading (ppm)	Pass/Fai?	Putge Volume (ml.)	Purge Rate (mL/min)	Canster No	Flow Controller Number	Sample Collection Start Time	Starting Carnister Pressure (iii) Hg)	Sample Collection End Time	Ending Canister Pressure (in Hg)	Notes
SSMP-EXAMPLE (12012017)	West side of station bu cashier cour	uilding behind Iter	12/1/17	Pass	0	60	15	Pass	120	120	2595	12345	0831	-30	0841	-5	Debns noted under steel cap and in annular space around vapor pin. Cleaned out prior to sampling.
103/18	- Garage		10-31-18	Pass	0	116,000		Pass	200	120	122423	Z367	1102	-28.5	1/18	-5	
				i													
Neteorological Data	1		1	General Notes o	r Observations										_		
Date Time	Indoos Outdoor	% Humidity	Barometric Pressure (m)														
Example - 12/1/2017 0000	²³ 22 56 54	38	3010														

Air Parameters (completed after sample collection)

Location ID	C02%	O2 %	le h L
SSMP-EXAMPLE	1.6	12.5	MICIC IVANCINE
5-2-01	1.0	20.5	0.0007
		ļ	_
			-
			4
			-
			4
			-
			-

ARCADIS

Office Name & Address (Reporting Informatio						Project Name	Ford	•							
28550 Cabot Drive Suite 500	''					Project Number MI001454.0003, 000 0 3									
Full Manager															
Adam Richmond	Special Instructions					-1300	51	Ster	k						
(248) 994-2240															
Email Address for Result Reporting Kristoffer.Hinskey@arcadis.com						M-Y		24							
Summa Canister Size (1L, 27 L, 6L)	Lat EU	notins													
Sample ID	Sample Location Description	Indoor/Outdoor	PID in sampling area (ppm)	Date	Carrister Number	Flow Controlle Number	Sample Collection Start Time	Beginning Canister Pressure (in Hg)	Sample Collection End Time	n Endung Canister Pressure (in. Hg)	Heating, V HVAC Fan On?	entilation, and Air Heat On?	Conditioning Sys Temperature Setting (*F) (start/end)	tem Information Flow Rate (cfm) (start/end)	Notes
IA-EXAMPLE (12012017)	West side of station building behin cashier counter	d Indoor	0.01	12/1/17	1234	56789	0800	-30	1600	-5	Yes	Yes	75/73	2.6/2.8	Moderate odors in vicinity of sampling canister
AA-12001 Stark-01 - 103018	SE side of house	0	Ø	10/30/18	Cal1796	40697	1215	-285	1108	-7					
INC3-12001 Signa-01 _ 103018	crawl space	T	Ø	1	621743	22278	1220	-275	1049	-6					
IAG-12001 stark.0.	midelle of garage.	I	Ø		620505	905ia	1227	-29	1106	-7.5					Some Chemical's still in garage O readings on PiD
IAF-12001-5tark-03 -103018	living room end table	I	Ø	K	661620	22090	1229	-30	1105	-8					
		-											-		
													1		
Meteorological Data				General Note	es or Observations			*					_		
Date Time	Temp. (°F) % Humidity	Barometric Pressure (in.)	Air Speed (mph)												
Example - 12/1/2017 0800	73 22 38	30.10	30.10												
10/30/18 1215	70 52 69	30.09	30-221	4											
10/31/18 11/56	~10 5 100	27.71	0				1000								V

eura ns	s Rec	uest /C;	ani r Cha	in of (2 odv	an	of u	a al	100	1 014						
Air Toxics		For	Laboratory Use Only		erali -											
180 Blue Ravine Rd. Suite B, Folsom, CA 95 Phone (800) 985-5955; Fax (916) 351-8279	PID: <u>PPDKA</u> 630	<u>3000</u> wo	brkorder #	14	***)***	- +8 S	Clic <u>Can</u> <u>Heli</u>	k links be ister Samp um Shroud	low to via hling Guid 1 Vide	<u>e</u>				-0		92
Client: Ford	PID: PP&RAE 300	20 Sp	ecial Instructions/Notes.	Report ON	LY 1,1-DCE, as-1	,2-DCE,	Turna	round Tir	ne (Rush	surcharges ma) _		-		a) - 10-19	ж с
Project Name: Ford LTP	-	tra	ans-1,2-DCE, 1.4-Dioxan	e, PCE, TC	E and VC Submit	results 4	Oday 5 i	164	5				1		10	6°
Project Manager: Kris Hinskey	P.O.# MI001454.0003		L. D. J	r.		5000004	Canister	Vacuuml	Pressure	Requeste	36	1		3		
Sampler: Z, West Phal Site Name: [200] Sturk	-	m L	evel IV Reporting	usiis@csoe	na.com. Cadena H	E203001.	-	Lai	Use O	nly.		ž	80 8		<u>ja</u>	
Lab I Sample Identification	Can#	Flow Controlle	Start Sa er # Inform	mpling lation	Stop Sam Informa	pling tion	ial (in Hg	rat (in Hg	cerpt lat (psig)	IS: N2 / H			a Geo			
Ī	<u> </u>		Date	Time	Date	Time	lait	ŧ		Ca		* <u>*</u>				
11 12001 Stark - 01_103018	1796 14	10627	10/30/18	1215	10131/18	1108	-28.5	-7							:2	
ACS-12001 Stark-01_103018	1743 2	22278	10/30/18	1220	10/31/18	1049	-27,5	-6								
AS-12001 Stur - 02-103018	0505	20512	10/30/18	1227	10/31/18	1106	-29	75					з <u>а</u>		$\widehat{\mathcal{B}}$	
AH - 12001 Stork - 03_103018	3 11620	22090	= 10/30/18	1229	10/31/18	1105	-30	-8			-	10.4		3		
SHI-12001 Stark - 01_103118	2423	23671	10/30/18	1102	10/3/18	1118	-28.5	-5				10.000 10.000	$(1 \leq m \in \mathbb{R}^{n})$			÷
	1		3		1						- 14					
1					1			1								
		_			1					12						
				1	2.87									24		
10 Jan 10 10	а. 		3			Time		R	1			8				
1. 	<u>e</u> s:		$\{ e_{ijk} \}$	_		'Time		F	5 I II.			1.0				
			1			*										25450
i i i			1			Time 4		- 6							é.	×.
			and a second second			Printer (oly									(e) 198 () 2
	999 - 1997 - 10	el or			Yes	No		E.w.	1				-	a (94)		a., 1
Relinquished by. (Signature/Affiliation)		Date			eceived	oy: (Signatu	e/Affiliation	}		Date	Time					

(A., 5.8)

2.8

TRANSMITTAL LETTER

To: George A Shawn C Brandon Todd Wa Chuck Pi Rob Bole	Al-Husari ollins Alger (EGLE) Iton (Ford) nter (Ford) vy (Schiff Hard	in LLP)	From: Kris Hins	key	Arcadis of Mich 28550 Cabot D Suite 500 Novi Michigan 4837 Tel 248 994 22 Fax 248 994 22	iigan, LLC rive 7 40 241
Copies:		I	Date:			
		•	June 19,	2019		
Subject:						
12001 St	ark Road					
Vapor Int	rusion Assess	sment				
Data Pac	kage					
		Inder Separat	to Cover V	to the Following Itomer		
Shop Dra	awings	Plans Samples	te Cover V	ecifications Change Order py of Letter		
Shop Dra Prints Other: Copies	awings	Plans Samples Drawing No.	te Cover V	ecifications Change Order py of Letter Description		Action*
Shop Dra Prints Other: Copies 1	awings Date 6/21/2019	Under Separat Plans Samples Drawing No.	te Cover V	a the Following Items: ecifications Change Order py of Letter Description Figure		Action*
Shop Dra Prints Other: Copies	awings □ ⊠ Date 6/21/2019 6/21/2019 6/21/2019	Plans Samples Drawing No.	te Cover V	a the Following Items: ecifications		Action*
Shop Dra Prints Other: Copies 1 1 1 1	awings □ Date 6/21/2019 6/21/2019 6/21/2019	Plans Samples Drawing No.	te Cover V	Ia the Following Items: ecifications □ py of Letter □ Reports Description Figure Analytical Results Field Notes and Drawings		Action*
Shop Dra Prints Other: Copies 1 1 1	awings Date 6/21/2019 6/21/2019 6/21/2019	Plans Samples Drawing No.	Rev.	Ia the Following Items: ecifications □ Change Order py of Letter □ Reports Description Figure Analytical Results Field Notes and Drawings		Action*
Shop Dra Prints Other: Copies 1 1 1 1 1 Action* A Ap AN Ap AS As Other:	awings	Plans Samples Drawing No.	te Cover V	Ia the Following Items: ecifications Change Order py of Letter Reports Description Figure Analytical Results Field Notes and Drawings CR Correct and Resubmit F File FA For Approval	Resubmit Return Review and Co	Action*

Thank you for cooperating with the air sampling at your property on April 18 and 19, 2019. Attached is your data package.

CITY: NOVI DIV: ENV DB: MG PIC: R. ELLIS PM: K. HINSKEY TM: T. STEVENS TR: P. CURRY PROJECT NUMBER: MI001373.0001.00003 COORDINATE SYSTEM: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Z:/GISProjects/_ENVNoviBrighton_MIVFordLivonia/GIS/docs/2018-11/12001_Stark_20181110.mxd PLOTTED: 11/12/2018 10:18:20 AM BY: mgress

Air Toxics

4/29/2019 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Off-Site Sampling Project #: Workorder #: 1904509

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 4/23/2019 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630 T | 916-985-1000 F | 916-985-1020 www.airtoxics.com

Air Toxics

WORK ORDER #: 1904509

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129
PHONE:	517-819-0356	P.O. #	MI001454.0003.0002
FAX:		PROJECT #	Ford LTP Off-Site Sampling
DATE RECEIVED: DATE COMPLETED:	04/23/2019 04/29/2019	CONTACT:	Ausha Scott

			KEUEIF I	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	AA-12001STARK-01_041819	Modified TO-15	7.0 "Hg	5 psi
02A	IAF-12001STARK-03_041819	Modified TO-15	5.5 "Hg	5 psi
03A	IAG12001STARK-02_041819	Modified TO-15	7.0 "Hg	5 psi
04A(cancelled)	DUP-12001STARK-01_041819	Modified TO-15		
05A	DUP-12001STARK-02_041819	Modified TO-15	5.0 "Hg	5 psi
06A	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Lau

DATE: <u>04/29/19</u>

DECEIDT

ETNIAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8 , LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Air Toxics

LABORATORY NARRATIVE Modified TO-15 Arcadis U.S., Inc. Workorder# 1904509

Five 6 Liter Summa Canister (100% Cert Ambient) samples were received on April 23, 2019. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Initial Calibration	=30% RSD with 2<br compounds allowed out to < 40% RSD	=30% RSD with 4 compounds allowed out to < 40% RSD</td
Blank and standards	Zero Air	UHP Nitrogen provides a higher purity gas matrix than zero air

Receiving Notes

🛟 eurofins

Sample DUP-12001STARK-01_041819 was cancelled on 04/19/19 per client's request.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	AA-12001STARK-01_041819 1904509-01A 4/19/19 07:11 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	4/25/19 11:43 AM 1.75 msd20.i / 20042506	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m:	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.17	0.62	0.69	Not Detected
1,4-Dioxane	123-91-1	0.51	0.57	0.63	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.37	0.62	0.69	Not Detected
Tetrachloroethene	127-18-4	0.74	1.1	1.2	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.39	0.62	0.69	Not Detected
Trichloroethene	79-01-6	0.46	0.85	0.94	Not Detected
Vinyl Chloride	75-01-4	0.14	0.40	0.45	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	103
4-Bromofluorobenzer	ne 460-00-4			70-130	109
Toluene-d8	2037-26-5			70-130	127

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_041819 1904509-02A 4/19/19 07:12 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time Analyzed:4/25/19 (Dilution Factor:1.64Instrument/Filename:msd20.i /		4/25/19 01:33 PM 1.64 msd20.i / 20042507			
Compound	CA8#	MDL (ug/m3)	LOD	Rpt. Limit	Amount		
1 1-Dichloroethene	ZE 25 4	0.16	0.58	0.65	Not Detected		
1 4-Dioxane	123-01-1	0.48	0.53	0.59	Not Detected		
cis-1.2-Dichloroethen	e 156-59-2	0.35	0.58	0.65	Not Detected		
Tetrachloroethene	127-18-4	0.69	1.0	1.1	0.70 J		
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.58	0.65	Not Detected		
Trichloroethene	79-01-6	0.43	0.79	0.88	Not Detected		
Vinyl Chloride	75-01-4	0.13	0.38	0.42	Not Detected		
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.						
Surrogates	CAS#			Limits	%Recovery		
1,2-Dichloroethane-de	4 17060-07-0			70-130	107		
4-Bromofluorobenzer	e 460-00-4			70-130	104		
Toluene-d8	2037-26-5			70-130	100		

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAG12001STARK-02_041819 1904509-03A 4/19/19 07:09 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	4/25/19 02:12 PM 1.75 msd20.i / 20042508	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	s) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.17	0.62	0.69	Not Detected
1,4-Dioxane	123-91-1	0.51	0.57	0.63	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.37	0.62	0.69	Not Detected
Tetrachloroethene	127-18-4	0.74	1.1	1.2	1.4
trans-1,2-Dichloroeth	ene 156-60-5	0.39	0.62	0.69	Not Detected
Trichloroethene	79-01-6	0.46	0.85	0.94	Not Detected
Vinyl Chloride	75-01-4	0.14	0.40	0.45	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	112
4-Bromofluorobenzer	ne 460-00-4			70-130	104
Toluene-d8	2037-26-5			70-130	96

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	DUP-12001STARK-02_041819 1904509-05A 4/19/19 07:11 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïllename:	4/25/19 02:51 PM 1.61 msd20.i / 20042509	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	s) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.15	0.57	0.64	Not Detected
1,4-Dioxane	123-91-1	0.47	0.52	0.58	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.34	0.57	0.64	Not Detected
Tetrachloroethene	127-18-4	0.68	0.98	1.1	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.57	0.64	Not Detected
Trichloroethene	79-01-6	0.42	0.78	0.86	Not Detected
Vinyl Chloride	75-01-4	0.13	0.37	0.41	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	110
4-Bromofluorobenzer	ne 460-00-4			70-130	101
Toluene-d8	2037-26-5			70-130	98

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	Lab Blank 1904509-06A NA - Not Applicable NA - Not Applicable		Date/Time A Dilution Fact Instrument/F	nalyzed: tor: ilename:	4/25/19 10:31 AM 1.00 msd20.i / 20042505a	
			MDL	LOD	Rpt. Limi	t Amount
Compound		CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene		75-35-4	0.095	0.36	0.40	Not Detected
1,4-Dioxane		123-91-1	0.29	0.32	0.36	Not Detected
cis-1,2-Dichloroethen	e	156-59-2	0.21	0.36	0.40	Not Detected
Tetrachloroethene		127-18-4	0.42	0.61	0.68	Not Detected
trans-1,2-Dichloroeth	ene	156-60-5	0.22	0.36	0.40	Not Detected
Trichloroethene		79-01-6	0.26	0.48	0.54	Not Detected
Vinyl Chloride		75-01-4	0.082	0.23	0.26	Not Detected
D: Analyte not within	the DoD scope of accre	ditation.				
Surrogates		CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4	17060-07-0			70-130	106
4-Bromofluorobenzer	ne	460-00-4			70-130	100
Toluene-d8		2037-26-5			70-130	100

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Sampling

0	C'	
	eurotins	

Air Toxics

Client ID:	CCV		
Lab ID:	1904509-07A	Date/Time Analyzed:	4/25/19 07:35 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20042502
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20042502

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	104
1,4-Dioxane	123-91-1	116
cis-1,2-Dichloroethene	156-59-2	111
Tetrachloroethene	127-18-4	105
trans-1,2-Dichloroethene	156-60-5	106
Trichloroethene	79-01-6	100
Vinyl Chloride	75-01-4	107

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	102
4-Bromofluorobenzene	460-00-4	70-130	104
Toluene-d8	2037-26-5	70-130	100

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Sampling

🔅 eurofins	
	Air Toxics

Client ID:	LCS		
Lab ID:	1904509-08A	Date/Time Analyzed:	4/25/19 08:29 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20042503

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	106
1,4-Dioxane	123-91-1	115
cis-1,2-Dichloroethene	156-59-2	119
Tetrachloroethene	127-18-4	111
trans-1,2-Dichloroethene	156-60-5	93
Trichloroethene	79-01-6	126
Vinyl Chloride	75-01-4	108

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	99
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	100

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Samplin

Client ID:

Lab ID:

pling			AIT TOXICS
LCSD			
1904509-08AA	Date/Time Analyzed:	4/25/19 09:23 AM	

Date/Time Collected:	NA - Not Applicable
Media:	NA - Not Applicable

Date/Time Analyzed:	
Dilution Factor:	
Instrument/Filename:	

1.00 msd20.i / 20042504

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	109
1,4-Dioxane	123-91-1	120
cis-1,2-Dichloroethene	156-59-2	124
Tetrachloroethene	127-18-4	109
trans-1,2-Dichloroethene	156-60-5	96
Trichloroethene	79-01-6	122
Vinyl Chloride	75-01-4	114

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	105
4-Bromofluorobenzene	460-00-4	70-130	101
Toluene-d8	2037-26-5	70-130	98

🛟 eurofins

Air Toxion

April 29, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1904509 Sample date: 2019-04-19 Report received by CADENA: 2019-04-29 Initial Data Verification completed by CADENA: 2019-04-29

4 Air sample were analyzed for TO-15 parameters.

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356
CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #1904509 CADENA Verification Report: 2019-04-29

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #32708R Review Level: Tier III Project: MI001454.0003.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1904509 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample		Analysis			
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	TO-15 (Full Scan)	TO-15 (SIM)	MISC	
	AA-12001STARK- 01_041819	1904509-01A	Air	4/19/2019		х			
1904509	IAF-12001STARK- 03_041819	1904509-02A	Air	4/19/2019		х			
	IAG12001STARK- 02_041819	1904509-03A	Air	4/19/2019		х			
	DUP-12001STARK- 02_041819	1904509-05A	Air	4/19/2019	AA- 12001STARK- 01_041819	х			

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Perfor Acce	mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

DATA REVIEW

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

DATA REVIEW

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of one times the RL is applied to the difference between the duplicate sample results.

Results (in $\mu g/m^3$) for the field duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
AA-12001STARK-01_041819/ DUP-12001STARK-02_041819	All compounds	U	U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan)		Reported		rmance eptable	Not	
	No	Yes	No	Yes	Kequireu	
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)				
Tier II Validation						
Canister return pressure (<-2"Hg)		Х		X		
Tier III Validation						
System performance and column resolution		Х		X		
Initial calibration %RSDs		Х		X		
Continuing calibration RRFs		Х		X		
Continuing calibration %Ds		Х		X		
Instrument tune and performance check		Х		X		
Ion abundance criteria for each instrument used		Х		X		
Internal standard		Х		X		
Field Duplicate Sample RPD		Х		X		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		X		
B. Quantitation Reports		Х		X		
C. RT of sample compounds within the established RT windows		Х		x		
D. Transcription/calculation errors present		X		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		X		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

Jough c. House

DATE: May 9, 2019

PEER REVIEW: Dennis Capria

DATE: May 10, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	AA-12001STARK-01_041819 ID: 1904509-01A te/Time Collected: 4/19/19 07:11 AM dia: 6 Liter Summa Canister (100% Cert Ambier		nalyzed: tor: filename:	4/25/19 11:43 AM 1.75 msd20.i / 20042506	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m:	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.17	0.62	0.69	Not Detected
1,4-Dioxane	123-91-1	0.51	0.57	0.63	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.37	0.62	0.69	Not Detected
Tetrachloroethene	127-18-4	0.74	1.1	1.2	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.39	0.62	0.69	Not Detected
Trichloroethene	79-01-6	0.46	0.85	0.94	Not Detected
Vinyl Chloride	75-01-4	0.14	0.40	0.45	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	103
4-Bromofluorobenzer	ne 460-00-4			70-130	109
Toluene-d8	2037-26-5			70-130	127

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_041819 1904509-02A 4/19/19 07:12 AM 6 Liter Summa Canister (100% Cert Ambier	STARK-03_041819J2ADate/Time Analyzed:4/25/19 01:33 PMI:12 AMDilution Factor:1.64nma Canister (100% Cert AmbierInstrument/Filename:msd20.i / 20042507		4/25/19 01:33 PM 1.64 msd20.i / 20042507	
Compound	CA6#	MDL (ug/m3)	LOD	Rpt. Limit	Amount
1 1-Dichloroethene	ZE 25 4	0.16	0.58	0.65	Not Detected
1 4-Dioxane	123-01-1	0.48	0.53	0.59	Not Detected
cis-1.2-Dichloroethen	e 156-59-2	0.35	0.58	0.65	Not Detected
Tetrachloroethene	127-18-4	0.69	1.0	1.1	0.70 J
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.58	0.65	Not Detected
Trichloroethene	79-01-6	0.43	0.79	0.88	Not Detected
Vinyl Chloride	75-01-4	0.13	0.38	0.42	Not Detected
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-de	4 17060-07-0			70-130	107
4-Bromofluorobenzer	e 460-00-4			70-130	104
Toluene-d8	2037-26-5			70-130	100

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAG12001STARK-02_041819 1904509-03A 4/19/19 07:09 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	4/25/19 02:12 PM 1.75 msd20.i / 20042508	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	s) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.17	0.62	0.69	Not Detected
1,4-Dioxane	123-91-1	0.51	0.57	0.63	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.37	0.62	0.69	Not Detected
Tetrachloroethene	127-18-4	0.74	1.1	1.2	1.4
trans-1,2-Dichloroeth	ene 156-60-5	0.39	0.62	0.69	Not Detected
Trichloroethene	79-01-6	0.46	0.85	0.94	Not Detected
Vinyl Chloride	75-01-4	0.14	0.40	0.45	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	112
4-Bromofluorobenzer	ne 460-00-4			70-130	104
Toluene-d8	2037-26-5			70-130	96

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	DUP-12001STARK-02_041819 1904509-05A Collected: 4/19/19 07:11 AM 6 Liter Summa Canister (100% Cert Ambier		nalyzed: tor: ïllename:	4/25/19 02:51 PM 1.61 msd20.i / 20042509	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	s) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.15	0.57	0.64	Not Detected
1,4-Dioxane	123-91-1	0.47	0.52	0.58	Not Detected
cis-1,2-Dichloroethen	e 156-59-2	0.34	0.57	0.64	Not Detected
Tetrachloroethene	127-18-4	0.68	0.98	1.1	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.57	0.64	Not Detected
Trichloroethene	79-01-6	0.42	0.78	0.86	Not Detected
Vinyl Chloride	75-01-4	0.13	0.37	0.41	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	110
4-Bromofluorobenzer	ne 460-00-4			70-130	101
Toluene-d8	2037-26-5			70-130	98

Analysis Request /Canister Chain of Custody

For Laboratory Use Only

PID:

Analysis Request /Canister Chain of Custody

For Laboratory Use Only Workerorder#: 1904509

Page _1_ of _1_

180 Blue Ravine Rd. Suite B, Folsom, CA 95630

Phone (800) 985-5955; Fax (916) 351-8279

Client:	Arcadis	PID:		Special Instru	ctions/Notes:			1		-				-1
Project Name:	Ford LTP Off-Site Sampling			Report ONLY:	Report ONLY: 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, 1,4-				Turn	around Time	(Rush surchara)	ar may analy)		
Project Manager:	Kris Hinskey	P.O.#	O.# MI001454.0003.0 Dioxane, PCE, TCE and VC. Submit results through Cadena 0002 at jim.tomalia@cadena.com. Cadena #E203631. Level IV		Dioxane, PCE, TCE and VC. Submit results through Cadena at jim.tomalia@cadena.com. Cadena #E203631, Level IV				es may appry)	······································				
Sampler:	Hayden L			Reporting						5 Day	Turnaround Tim	1e		
Site Name:	12001 STARK								Canister	Vacuum/Pre	essure	Requested	Analyses	
			Flaur Cantan li	Start Samplin	ng Information	Stop Sa	mpling		Γ	Lab	Use Only	TO-15 (See		4
Lab ID	Sample Identification	Canister #	Flow Controller #	Date	Time	Date	Time	Intial (in Hg)	Final (in Hg)	Receipt	Final (psig) Gas: N2 / He	Special Instructions/N		
<u> </u>	AA-12001STARK-01_041819	6L2377	21393	04/18/2019	08:19	04/19/2019	07:11	-29	-7			intes)		-
02A	IAF-12001STARK-03_041819	6L2368	22148	04/18/2019	08:25	04/19/2019	07:12	-29	-5			$\frac{1}{2}$		-
03A	IAG12001STARK-02_041819	6L2380	21011	04/18/2019	08:14	04/19/2019	07:09	-29	-7					-
ouA	DUP-12001STARK-01_041819	61.2406	20750	04/18/2019	08:14	04/19/2019	07:09	-29	-29			Failed can		-
05A	DUP-12001STARK-02_041819	6L2401	22083	04/18/2019	08:19	04/19/2019	07:11	-29	-5.5					4
Relinquished by: (Sig	gnature/Affiliation)			Date 4_14_19	Time 11.00	Received by: (S	ignature/Affilia	ation)	6	-	1011	Date o/1/22	Vime of	20
Relinquished by: (Sig	gnature/Affiliation)			Date	Time	Received by: (S	ionature/Affilia	ation)	$\gamma \sim$			Date	7(4-0-1 Time	30
Relinquished by: (Si	gnature/Affiliation)			Date	Time	Received by: (S	ionature/Affilia	ation)				Date	Time	-
					Lab Use Only							1		NEW COLUMN
Sample Transpo Relinquishing sign	ortation Notice: Relinquishing signatu ature also indicates agreement to hold	ire on this docu harmless, defer	nent indicates that Id, and indemnify E	samples are shi urofins Air Toxic	oped in complian s against any cla (800) 467-4922	ice with all applic aim, demand, or	cable local, Sta action, of any l	ite, Federa kind, relate	l, and inter d to the co	mational laws llection, hand	, regulations, and lling, of shipping	l ordinances of of samples. D.C	any kind.).T Hotline	20 1

Custody Seal Intact? PN None Temp<u>NA</u> Fedex

Air Toxics

4/29/2019 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Off-Site Sampling Project #: Workorder #: 1904515

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 4/23/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

WORK ORDER #: 1904515

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129
PHONE:	517-819-0356	P.O. #	MI001454.0003.00002
FAX:		PROJECT #	Ford LTP Off-Site Sampling
DATE RECEIVED:	04/23/2019	CONTACT:	Ausha Scott
Diffe Confidented:	(1/2)/201)		

			KECEH I	LUAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SSMP-12001STARK-01_041919	TO-15	5.3 "Hg	15.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA
04A 04AA	LCS LCSD	TO-15 TO-15	NA NA	N N

CERTIFIED BY:

Lau

DATE: <u>04/29/19</u>

DECEIDT

ETNIAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8 , LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Rir Toxics

LABORATORY NARRATIVE EPA Method TO-15 Arcadis U.S., Inc. Workorder# 1904515

One 1 Liter Summa Canister (100% Certified) sample was received on April 23, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	SSMP-12001STARK-01_041919 1904515-01A 4/19/19 07:41 AM 1 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïlename:	4/27/19 09:45 PM 2.53 msdj.i / j042716	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	1.5	4.0	5.0	Not Detected
1,4-Dioxane	123-91-1	4.0	14	18	Not Detected
cis-1,2-Dichloroether	ne 156-59-2	2.3	4.0	5.0	Not Detected
Tetrachloroethene	127-18-4	2.3	6.9	8.6	2800
trans-1,2-Dichloroeth	ene 156-60-5	2.9	4.0	5.0	Not Detected
Trichloroethene	79-01-6	2.5	5.4	6.8	Not Detected
Vinyl Chloride	75-01-4	2.3	2.6	3.2	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-c	4 17060-07-0			70-130	98
4-Bromofluorobenze	ne 460-00-4			70-130	91
Toluene-d8	2037-26-5			70-130	102

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	Lab Blank 1904515-02A NA - Not Applicable NA - Not Applicable		Date/Time An Dilution Fact Instrument/F	nalyzed: tor: ilename:	4/27/19 12:45 PM 1.00 msdj.i / j042705d	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3)) (ug/m3)	(ug/m3)
1,1-Dichloroethene		75-35-4	0.59	1.6	2.0	Not Detected
1,4-Dioxane		123-91-1	1.6	5.4	7.2	Not Detected
cis-1,2-Dichloroether	ie	156-59-2	0.90	1.6	2.0	Not Detected
Tetrachloroethene		127-18-4	0.91	2.7	3.4	Not Detected
trans-1,2-Dichloroeth	ene	156-60-5	1.1	1.6	2.0	Not Detected
Trichloroethene		79-01-6	1.0	2.1	2.7	Not Detected
Vinyl Chloride		75-01-4	0.91	1.0	1.3	Not Detected
D: Analyte not within	the DoD scope of accre	ditation.				
Surrogates		CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4	17060-07-0			70-130	95
4-Bromofluorobenzer	ne	460-00-4			70-130	90
Toluene-d8		2037-26-5			70-130	100

🛟 eurofins

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Sampling

Air Toxics

Client ID:	CCV		
Lab ID:	1904515-03A	Date/Time Analyzed:	4/27/19 10:39 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdj.i / j042702

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	98
1,4-Dioxane	123-91-1	95
cis-1,2-Dichloroethene	156-59-2	101
Tetrachloroethene	127-18-4	99
trans-1,2-Dichloroethene	156-60-5	104
Trichloroethene	79-01-6	96
Vinyl Chloride	75-01-4	94

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	94
4-Bromofluorobenzene	460-00-4	70-130	104
Toluene-d8	2037-26-5	70-130	100

🛟 eurofins

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Sampling

Г

Air Toxics

Client ID:	LCS		
Lab ID:	1904515-04A	Date/Time Analyzed:	4/27/19 11:16 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdj.i / j042703

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	100
1,4-Dioxane	123-91-1	112
cis-1,2-Dichloroethene	156-59-2	110
Tetrachloroethene	127-18-4	105
trans-1,2-Dichloroethene	156-60-5	88
Trichloroethene	79-01-6	102
Vinyl Chloride	75-01-4	98

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	96
4-Bromofluorobenzene	460-00-4	70-130	105
Toluene-d8	2037-26-5	70-130	102

* % Recovery is calculated using unrounded analytical results.

🛟 eurofins

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP Off-Site Sampling

Air Toxics

Client ID:	LCSD		
Lab ID:	1904515-04AA	Date/Time Analyzed:	4/27/19 11:44 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdj.i / j042704

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	100
1,4-Dioxane	123-91-1	108
cis-1,2-Dichloroethene	156-59-2	115
Tetrachloroethene	127-18-4	105
trans-1,2-Dichloroethene	156-60-5	90
Trichloroethene	79-01-6	100
Vinyl Chloride	75-01-4	98

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	95
4-Bromofluorobenzene	460-00-4	70-130	106
Toluene-d8	2037-26-5	70-130	100

* % Recovery is calculated using unrounded analytical results.

April 30, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: MI001454.0002/3/4.00002/2B/3B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1904515 Sample date: 2019-04-19 Report received by CADENA: 2019-04-29 Initial Data Verification completed by CADENA: 2019-04-30

1 Air sample was analyzed for TO-15 parameters.

There were no significant QC anomalies or exceptions to report.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description						
<	Less than the reported concentration.						
>	Greater than the reported concentration.						
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) th blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.						
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.						
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.						
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.						
J-	The result is an estimated quantity, but the result may be biased low.						
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED						
JH	The sample result is considered estimated and is potentially biased high.						
JL	The sample result is considered estimated and is potentially biased low.						
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED						
NJ	Tentatively identified compound with approximated concentration.						
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)						
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.						
U	Indicates that the analyte / compound was analyzed for, but not detected.						
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.						
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.						

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #1904515 CADENA Verification Report: 2019-04-30

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #32709R Review Level: Tier III Project: MI001454.0003.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1904515 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	Analysis TO-15 TO-15 MI		MISC
				Duito		(Full Scan)	(SIM)	
1904515	SSMP-12001STARK- 01_041919	1904515-01A	Air	4/19/2019		х		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

DATA REVIEW

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

DATA REVIEW

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of one times the RL is applied to the difference between the duplicate sample results.

A field duplicate was not performed on a sample location within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan)		Reported		rmance eptable	Not			
		Yes	No	Yes	Required			
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)								
Tier II Validation								
Canister return pressure (<-2"Hg)		Х		X				
Tier III Validation					·			
System performance and column resolution		X		X				
Initial calibration %RSDs		Х		Х				
Continuing calibration RRFs		Х		Х				
Continuing calibration %Ds		Х		Х				
Instrument tune and performance check		Х		Х				
Ion abundance criteria for each instrument used		Х		Х				
Internal standard		Х		Х				
Field Duplicate Sample RPD					Х			
Compound identification and quantitation								
A. Reconstructed ion chromatograms		Х		Х				
B. Quantitation Reports		X		X				
C. RT of sample compounds within the established RT windows		X		x				
D. Transcription/calculation errors present		х		Х				
E. Reporting limits adjusted to reflect sample dilutions		X		X				

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

Jough c. House

DATE: May 9, 2019

PEER REVIEW: Dennis Capria

DATE: May 10, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	SSMP-12001STARK-01_041919 1904515-01A 4/19/19 07:41 AM 1 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïlename:	4/27/19 09:45 PM 2.53 msdj.i / j042716	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	1.5	4.0	5.0	Not Detected
1,4-Dioxane	123-91-1	4.0	14	18	Not Detected
cis-1,2-Dichloroether	ne 156-59-2	2.3	4.0	5.0	Not Detected
Tetrachloroethene	127-18-4	2.3	6.9	8.6	2800
trans-1,2-Dichloroeth	ene 156-60-5	2.9	4.0	5.0	Not Detected
Trichloroethene	79-01-6	2.5	5.4	6.8	Not Detected
Vinyl Chloride	75-01-4	2.3	2.6	3.2	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-c	4 17060-07-0			70-130	98
4-Bromofluorobenze	ne 460-00-4			70-130	91
Toluene-d8	2037-26-5			70-130	102

Analysis Request /Canister Chain of Custody

For Laboratory Use

Sample Transportation Notice: Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, of shipping of samples. D.O.T Hotline (800) 467-4922

Custody Seal Intact? YN None Temp<u>NA</u> Fedix
ARCADIS Design & Consultancy for natural and built assets

Daily Log - Ford Off Site VI Investigation - VISIT 1

Project No.:	MI001454.0003		Page 1	of	1
Site Location:	12001 Stark	Livonia, MI			
	E Q I				

1

Prepared By: LREdner

Date	Time	Description of Activities			
4/17/19		Purpose: RZ, VI: Bldg SURVEY Chemical Inventiony			
- i i		Arcadis: E. Redner, M. Olender			
		Weather: 47°F, Cloudy			
	0800	Arcadis on site			
	0805	Winduct building survey and chemical survey			
V	0825	Arcadis off site			
		NOTE RESIDENT Was achievely smoking in arrage			
		GAM			
Visit 1 Checklist					
Background sou	rces of VOC	a have been removed/isolated? Yes No			
Location of back	around source	res of VOCs that have been removed/isolated: hims 14+51de Gavage			
Sumo pit is prog					
sump pit is present? rest No					

Daily Log - Ford Off Site VI Investigation - VISIT 2 & 3

Project No.:	MI001454.0003		 Page	of	
Site Location:	12001 Stark	Livonia, MI	 		<u> </u>
Prepared By:	M. Olender		 		

Date	Time	Description of Activities			
4/18/19		Purpose: R] VISIT 2 - deplay rans			
1		Arcadis: M. Olender, H. Ladd			
		Weather: Rainy _ Mid 405			
	_	SUMMA Canisters used: 5-24 hr cans			
41819	0809	Arcadis ansite			
	0814	AALA rans deployed doors / windows shut.			
	0830	Arradus attsite.			
4-19-19	0700	Areadis on Site			
	0709	Reprise 24- hour consistents			
	0778	Conduct Simo Sampling			
- J	0750	Arcadis off Sike			
	<u> </u>				
		1/0 1			
		AMC			
Visit 2.8.3 Checklist					
Background sou	Backaround sources of VOCs have been removed/isplated?				
Number of SSM	Number of SSMD complex collected:				
Number of indoor/ambient air samples collected: 3+2 DWPs					
Decupancy hours (for commercial properties only):					

Document #ENFM009, Revision 01

1

DEQ	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013					
Indoor Air Sampling Procedure Via USEPA	Method TO-15					
INDOOR AIR BUILDING S	URVEY AND SAMPLING FORM					
Date: 10-29-18 Survey Performed by: Hayikin Lull						
4-17-19 E	ten R. Madison olender					
1. OCCUPANT:	ER					
Rent: Own:						
Resident Name: 1900 Human						
Address: 1200 Stark Kd.						
Telephone: Home: 734968 7934 W	/ork:					
How long have you lived at this location? Since Augu	st-2011					
List current occupants/occupation below (attach addition	al pages if necessary)					
Age (if under 18) Sex (M/F)	Occupation					
None						
2. OWNER OR LANDLORD: (If same as occupant, che	2. OWNER OR LANDLORD: (If same as occupant, check here 1 and go to Item No. 3).					
Last Name: First Name:						
Address:						
City and State:						
County:						
Home Phone: Office Phone:						

Indoor Air Sampling Procedure Via USEPA Method TO-15

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

3. SENSITIVE POPULATION:

Daycare/Nursing Home/Hospital/School/Other (specify):	Non	9
	(\cup

4. BUILDING CHARACTERISTICS:

Residential/Multi-	Residential/Multi-family Residential/Office/Strip Mall/Commercial/Industrial/School			
Describe Building	: Kesidentin	<u>ul</u>	Year Constructed:	
Number of floors	at or above grade:	1		
Number of floors I	pelow grade:	(full basement/crawl s	pace/slab on grade)	
Depth of structure	below grade:	2 ft. Basement siz	ze:ft²	
If the property is resi	dential, what type	? (Circle all appropriate	responses.)	
Ranch Split-Level Mobile Home Modular	2-Family Colonial Duplex Log Home	3-Family Cape Cod Apartment House Other:	Raised Ranch Contemporary Townhouses/Condos	
If multiple units, hi	ow many?			
If the property is commercial:				
Business type(s)_	[V]	/ 1		
Does it include res	idences (i.e., multi-	-use)? Yes No	if yes, how many?	
5. OCCUPANCY				

5. OCCUPANCY:

Is basement/lowest leve	l occupied?	(Circle one)
-------------------------	-------------	--------------

Full-time

Occasionally

Almost Never

Seldom

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

Level	General Use (e.g., family room, bedroom, laundry, workshop, storage)
Basement	NA-
1 st Floor	beneral use
2 nd Floor	
3 rd Floor	
4th Floor	
6 00N075U0710	(Use additional page(s) as necessary)
6. CONSTRUCTIO	N CHARACTERISTICS: (Circle all that apply.)
a. Above Grad	e Construction: (Describe type: wood frame, concrete, stone, brick).
b. Basement T	ype: Full Crawlspace Slab Other:
c. Basement Fl	oor: Concrete Dirt Stone Other:
d. Finished Bas	sement Floor: Uncovered Covered NA
If cove	red, what with?
e. Foundation	Valls: Poured Block Stone Other:
f. Foundation V	Valls Unsealed Sealed with:
g. The Baseme	nt is: Wet Damp Dry 1/14
h. The Baseme	nt is: Finished Unfinished Partially Finished
i. Sump Presen	t (Y 16 Jif yes, how many?
Where Disc	harged?
Water in Su	mp? Yes No Not Applicable

DE	emediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013
Indoor Air Sampling Procedure Via USEPA Me	thod TO-15
INDOOR AIR BUILDING SURVEY AN	ID SAMPLING FORM (continued)
Identify all potential soil vapor entry points and estimated size	e (e.g., cracks, utility parts, drains).
Drains in garage are	ea. Some Cracks
Are the basement walls of floor sealed with waterproof paint	or epoxy coatings? Yes
Type of ground cover outside of building: Grass Conc	rete Asphalt Other
Is an existing subsurface depressurization (radon) system in	place? Yes No
If yes, is it active, or passive?	
Is a sub-slab vapor/moisture barrier in place? Type of barrier:	Yes No'
7. HEATING, VENTING, and AIR CONDITIONING	
Type of heating system(s) used in this building: (Circle all the	at apply: Note the primary).
Hot Air Circulation Heat Pump Ho Space Heaters Steam Radiation Ra Electric Baseboard Wood Stove Ou Other:	ot Water Baseboard adiant Floor utdoor Wood Boiler
The primary type of fuel used is:	
Natural Gas Fuel Oil Kerosene Electric Propane Solar Wood Coal	
Domestic hot water tank fueled by: Natural 605	
Location of Boiler/Furnace: Basement Outdoors	Main Floor Other

	DEA	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013			
Indo	or Air Sampling Procedure Via USE	PA Method TO-15			
INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)					
Air Co	onditioning: Central Air Window Uni	ts Open Windows None			
Are ai	r distribution ducts present?	(Yes) No			
Is the	re a whole house fan?	Yes No			
	ibe the air intake system (outside air supply, contact the locations on the floor plan diagram.	old air return, ductwork, etc.) and its condition where visible.			
<u> </u>	Jan Jan Contor				
8. FA	CTORS THAT MAY INFLUENCE INDOOR AI	RQUALITY			
8. FA(a)	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage?	R QUALITY Yes No			
8. FA(a)	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit?	R QUALITY Yes No Yes No			
8. FA(a) b)	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or veh in an attached garage (e.g., lawn mower, AT	R QUALITY Yes No Yes No hicles stored IV, car)			
 8. FA(a) b) c) 	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or vel in an attached garage (e.g., lawn mower, AT Has the building ever had a fire?	R QUALITY Yes No Yes No V(, car) Yes No Yes No			
 8. FA(a) b) c) d) 	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or vel in an attached garage (e.g., lawn mower, AT Has the building ever had a fire? Is there a fuel burning or unvented gas space	R QUALITY Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No			
 8. FA(a) b) c) d) e) 	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or val in an attached garage (e.g., lawn mower, AT Has the building ever had a fire? Is there a fuel burning or unvented gas space Is there a workshop or hobby/craft area?	R QUALITY Yes No Yes No			
 8. FA(a) b) c) d) e) 	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or vel in an attached garage (e.g., lawn mower, AT Has the building ever had a fire? Is there a fuel burning or unvented gas space Is there a workshop or hobby/craft area? If yes, where and what type?	R QUALITY Yes No Yes No			
 8. FA(a) b) c) d) e) f) 	CTORS THAT MAY INFLUENCE INDOOR AI Is there an attached garage? If yes, does it have a separate heating unit? Are any petroleum-powered machines or vel in an attached garage (e.g., lawn mower, AT Has the building ever had a fire? Is there a fuel burning or unvented gas space Is there a workshop or hobby/craft area? If yes, where and what type? Is there smoking in the building?	R QUALITY Yes No Yes No			

	E	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013
Indoo	r Air Sampling Procedure Via USEPA	Method TO-15
	INDOOR AIR BUILDING SURVEY	AND SAMPLING FORM (continued)
g)	Have cleaning products been used recently?	Yes No
	If yes, when and what type? <u>Grunt purp</u>	r Se
h)	Have cosmetic products been used recently?	Yes No
	If yes, when and what type?	
i)	Has there been painting or staining in the last size	months? Yes No
	If yes, when and where?	
j)	Is there new carpet, drapes, or other textiles?	Yes No
	If yes, when and where?	
k)	Have air fresheners been used recently?	Yes No
	If yes, when and what type? Spare (6.1	1
I)	Is there a kitchen exhaust fan?	Yes No
	If yes, where is it vented?	
m)	Is there a clothes dryer?	Yes No
	If yes, is it vented outside?	Yes No
n)	Has there been a pesticide application?	Yes No
	If yes, when and what type? Kug Spay	usal just summer
o)	Are there odors in the building?	Yes No
	If yes, please describe:	

PRODUCT INVENTORY FORM:

Make and Model of field instrument used: $\rho / h f AE XOD$ List specific products found in the residence of area that have the potential to affect indoor air quality (e.g., gasoline or kerosene storage cans, glues, paints, cleaning solvents/products, polishes/waxes, new furniture/ carpet, nail polish/hairspray/cologne).

Potential Source	Location	Size and Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N
Gasoline Storage Cans and Equipment	Gurage				
Kerosene Storage Cans					
Paints/Thinners/Strippers	(xrac o				
Cleaning Solvents	Long HL				
Hobby Supplies – Glue, Paint, Etc.	-				
Oven Cleaner	~				5
Carpet/Upholstery Cleaners	Kitchen				
Household Cleaners (non- solvent)	Kitchen				
Moth.Balls	Barrag .			e eg v i	
Polishes/Waxes	1				
Insecticides	Gamp C		2.55	(A)	
Furniture/Floor Polish				S	
Hairspray	24			1	
Cologne/Perfume	Bathoon				
Air Fresheners	Battacn			1	
Interior Fuel Tank					
Wood Stove/Fireplace	Thing warn				
New Furniture/Upholstery					
New Carpeting/Flooring			_		
Others (fill in below)					
Notocycle		7			
Sionplant		24			
Weed Worker	(*****	í			
Note - Chemical	of concern	Moved	into tote and pla	ked	
Outside 9	ivesl		/		

40

Product Inventory Form

I.e. gasoline cans/equipment, kerosene, paints/thinners/strippers, cleaning solvents, hobby supplies (glues), oven cleaner, carpet/upholstery cleaners, household cleaners, moth balls, polishes/waxes, insecticides, furniture/floor polish, hairspray, cologne/perfume, air fresheners, interior fuel tank, wood stove/fireplace, new furniture/upholstery, new carpet/flooring

/

10

In

Location	Product Description	Chemical Ingredients	Quantity	PID Reading	Photo	Removed]
12000		vin/ c		(ppb)	· //	(Y/N)	-
Churge	ALL HALLS		2			10-	\downarrow
Carle	Or the Hore Aitese	Insect cides	- Canteling		1	10	
En The	CHAT PRACTANT	UPC:	1/11/77/4		<u> _<u></u>};</u>	SHEL	- /
Barry HI	Grand Dura u.		Multiple	0	P	DT (- /
han i	Real line	VACE		17	V	+v-	-//
Entitier	Pardue Pol Frand	Variou S		0		1	
Fiel Flat	Real-and Ada	1/astars		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-1/	1-1-	-
(10+1100	Storing Clearly				<i>_∧</i>		- \ still 1
(acrue)	Ristory - Hich	i WYr		N	81	V	\sam.
	Palasana Frend					-/	tote
Gotone	Guer-Friender	a. yr 1/DCS	7	D	11	- P	
Grane	Brezilling Commen	a 1/0°s	2		1	1-1	Doob
	Mener Wax		-	<u>_</u>			
Gureno	WD-4D	VDCs	1	D	11	V	
Gariage	BulliEup	VDCs		0	- TN	P	1
1	Shellac						1 1
Garane	Flox Sey	VOCS	1	0-	Y	Y	1 1
Fist floor	Kin - Jamp Dry	2) /	1	0	N	Ý	
Gurane	Gasoline	1/2Cs	3	9500	Y	Y	
Garage	schobingh	IDDIES	2	Q	Y	Y	<u></u>
	Homework C	irget ueaner	1	1	1	1	
	Caulk		4				
	Gutter seal	<u>er</u>	1				l i
	off backyar	d pre-treat					
	ROUND VP		1		<i>a</i>		
	Brake Huid		1				Í Í
¥	POWLY Stepr	ing Huid		*	Y	×	
		3		~	3		1
_				111210			
				8 🛒	<u> </u>		
					0.00		
							L
	520						
		·					
				2.72			
	100						
							-
	· · · · · · · · · · · · · · · · · · ·						

Indoor/Ambient Air Collection

Page 1 of 1

Office Name & Address (Reporting Info	ffice Name & Address (Reporting Information): Arcadis of Michigan, LLC, 28550 Cabot Drive, Suite 500, Novi, MI 48377				ovi, MI 48377	Project Name: Ford LTP Off-Site Sampling											
Field Manager: Adam Richmond						Project Number	- Project Number: MI001454.0003.00002										
Phone: 248-994-2240	Special Instructions: Report ON	LY: 1,1-DCE	E, cis-1,2- [DCE, trans-1,2-I	DCE, 1,4-Dioxane,	Site Address: 12	ite Address: 12001 STARK										
Email Address for Result Reporting:PCE, TCE and VC. Submit results through Cadena at jim.tomalia@cadena.com. CadenaKristoffer.Hinskey@arcadis.com#E203631. Level IV Reporting.				Sampler Name:	mpler Name: Hayden Ladd Sampler Email Address: Hayden.Ladd@arcadis.com												
Summa Canister Size (1L, 2.7 L, 6L): 6 L Lab: Eurofins																	
								Commis	Beginning	Community	Commis	Ending		HVAC Syst	em Information		
Sample ID	Sample Location Description	Indoor/0	Outdoor	sampling area (ppb)	Canister Number	nister Number Flow Controller Number Start Date Start Date Collection Start Time Collection Collection Start Time Collection Date (in. Hg)	Sample Collection End Date	Collection End Time	aniple Canister Delection nd Time (in. Hg)	HVAC Fan On?	Heat On?	Start Temperature Setting (°F)	End Temperature Setting (°F)	Notes			
AA-12001STARK-01_041819	SW backyard	Outo	door	0	6L2377	21393	04/18/2019	08:19	-29	04/19/2019	07:11	-7	Yes	Yes	68	68	
IAF-12001STARK-03_041819	Family room table	Ind	oor	0	6L2368	22148	04/18/2019	08:25	-29	04/19/2019	07:12	-5	Yes	Yes	68	68	
IAG-12001STARK-02_041819	Garage	Ind	oor	0	6L2380	21011	04/18/2019	08:14	-29	04/19/2019	07:09	-7	Yes	Yes	68	68	
DUP-12001STARK-01_041819	Garage	Ind	oor	0	6L2406	20750	04/18/2019	08:14	-29	04/19/2019	07:09	-29	Yes	Yes	68	68	
DUP-12001STARK-02_041819	SW backyard	Outo	door	0	6L2401	22083	04/18/2019	08:19	-29	04/19/2019	07:11	-5.5	Yes	Yes	68	68	
Meteorological Data								General Not	es or Observ	ations							
Date	Time	Temp Indoor	o. (°F) Outdoor	Relative Humidity (%)	Barometric Pressure (in. Hg)	Air Speed (mph)	Source of Weather Information										
04/18/2019	08:11	68	59	79	29.62	SSW 11	weather.com app										
04/19/2019	07:23	68	44	83	29.66	NNW 11	weather.com app										

ARCADIS

Soil Vapor Collection Log Sheet Page 1 of 1

Office Name & Address (Reporting Information):						Project Name: Ford LTP Off-Site Sampling											
Arcadis of Michigan, LLC, 28550 Cabot Drive, Suite 500, Novi, MI 48377						Project Number: MI001454.0003.00002											
Field Manager: Adam Richmond						Site Address: 12001 STARK											
Phone Number: 248-994-2240	Special Instruct	Special Instructions: Report ONLY: 1,1-DCE, cis-1,2- DCE, trans-1,2-DCE, 1,4-Dioxane, Sa			xane, Sampler Name: Sampler Email Address:												
Email Address for Result Reporting:Kristoffer.Hinskey@arcadis.com	 PCE, TCE and VC. Submit results through Cadena at jim.tomalia@cadena.com. Cadena #E203631. Level IV Reporting. 			en Hayden L Hayden.L@arcadis.com													
Helium Detector Model Used:Dielectric MGD-2002 Helium Leak Test Method:Bucket Shroud			Summa Canister Size (1L, 2.7 L, 6L): 1 L Lab: Eurofins														
	Sample		Pre-Sampling	Helium Tracer Test	- Performed During Sar	nple Point Purge	Purge	Dunna Data	Consister	Flow	Sample	Starting	Sample	Ending	Post- Sampling	Post- Sampling	Microman
Sample ID	Location Date Description	Shut-In / Leak- Down Test	Shut-In / Leak- Down Test Shroud Helium Concentration During Purge Helium Reading in Purged Vapor		Helium Test Volume Pass/Fail (Purge (mL) contains <5% of shroud to pass)?	(mL/min)	n) Number Contro		Collection Start Time	Canister Pressure	Collection End Time	Canister Pressure	Reading from GEM (%)	Reading from GEM (%)	ometer Reading		
SSMP-12001STARK-01_041919	Garage	04/19/2019	Pass	47.3	0	Pass	100	100	1L2471	23820	07:28	-29	07:41	-5.5	0.5	21.3	0.00039

Meteorological Data							Purge Volume Calculations:
Date	Time	Indoor	Outdoor	Relative Humidity	Barometric Pressure	Source of Weather	For sub-slab soil vapor samples the sample train tubing length is ~54 inches and the interior tubing radius is 0.085".
04/19/2019	07:24	68	44	83	29.66	weather.com app	Three volumes of the sample train is 60 milliliters using the equation for volume of a cylinder (volume = pi * radius2 * height) where Volume = 60 ml, radius = 0.85" and height = 54".

TRANSMITTAL LETTER

To: George A Shawn C Brandon Todd Wa Chuck Pi Rob Bole	Al-Husari collins Alger (EGLE) Iton (Ford) nter (Ford) ey (Schiff Hard	in LLP)	From: Kris Hins	key	Arcadis of Michi 28550 Cabot Dr Suite 500 Novi Michigan 48377 Tel 248 994 224 Fax 248 994 224	igan, LLC ive 40 41
Copies:			Date:			
			Novembe	er 12, 2019		
Vapor Int Data Pac We are send	trusion Assess kage ding you hard co d	ment pies: Under Separa	ate Cover V	ia the Following Items:		
 Shop Dra Prints Other: 	awings □ ⊠	Plans Samples	□ Sp □ Co	ecifications Change Order py of Letter Reports		
Copies	Date	Drawing No.	Rev.	Description		Action*
1	11/13/2019			Figure		
1	11/13/2019			Analytical Results		
				7 thatytical i toodito		
1	11/13/2019			Field Notes and Drawings		
1	11/13/2019			Field Notes and Drawings		
Action* ☐ A ☐ A ☐ AN ☐ AS ☐ Other:	11/13/2019 proved proved As Noted Requested			Field Notes and Drawings CR Correct and Resubmit F File FA For Approval	Resubmit C Return C Review and Co	_ Copies Copies mment

Thank you for cooperating with the air sampling at your property on October 17 and 18, 2019. Attached is your data package.

Air Toxics

11/8/2019 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Project #: Workorder #: 1910582R1

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 10/24/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

LCSD

WORK ORDER #: 1910582R1

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129	
PHONE:	517-819-0356	P.O. #	30016344.0002B	
FAX:		PROJECT #	Ford LTP	
DATE RECEIVED:	10/24/2019	CONTACT:	Ausha Scott	
DATE COMPLETED	b: 10/30/2019	001111011		
DATE REISSUED:	11/08/2019			
			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SSMP-12001STARK-01_101819	TO-15	5.3 "Hg	15.3 psi
02A	DUP-12001STARK-01_101819	TO-15	5.1 "Hg	15 psi
03A	Lab Blank	TO-15	NA	NA
04A	CCV	TO-15	NA	NA
05A	LCS	TO-15	NA	NA

TO-15

CERTIFIED BY:

05AA

Lau

DATE: <u>11/08/19</u>

NA

NA

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

LABORATORY NARRATIVE EPA Method TO-15 Arcadis U.S., Inc. Workorder# 1910582R1

Two 1 Liter Summa Canister (100% Certified) samples were received on October 24, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

The workorder was reissued on 11/8/19 to report results in ug/m3 as well as a different format per project specifications.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

- N The identification is based on presumptive evidence.
- M Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

🛟 eurofins

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID: Lab ID: Date/Time Collected: Media:	SSMP-12001STARK-01_101819 1910582R1-01A 10/18/19 09:26 AM 1 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fact Instrument/F	nalyzed: :or: ilename:	10/26/19 10:27 PM 2.48 msd3.i / 3102620	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	75-35-4	1.1	2.4	4.9	Not Detected
1,4-Dioxane	123-91-1	0.93	5.6	18	Not Detected
cis-1,2-Dichloroether	ne 156-59-2	0.77	2.4	4.9	Not Detected
Tetrachloroethene	127-18-4	1.2	4.2	8.4	2500
trans-1,2-Dichloroeth	nene 156-60-5	1.0	2.4	4.9	Not Detected
Trichloroethene	79-01-6	0.85	3.3	6.7	Not Detected
Vinyl Chloride	75-01-4	0.53	1.6	3.2	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-c	17060-07-0			70-130	97
4-Bromofluorobenze	ne 460-00-4			70-130	100
Toluene-d8	2037-26-5			70-130	97

🛟 eurofins

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID: Lab ID: Date/Time Collected: Media:	DUP-12001STARK-01_101819 1910582R1-02A 10/18/19 12:00 AM 1 Liter Summa Canister (100% Certified)	Date/Time A Dilution Fact Instrument/F	nalyzed: :or: ilename:	10/26/19 10:00 PM 2.43 msd3.i / 3102619	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	1.1	2.4	4.8	Not Detected
1,4-Dioxane	123-91-1	0.91	5.5	18	Not Detected
cis-1,2-Dichloroether	ne 156-59-2	0.76	2.4	4.8	Not Detected
Tetrachloroethene	127-18-4	1.2	4.1	8.2	2400
trans-1,2-Dichloroeth	nene 156-60-5	1.0	2.4	4.8	Not Detected
Trichloroethene	79-01-6	0.84	3.3	6.5	Not Detected
Vinyl Chloride	75-01-4	0.52	1.6	3.1	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-c	14 17060-07-0			70-130	94
4-Bromofluorobenzer	ne 460-00-4			70-130	99
Toluene-d8	2037-26-5			70-130	100

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP **Client ID:**

Lab ID:

Media:

Lab Blank 1910582R1-03A Date/Time Collected: NA - Not Applicable

NA - Not Applicable

Date/Time Analyzed: 10/26/19 10:44 AM **Dilution Factor:** Instrument/Filenam

	1.00
ne:	msd3.i / 3102605c

		MDI	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.46	0.99	2.0	Not Detected
1,4-Dioxane	123-91-1	0.38	2.2	7.2	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.31	0.99	2.0	Not Detected
Tetrachloroethene	127-18-4	0.50	1.7	3.4	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.42	0.99	2.0	Not Detected
Trichloroethene	79-01-6	0.34	1.3	2.7	Not Detected
Vinyl Chloride	75-01-4	0.21	0.64	1.3	Not Detected

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	93
4-Bromofluorobenzene	460-00-4	70-130	101
Toluene-d8	2037-26-5	70-130	100

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID:	ссч		
Lab ID:	1910582R1-04A	Date/Time Analyzed:	10/26/19 09:11 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd3.i / 3102602

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	94
1,4-Dioxane	123-91-1	100
cis-1,2-Dichloroethene	156-59-2	104
Tetrachloroethene	127-18-4	105
trans-1,2-Dichloroethene	156-60-5	102
Trichloroethene	79-01-6	101
Vinyl Chloride	75-01-4	84

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	96
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	101

Air Toxics

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Г

Client ID:	LCS		
Lab ID:	1910582R1-05A	Date/Time Analyzed:	10/26/19 09:37 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd3.i / 3102603

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	96
1,4-Dioxane	123-91-1	100
cis-1,2-Dichloroethene	156-59-2	107
Tetrachloroethene	127-18-4	102
trans-1,2-Dichloroethene	156-60-5	87
Trichloroethene	79-01-6	96
Vinyl Chloride	75-01-4	85

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	92
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	100

* % Recovery is calculated using unrounded analytical results.

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

r

Client ID:	LCSD		
Lab ID:	1910582R1-05AA	Date/Time Analyzed:	10/26/19 10:01 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd3.i / 3102604

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	96
1,4-Dioxane	123-91-1	98
cis-1,2-Dichloroethene	156-59-2	106
Tetrachloroethene	127-18-4	100
trans-1,2-Dichloroethene	156-60-5	87
Trichloroethene	79-01-6	94
Vinyl Chloride	75-01-4	87

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	95
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	102

* % Recovery is calculated using unrounded analytical results.

REVISED REPORT: November 8, 2019 REVISION SUMMARY: Lab report format and sample results units revised at client request.

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30016344.0002B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1910582 Sample date: 2019-10-18 Report received by CADENA: 2019-10-30 Initial DataVerification completed: 2019-10-30

2 Air samples were analyzed for TO-15 parameters.

No data qualifications or sample integrity issues were observed.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #1910582R1 CADENA Verification Report: 2019-10-30

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #34703R Review Level: Tier III Project: 30016344.00007

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1910582R1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

	Sample ID	Lab ID	Matrix	Sample		Analysis		
SDG				Date	Parent Sample	TO-15 (Full Scan)	TO-15 (SIM)	MISC
	SSMP- 12001STARK- 01_101819	1910582R1-01A	Air	10/18/2019		х		
1910582R1	DUP- 12001STARK- 01_101819	1910582R1-02A	Air	10/18/2019	SSMP- 12001STARK- 01_101819	х		

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

DATA REVIEW

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure	
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg	

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

arcadis.com g:\project_data\project chemistry\data validation reports\2019\34501-35000\34703\34703r_12001 stark rd.docx

DATA REVIEW

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of one times the RL is applied to the difference between the duplicate sample results.

Results (in $\mu g/m^3$) for the field duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SSMP-12001STARK-01_101819/ DUP-12001STARK-01_101819	Tetrachloroethene	2500	2400	4.1%

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan)		Reported		rmance eptable	Not				
		Yes	No	Yes	Required				
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)									
Tier II Validation									
Canister return pressure (<-2"Hg)		Х		X					
Tier III Validation									
System performance and column resolution		Х		X					
Initial calibration %RSDs		х		x					
Continuing calibration RRFs		Х		Х					
Continuing calibration %Ds		Х		Х					
Instrument tune and performance check		Х		Х					
Ion abundance criteria for each instrument used		Х		Х					
Internal standard		Х		Х					
Field Duplicate Sample RPD		Х		Х					
Compound identification and quantitation									
A. Reconstructed ion chromatograms		Х		Х					
B. Quantitation Reports		Х		X					
C. RT of sample compounds within the established RT windows		X		x					
D. Transcription/calculation errors present		Х		Х					
E. Reporting limits adjusted to reflect sample dilutions		X		X					

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

Jough c. Honsen

DATE: November 10, 2019

PEER REVIEW: Andrew Korycinski

DATE: November 11, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	SSMP-12001STARK-01_101819 1910582R1-01A 10/18/19 09:26 AM 1 Liter Summa Canister (100% Certified)	Date/Time Analyzed: Dilution Factor: 2 Instrument/Filename: 1		10/26/19 10:27 PM 2.48 msd3.i / 3102620	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	75-35-4	1.1	2.4	4.9	Not Detected
1,4-Dioxane	123-91-1	0.93	5.6	18	Not Detected
cis-1,2-Dichloroether	ne 156-59-2	0.77	2.4	4.9	Not Detected
Tetrachloroethene	127-18-4	1.2	4.2	8.4	2500
trans-1,2-Dichloroeth	nene 156-60-5	1.0	2.4	4.9	Not Detected
Trichloroethene	79-01-6	0.85	3.3	6.7	Not Detected
Vinyl Chloride	75-01-4	0.53	1.6	3.2	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-c	17060-07-0			70-130	97
4-Bromofluorobenze	ne 460-00-4			70-130	100
Toluene-d8	2037-26-5			70-130	97

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	DUP-12001STARK-01_101819 1910582R1-02A 10/18/19 12:00 AM 1 Liter Summa Canister (100% Certified)	Date/Time Analyzed:10Dilution Factor:2.4Instrument/Filename:ms		Date/Time Analyzed:10/26/19 10:00 PMDilution Factor:2.43Instrument/Filename:msd3.i / 3102619		10/26/19 10:00 PM 2.43 msd3.i / 3102619	
		MDL	LOD	Rpt. Limit	Amount		
Compound	CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)		
1,1-Dichloroethene	75-35-4	1.1	2.4	4.8	Not Detected		
1,4-Dioxane	123-91-1	0.91	5.5	18	Not Detected		
cis-1,2-Dichloroether	ne 156-59-2	0.76	2.4	4.8	Not Detected		
Tetrachloroethene	127-18-4	1.2	4.1	8.2	2400		
trans-1,2-Dichloroeth	nene 156-60-5	1.0	2.4	4.8	Not Detected		
Trichloroethene	79-01-6	0.84	3.3	6.5	Not Detected		
Vinyl Chloride	75-01-4	0.52	1.6	3.1	Not Detected		
D: Analyte not within	the DoD scope of accreditation.						
Surrogates	CAS#			Limits	%Recovery		
1,2-Dichloroethane-c	14 17060-07-0			70-130	94		
4-Bromofluorobenzer	ne 460-00-4			70-130	99		
Toluene-d8	2037-26-5			70-130	100		

Analysis Request /Canister Chain of Custody

For Laboratory Use Only

180 B	lue Ravine R	d. Suite B, Folsom, CA 9	95630 PID:		Workord	ler #:	·····)582	t algertit	Click li	nks belo	w to view	t 1995 - Alexandra		
Phon	e (800) 985-59	955; Fax (916) 351-8279									<u>Caniste</u> Holium	Pr Sampli	ng Guide			
Client	·	Ford	PID:	NA	Special	Instructions/N	lotes: Rep	ort ONLY: 1,1-DO	CE, cis-1,2-	Тт	urnarou	od Time	(Bush av			
Projec	t Name:	Ford LTP				00 1 2 DOF 4	1.0			<u> </u>	umaiou		(Rush su	rcnarges	may ap	oply)
Projec	t Manager:	Kris Hinskey	P.O.# 300163	44.0002B	00L, 18	115-1,2-DCE, 1	,4-Dioxane	, PCE, TCE and	VC. Submit			5 Day	/ Turnarou	nd Time		
Samp	ler:	Xenia Chan			results ti	hrough Cadena	at jim.tom	alia@cadena.com	m. Cadena	Can	ister vac	uum/Pre	essure	Requ	ested A	Inalyses
Site N	ame:	12001 STARK			#E20363	31. Level IV Re	portina					Lab U	Ise Only	ecial otes)	λze	
Lab ID	San	nple Identification	Can #	Flow Co	ontroller t	Start Sa Inform	mpling ation	Stop Sar Inform	mpling ation	ll (in Hg)	l (in Hg)	b t	(psig) N ₂ / He	5 (See Sp ictions/No	Vot Analy	
nin	SSMP 120018					Date	Time	Date	Time	Initia	-inal	ec.	inal Jas:	0-15 nstru	00	
VIN	DUR 120015	NDK 04 404040	1L2593	24154		10/18/2019	9:14	10/18/2019	9:26	-29.5	-6		- <u> </u>		╉──╁	
04	DUP-12001517	ARK-01_101819	1L2976	23352		10/18/2019		10/18/2019		-29			1.		╋╼╍╋	
		· · · · · · · · · · · · · · · · · · ·	**							-2.3	-0		17.20	<u> </u>	╋╾┥	
	***						**								╞──┼	
		·····													┢╍╍┽	
n di la Tanàna amin'ny faritr'o dia mampika dia	~~														┝──┼	
						·····		- <u>+</u>							┢──┟	
	~~					h					*-				\vdash	
<u></u>									***							
								<u> </u>								
er en el el	-															
								╂────┤					and the pro-			
-	-											and a second				
<u> </u>		<u> </u>														-
Relinq	shid by: (Signa	ture/Affiliation)		Date		····		4156			~~		1967			
X	\square	IN		1.67 /	~	une Un		Received by: (S	Signature/Aff	liation)	>		Date	2	Time	
Relingui	shed by: (Signa	ture/Affiliation)		Date	<u> </u>	<u>11700</u>			<u> </u>		0A	ZC	10/2	Vlog	03	37
		·				1 Bine		Received by: (S	Signature/Affi	liation)			Date		Time	
Relinqui	shed by: (Signa	ture/Affiliation)		Date		Time		Boosived by (C		14 IF 1						
****								inteceived by: (3	signature/Am	liation)			Date		Time	
Engleider,		$\Delta 1 c$				-Lab Use O	niv	L								
Shipper	Name:	Hell In	Custody Seals Inta	ct?	Ves	No	None	<u> </u>							1990-199	
San	ple Transporta	tion Notice: Relinquishing	signature on this docu	ment indicate	es that se	moles are shir										
ordina	ances of any kin	d. Relinquishing signature al	so indicates agreemer	nt to hold har	mless, de	efend, and inde	mnify Furr	tips Air Tovice of	applicable loo	cal, State	Federa	, and inte	ernational I	aws, regi	lations,	, and
				handling, of	shipping	of samples. D.	O.T Hotlin		yamsı any Cl	am, dema	and, or a	ction, of a	any kind, n	elated to	the colie	ection,

Air Toxics

10/30/2019 Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi MI 48377

Project Name: Ford LTP Project #: Workorder #: 1910584

Dear Mr. Jim Tomalia

The following report includes the data for the above referenced project for sample(s) received on 10/24/2019 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Scott

Ausha Scott Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

WORK ORDER #: 1910584

Work Order Summary

CLIENT:	Mr. Jim Tomalia Arcadis U.S., Inc. 28550 Cabot Dr. Suite 500 Novi, MI 48377	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129
PHONE:	517-819-0356	P.O. #	30016344.0002B
FAX:		PROJECT #	Ford LTP
DATE RECEIVED:	10/24/2019	CONTACT:	Ausha Scott
DATE COMPLETED:	10/30/2019		

			KECEH I	FILAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	IAG12001STARK-02_101819	Modified TO-15	5.3 "Hg	5.3 psi
02A	AA-12001STARK-01_101819	Modified TO-15	4.9 "Hg	5.1 psi
03A	IAF-12001STARK-03_101819	Modified TO-15	8.4 "Hg	4.8 psi
03B	IAF-12001STARK-03_101819	Modified TO-15	8.4 "Hg	4.8 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

Lau

DATE: <u>10/30/19</u>

DECEIDT

ETNIAT

CERTIFIED BY:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

LABORATORY NARRATIVE Modified TO-15 Arcadis U.S., Inc. Workorder# 1910584

Three 6 Liter Summa Canister (100% Cert Ambient) samples were received on October 24, 2019. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Initial Calibration	<pre><!--=30% RSD with 2 compounds allowed out to < 40% RSD</pre--></pre>	=30% RSD with 4 compounds allowed out to < 40% RSD</td
Blank and standards	Zero Air	UHP Nitrogen provides a higher purity gas matrix than zero air

Receiving Notes

🔅 eurofins

There were no receiving discrepancies.

Analytical Notes

As per client project requirements, the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified may be false positives.

The results for sample IAF-12001STARK-03_101819 in this report was acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Dilution was performed on sample IAF-12001STARK-03_101819 due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See

data page for project specific U-flag definition.

- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAG12001STARK-02_101819 1910584-01A 10/18/19 09:58 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	10/26/19 05:55 PM 1.65 msd20.i / 20102615	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	75-35-4	0.16	0.59	0.65	Not Detected
1,4-Dioxane	123-91-1	0.48	0.54	0.59	Not Detected
cis-1,2-Dichloroether	156-59-2	0.35	0.59	0.65	Not Detected
Tetrachloroethene	127-18-4	0.70	1.0	1.1	0.92 J
trans-1,2-Dichloroeth	ene 156-60-5	0.37	0.59	0.65	Not Detected
Trichloroethene	79-01-6	0.44	0.80	0.89	Not Detected
Vinyl Chloride	75-01-4	0.14	0.38	0.42	Not Detected
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	116
4-Bromofluorobenzer	ne 460-00-4			70-130	102
Toluene-d8	2037-26-5			70-130	99

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	AA-12001STARK-01_101819 1910584-02A Date/Time Analyzed: 10/26/19 06:34 F 10/18/19 09:02 AM Dilution Factor: 1.61 6 Liter Summa Canister (100% Cert Ambier Instrument/Filename: msd20.i / 20102		10/26/19 06:34 PM 1.61 msd20.i / 20102616		
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3		(ug/ilis)
1,1-Dichloroethene	75-35-4	0.15	0.57	0.64	Not Detected
1,4-Dioxane	123-91-1	0.47	0.52	0.58	Not Detected
cis-1,2-Dichloroethen	ne 156-59-2	0.34	0.57	0.64	Not Detected
Tetrachloroethene	127-18-4	0.68	0.98	1.1	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.57	0.64	Not Detected
Trichloroethene	79-01-6	0.42	0.78	0.86	Not Detected
Vinyl Chloride	75-01-4	0.13	0.37	0.41	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	112
4-Bromofluorobenzer	ne 460-00-4			70-130	96
Toluene-d8	2037-26-5			70-130	97

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_101819 1910584-03A 10/18/19 10:59 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ilename:	10/26/19 07:13 PM 18.4 msd20.i / 20102617	
Compound	CA6#	MDL (ug/m3)	LOD (ug/m)	Rpt. Limit	Amount
1 1-Dichloroethene		1.8	6.6	7.3	Not Detected
1.4-Dioxane	10-00-4	5.4	6.0	6.6	Not Detected
cis-1.2-Dichloroethen	e 156-59-2	3.9	6.6	7.3	Not Detected
Tetrachloroethene	127-18-4	7.8	11	12	Not Detected
trans-1,2-Dichloroeth	ene 156-60-5	4.1	6.6	7.3	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	104
4-Bromofluorobenzer	e 460-00-4			70-130	97
Toluene-d8	2037-26-5			70-130	96

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_101819 1910584-03B 10/18/19 10:59 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	10/26/19 07:13 PM 18.4 msd20.i / 20102617sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
Trichloroethene	79-01-6	0.19	0.59	2.0	Not Detected
Vinyl Chloride	75-01-4	0.12	0.28	0.47	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d4	4 17060-07-0			70-130	98
4-Bromofluorobenzen	e 460-00-4			70-130	96
Toluene-d8	2037-26-5			70-130	98

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP **Client ID:**

Lab ID:

Media:

Lab Blank 1910584-04A

Date/Time Collected: NA - Not Applicable

NA - Not Applicable

Date/Time Analyzed: **Dilution Factor:** Instrument/Filename:

1.00 msd20.i / 20102606c

10/26/19 11:25 AM

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	75-35-4	0.095	0.36	0.40	Not Detected
1,4-Dioxane	123-91-1	0.29	0.32	0.36	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.21	0.36	0.40	Not Detected
Tetrachloroethene	127-18-4	0.42	0.61	0.68	Not Detected
trans-1,2-Dichloroethene	156-60-5	0.22	0.36	0.40	Not Detected
Trichloroethene	79-01-6	0.26	0.48	0.54	Not Detected
Vinyl Chloride	75-01-4	0.082	0.23	0.26	Not Detected

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	104
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	98

Air Toxics

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM

Client ID: Lab ID: Date/Time Collected: Media:	Lab Blank 1910584-04B NA - Not Applicable NA - Not Applicable		Date/Time Ar Dilution Fact Instrument/F	nalyzed: or: ilename:	10/26/19 11:25 AM 1.00 msd20.i / 20102606simc	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
Trichloroethene		79-01-6	0.010	0.032	0.11	Not Detected
Vinyl Chloride		75-01-4	0.0065	0.015	0.026	Not Detected
D: Analyte not within	the DoD scope of accred	litation.				
Surrogates		CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4	17060-07-0			70-130	106
4-Bromofluorobenzer	ne	460-00-4			70-130	100
Toluene-d8		2037-26-5			70-130	100

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID:	CCV		
Lab ID:	1910584-05A	Date/Time Analyzed:	10/26/19 08:49 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20102602

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	92
1,4-Dioxane	123-91-1	110
cis-1,2-Dichloroethene	156-59-2	100
Tetrachloroethene	127-18-4	100
trans-1,2-Dichloroethene	156-60-5	102
Trichloroethene	79-01-6	96
Vinyl Chloride	75-01-4	99

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	97
4-Bromofluorobenzene	460-00-4	70-130	104
Toluene-d8	2037-26-5	70-130	104

MODIFIED EPA METHOD TO-15 GC/MS SIM

Ford LTP

Vinyl Chloride

Client ID: Lab ID: Date/Time Collected: Media:	CCV 1910584-05B NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	10/26/19 08:49 AM 1.00 msd20.i / 20102602sim	
Compound	CAS#			%Recovery
Trichloroethene	79-01-6			95

D: Analyte not within the DoD scope of accreditation.

75-01-4

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	93
4-Bromofluorobenzene	460-00-4	70-130	105
Toluene-d8	2037-26-5	70-130	103

Air Toxics

92

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID:	LCS		
Lab ID:	1910584-06A	Date/Time Analyzed:	10/26/19 09:28 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20102603

		*/B
Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	92
1,4-Dioxane	123-91-1	116
cis-1,2-Dichloroethene	156-59-2	95
Tetrachloroethene	127-18-4	102
trans-1,2-Dichloroethene	156-60-5	111
Trichloroethene	79-01-6	97
Vinyl Chloride	75-01-4	102

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	95
4-Bromofluorobenzene	460-00-4	70-130	107
Toluene-d8	2037-26-5	70-130	102

* % Recovery is calculated using unrounded analytical results.

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Ford LTP

Client ID:	LCSD		
Lab ID:	1910584-06AA	Date/Time Analyzed:	10/26/19 10:07 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20102604

Compound	CAS#	%Recovery
1,1-Dichloroethene	75-35-4	98
1,4-Dioxane	123-91-1	113
cis-1,2-Dichloroethene	156-59-2	97
Tetrachloroethene	127-18-4	98
trans-1,2-Dichloroethene	156-60-5	113
Trichloroethene	79-01-6	94
Vinyl Chloride	75-01-4	105

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	100
4-Bromofluorobenzene	460-00-4	70-130	106
Toluene-d8	2037-26-5	70-130	101

* % Recovery is calculated using unrounded analytical results.

Air Toxics

97

MODIFIED EPA METHOD TO-15 GC/MS SIM

Ford LTP

Vinyl Chloride

Client ID: Lab ID: Date/Time Collected: Media:	LCS 1910584-06B NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	10/26/19 09:28 AM 1.00 msd20.i / 20102603sim	
Compound	CAS#			%Recovery
Trichloroethene	79-01-6			96

D: Analyte not within the DoD scope of accreditation.

79-01-6

75-01-4

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	94
4-Bromofluorobenzene	460-00-4	70-130	106
Toluene-d8	2037-26-5	70-130	102

* % Recovery is calculated using unrounded analytical results.

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM

Lab ID:	1910584-06BB	Date/Time Analyzed:	10/26/19 10:07 AM	
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd20.i / 20102604sim	
				0/ D

Compound	CAS#	2010 COVERY
Trichloroethene	79-01-6	96
Vinyl Chloride	75-01-4	98
D: Analyte not within the DoD so	cope of accreditation.	

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	94
4-Bromofluorobenzene	460-00-4	70-130	104
Toluene-d8	2037-26-5	70-130	102

Analysis Request /Canister Chain of Custody

For Laboratory Use Only

180 Bli Phone	ue Ravine (800) 985-	Rd. Suite B, Folsom, CA 9 5955: Fax (916) 351-8279	PID 5630	; 	Workord	er #:		191	10584		Click lin Caniste	iks belov <u>r Samplin</u>	w to view lg Guide	:			n 22 san 2 san an 2 san an
Client:	(000) 000	Ford	PID [.]	NA	Special	Instructions	Notes: Repo	rt ONLY: 1,1-D	CE, cis-1,2-	Т	rnarou	ad Time (Rush su	rcharges	may ar	nhul	
Project	Name:	Ford LTP		1463								5 Dav	Turnarou	Ind Time	may ap	14141	
Project	Manager:	Kris Hinskey	 P.O.# 30	016344.00	DCE, tra	ins-1,2-DCE,	1,4-Dioxane,	PCE, TCE and	VC. Submit	Cani	ster Vac	uum/Pre	SSUIP	Reque	ested A	nalve	
Sample	- भ:	Xenia Chan			results th	nrough Cader	a at jim.toma	lia@cadena.co	m. Cadena			Labl	se Only	Guo			
Site Na	me:	12001 STARK	_		#E20363	31. Level IV R	eporting							ote ote	Ž		
Lab ID	S	ample Identification	Car	ŧ# Fi	ow Controller	Start S Infor	ampling nation	Stop Sa Inform	mpling ation	al (in Hg	i (in Hg	eipt	ll (psig) : N ₂ / H6	FO-15 (S Special uctions/h	Not Ana		
						Date	Time	Date	Time	hiti	Fins	Rec	Gas	Insti	8	1	
01A	IAC	12001STARK-02_101819	6L2()56	22469	10/17/2019	10:09	10/18/2019	9:58	-29.5	-6	19420		×			
OA	AA	12001STARK-01_101819	6L20)65	21012	10/17/2019	10:05	10/18/2019	9:02	-29.5	-6	· · · ·	1	X			*****
OBA	IAF	-12001STARK-03_101819	6L0()91	22274	10/17/2019	10:08	10/18/2019	10:59	-29.5	-8	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	X	\square		
					~~						-	a second	an a				
delet -		**										1	1			-	
			•••									I	Contractor.	[\square		
													Constant -				·
ant a cor			-										Contractor en				
					**				~~				and a start of			1	
22207			-		<u></u>						~~	1000				Ť	
122													2				
							_	***					and the species		\square		
		.									5						
a an		<u> </u>									**		and the second				
Relinqui	shed by: (S shed by: (S	gnature/Affiliation) gnature/Affiliation)		Da IC Da	nte 122/19 nte	Time 143 Time	5	Received by	(Signature/A)	filiation)	3 - CJ	₩G	Date	469	Time	ĽĽ	7
Relinqui	shed by: (S	gnature/Affiliation)		Da	te	Time		Received by:	(Signature/A	ffiliation)		4	Date		Time	. <u></u>	
					~		Only										
Shipper	Shipper Name: JCU TX Custody Seals Intact? (Yes No None																
San ordin	nple Transp ances of an	portation Notice: Relinquishing y kind. Relinquishing signature a	signature on the signature on the signature of the signat	nis document greement to h hand	indicates that indicates that indicates the indicates indicates and indicates indicates and indicates indicates indicates and indicates indicates and indicates indicates and indicates indicates and indicates and indicates indicates and indi	samples are s defend, and i g of samples	hipped in con idemnify Eur D.O.T Hotlin	mpliance with al ofins Air Toxics e (800) 467-492	l applicable I against any o 2	ocal, Stat claim, der	e, Feder nand, or	al, and in action, of	ternationa f any kind	il laws, reg , related to	julation the co	is, and illectio	ז יח,

October 30, 2019

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30016344.0002B Client project scope reference: Sample COC only was used to define project analytical requirements. Laboratory: Eurofins Air Toxics - Folsom Laboratory submittal: 1910584 Sample date: 2019-10-18 Report received by CADENA: 2019-10-30 Initial DataVerification completed: 2019-10-30

3 Air samples were analyzed for TO-15 parameters.

No data qualifications or sample integrity issues were observed.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description							
<	Less than the reported concentration.							
>	Greater than the reported concentration.							
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) th blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.							
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.							
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.							
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.							
J-	The result is an estimated quantity, but the result may be biased low.							
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED							
JH	The sample result is considered estimated and is potentially biased high.							
JL	The sample result is considered estimated and is potentially biased low.							
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED							
NJ	Tentatively identified compound with approximated concentration.							
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)							
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.							
U	Indicates that the analyte / compound was analyzed for, but not detected.							
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.							
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.							

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) TO-15 Analysis

SDG #1910584 CADENA Verification Report: 2019-10-30

Analyses Performed By: Eurofins Air Toxics Folsom, California

Report #34704R Review Level: Tier III Project: 30016344.00007

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1910584 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample		Analysis		
SDG	Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	TO-15 (Full Scan)	TO-15 (SIM)	MISC
1910584	IAG12001STARK- 02_101819	1910584-01A	Air	10/18/2019		х		
	AA-12001STARK- 01_101819	1910584-02A	Air	10/18/2019		х		
	IAF-12001STARK- 03_101819	1910584-03B	Air	10/18/2019		х	х	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		X	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 (Full Scan) and TO-15-SIM. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Method Matrix Holding Time		Preservation	Return Canister Pressure
USEPA TO-15 and USEPA TO-15-SIM	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -2" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 140% or less than 60% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

DATA REVIEW

5. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

6. Field Duplicate Sample Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 35% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are not greater than five times the RL, a control limit of one times the RL is applied to the difference between the duplicate sample results.

A field duplicate was not performed on a sample location within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15 (Full Scan) and TO-15 SIM	Rep	orted	Perfo Acce	rmance ptable	Not	
	No	Yes	No	Yes	Kequirea	
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)				
Tier II Validation						
Canister return pressure (<-2"Hg)		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Field Duplicate Sample RPD					Х	
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		X		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

Jough c. Honsen

DATE: November 10, 2019

PEER REVIEW: Andrew Korycinski

DATE: November 11, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: IAG12001STARK-02_101819 Lab ID: 1910584-01A Date/Time Collected: 10/18/19 09:58 AM Media: 6 Liter Summa Canister (100% Ce		IAG12001STARK-02_101819 Date/Time Analyzed: 1910584-01A Date/Time Analyzed: ne Collected: 10/18/19 09:58 AM Dilution Factor: 6 Liter Summa Canister (100% Cert Ambier Instrument/Filename:			
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	75-35-4	0.16	0.59	0.65	Not Detected
1,4-Dioxane	123-91-1	0.48	0.54	0.59	Not Detected
cis-1,2-Dichloroether	156-59-2	0.35	0.59	0.65	Not Detected
Tetrachloroethene	127-18-4	0.70	1.0	1.1	0.92 J
trans-1,2-Dichloroeth	ene 156-60-5	0.37	0.59	0.65	Not Detected
Trichloroethene	79-01-6	0.44	0.80	0.89	Not Detected
Vinyl Chloride	75-01-4	0.14	0.38	0.42	Not Detected
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	116
4-Bromofluorobenzer	ne 460-00-4			70-130	102
Toluene-d8	2037-26-5			70-130	99

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	AA-12001STARK-01_101819 1910584-02A 10/18/19 09:02 AM 6 Liter Summa Canister (100% Cert Ambien	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïlename:	10/26/19 06:34 PM 1.61 msd20.i / 20102616			
		MDL	LOD	Rpt. Limit	Amount		
Compound	CAS#	(ug/m3)	(ug/m3		(ug/ilis)		
1,1-Dichloroethene	75-35-4	0.15	0.57	0.64	Not Detected		
1,4-Dioxane	123-91-1	0.47	0.52	0.58	Not Detected		
cis-1,2-Dichloroethen	ne 156-59-2	0.34	0.57	0.64	Not Detected		
Tetrachloroethene	127-18-4	0.68	0.98	1.1	Not Detected		
trans-1,2-Dichloroeth	ene 156-60-5	0.36	0.57	0.64	Not Detected		
Trichloroethene	79-01-6	0.42	0.78	0.86	Not Detected		
Vinyl Chloride	75-01-4	0.13	0.37	0.41	Not Detected		
D: Analyte not within the DoD scope of accreditation.							
Surrogates	CAS#			Limits	%Recovery		
1,2-Dichloroethane-d	4 17060-07-0			70-130	112		
4-Bromofluorobenzer	ne 460-00-4			70-130	96		
Toluene-d8	2037-26-5			70-130	97		

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_101819 1910584-03A 10/18/19 10:59 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time Analyzed: Dilution Factor: Instrument/Filename:		10/26/19 07:13 PM 18.4 msd20.i / 20102617				
Compound	C	MDL (ug/m3)	LOD (ug/m)	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)			
1,1-Dichloroethene	75-35-4	1.8	6.6	7.3	Not Detected			
1,4-Dioxane	123-91-1	5.4	6.0	6.6	Not Detected			
cis-1,2-Dichloroethen	e 156-59-2	3.9	6.6	7.3	Not Detected			
Tetrachloroethene	127-18-4	7.8	11	12	Not Detected			
trans-1,2-Dichloroeth	ene 156-60-5	4.1	6.6	7.3	Not Detected			
D: Analyte not within the DoD scope of accreditation.								
Surrogates	CAS#			Limits	%Recovery			
1,2-Dichloroethane-d	4 17060-07-0			70-130	104			
4-Bromofluorobenzer	ie 460-00-4			70-130	97			
Toluene-d8	2037-26-5			70-130	96			
🔅 eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM

Ford LTP

Client ID: Lab ID: Date/Time Collected: Media:	IAF-12001STARK-03_101819 1910584-03B 10/18/19 10:59 AM 6 Liter Summa Canister (100% Cert Ambier	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	10/26/19 07:13 PM 18.4 msd20.i / 20102617sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
Trichloroethene	79-01-6	0.19	0.59	2.0	Not Detected
Vinyl Chloride	75-01-4	0.12	0.28	0.47	Not Detected
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d4	4 17060-07-0			70-130	98
4-Bromofluorobenzen	e 460-00-4			70-130	96
Toluene-d8	2037-26-5			70-130	98

Analysis Request /Canister Chain of Custody

For Laboratory Use Only

180 Bli Phone	ue Ravine (800) 985-	Rd. Suite B, Folsom, CA 9 5955: Fax (916) 351-8279	PID 5630	; 	Workord	er #:		191	10584		Click lin Caniste	iks belov <u>r Samplin</u>	w to view lg Guide	:			n 22 san 2 san an 2 san an
Client:	(000) 000	Ford	PID [.]	NA	Special	Instructions	Notes: Repo	rt ONLY: 1,1-D	CE, cis-1,2-	Т	rnarou	ad Time (Rush su	rcharges	may ar	nhul	
Project	Name:	Ford LTP		1463								5 Dav	Turnarou	Ind Time	may ap	14141	
Project	Manager:	Kris Hinskey	 P.O.#30	016344.00	DCE, tra	ins-1,2-DCE,	1,4-Dioxane,	PCE, TCE and	VC. Submit	Cani	ster Vac	uum/Pre	SSUIP	Reque	ested A	nalve	
Sample	- भ:	Xenia Chan			results th	nrough Cader	a at jim.toma	lia@cadena.co	m. Cadena			Labl	se Only	Guo			
Site Na	me:	12001 STARK	_		#E20363	31. Level IV R	eporting							ote ote	Ž		
Lab ID	S	ample Identification	Car	ŧ# Fi	ow Controller	Start S Infor	ampling nation	Stop Sa Inform	mpling ation	al (in Hg	i (in Hg	eipt	ll (psig) : N ₂ / H6	FO-15 (S Special uctions/h	Not Ana		
						Date	Time	Date	Time	hiti	Fins	Rec	Gas	Insti	8	1	
01A	IAC	12001STARK-02_101819	6L2()56	22469	10/17/2019	10:09	10/18/2019	9:58	-29.5	-6	19420		×			
OA	AA	12001STARK-01_101819	6L20)65	21012	10/17/2019	10:05	10/18/2019	9:02	-29.5	-6	· · · ·	1	X			*****
OBA	IAF	-12001STARK-03_101819	6L0()91	22274	10/17/2019	10:08	10/18/2019	10:59	-29.5	-8	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	X	\square		
and the second sec					~~						-	a second	an a				
delet -		**										1	1			-	
			•••									I	Contractor.	[
													Constant .				·
ant a cor			-										Contractor en				
					**				~~				and a start of			1	
22207			-		<u></u>						~~	1000				Ť	
122													2				
							_	***					and the species		\square		
		.									5						
a an		<u> </u>									**		and the second				
Relinqui	shed by: (S shed by: (S	gnature/Affiliation) gnature/Affiliation)		Da IC Da	nte 122/19 nte	Time 143 Time	5	Received by	(Signature/A)	filiation)	3 - CJ	₩G	Date	469	Time	ĽĽ	7
Relinqui	shed by: (S	gnature/Affiliation)		Da	te	Time		Received by:	(Signature/A	ffiliation)		4	Date		Time	. <u></u>	
					~		Only										
Shipper	Name:	HATX	Custody Se	als intact?	(Ye	s No	Non	e									
San ordin	nple Transp ances of an	portation Notice: Relinquishing y kind. Relinquishing signature a	signature on the signature on the signature of the signat	nis document greement to h hand	indicates that indicates that indicates the indicates indicates and indicates indicates and indicates indicates indicates and indicate	samples are s defend, and i g of samples	hipped in con idemnify Eur D.O.T Hotlin	mpliance with al ofins Air Toxics e (800) 467-492	l applicable I against any o 2	ocal, Stat claim, der	e, Feder nand, or	al, and in action, of	ternationa f any kind	il laws, reg , related to	julation the co	is, and illectio	ז יח,

Project No.: MI001454.0003.00002 / 30016344

Site Location: 12001 STARK

Personnel Onsite: Xenia Chan, Patrick Labadie

Date	Time	Description of Activities
10/16/2019		Purpose: R3V1, building survey, chemical inventory
		Weather: 48.02 degrees F and Cloudy
		Equipment: PID 6153
	8:28	Arcadis on-site
	8:31	Conducted chemical inventory and survey; request doors and windows shut during sampling
	8:37	Arcadis off-site
Visit 1 Checkli	st	
Keeping windo	ows & door	s shut during IA/AA sampling was discussed? yes Field Staff Signature:
Have backgro	und source	s of VOCs been removed/isolated? yes XauChm
Location of re	moved/isol	ated background VOCs: Tote outside of garage

Daily Log - Ford Off Site VI Investigation - VISIT 2

Project No.: MI001454.0003.00002 / 30016344

Site Location: 12001 STARK

Personnel Onsite: Xenia Chan, Patrick Labadie, and Hayden Ladd

Date	Time	Description of Activities			
10/17/2019		Purpose: R3V2, canister deployment			
		Weather: 53.96 degrees F and Mostly Cloudy			
		Equipment: PID 6153			
	9:58	Arcadis onsite			
	10:08	Deployed canisters			
	10:19	Arcadis off-site			
Visit 2 Checkl	ist				
Windows and	doors are s	shut (for IA samples only)?yes			
Have backgro	und source	s of VOCs been removed/isolated? yes Field Staff Signature:			
Number of SS	Number of SSMP samples collected: 0 YauChun				

Number of indoor/ambient air samples collected: 0

Occupancy hours (for commercial properties only): --

Daily Log - Ford Off Site VI Investigation - VISIT 3

Project No.: MI001454.0003.00002 / 30016344

Site Location: 12001 STARK

Personnel Onsite: Julia McClafferty, Xenia Chan

Date	Time	Description of Activities			
10/18/2019		Purpose: R3V3, canister deployment and ssmp sampling			
		Weather: 37.04 degrees F and Clear			
		Equipment: GEM 3782			
	8:53	Arrive onsite, conduct canister collection and ssmp sampling			
	10:05	Arcadis offsite			
Visit 3 Checkl	ist				
Windows and	doors are s	shut (for IA samples only)?yes			
Have backgro	und source	s of VOCs been removed/isolated? yes Field Staff Signature:			
Number of SS	MP sample	es collected: 1 Xaulton			
Number of inc	loor/ambier	nt air samples collected: 3			
Occupancy ho	Occupancy hours (for commercial properties only):				

Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013	
Indoor Air Sampling Procedure Via USEPA Method TO-15	
INDOOR AIR BUILDING SURVEY AND SAMPLING FORM	
Date: 10-29-18 Survey Performed by: Hayden Lud	
1. OCCUPANT: FR. Madison Olender	
Rent: Own: X 10-16-19, X. Chan	
Resident Name: General Auguri R321" P. Labadie - owner state	\$
Address: 1200 Stark Rd. SMCR Last Last	ye) F
Telephone: Home; 73/968 7934 Work:	1
How long have you lived at this location? Since August 7011	
List current occupants/occupation below (attach additional pages if necessary):	
Age (If under 18) Sex (M/F) Occupation	
Norre_	
V	
2. OWNER OR LANDLORD: (If same as occupant, check here \underline{V} and go to Item No. 3).	
Last Name: First Name:	
Address:	
City and State:	
County:	
Home Phone: Office Phone:	

100

1

ï

Ť

Indoor Air Sampling Procedure Via USEPA Method TO-15

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

3. SENSITIVE POPULATION:

Daycare/Nursing Home/Hospital/School/Other (specify):	None

4. BUILDING CHARACTERISTICS:

	Residential/Multi-fa	mily Residential/Off	ice/Strip Mall/Commercial/I	ndustrial/School
	Describe Building:	Residentia	Ye	ear Constructed:
	Number of floors at Number of floors be Depth of structure I	l or above grade: elow grade: below grade:	full basement/crawl space ft. Basement size:	eralab on grade)
lf t	he property is resid	ential, what type?	(Circle all appropriate res	sponses.)
	Ranch Split-Level Mobile Home Modular If multiple units, how	2-Family Colonial Duplex Log Home w many?	3-Family Cape Cod Apartment House Other:	Raised Ranch Contemporary Townhouses/Condos
lf ti	ne property is comr	nercial:		
	Business type(s)	IVA		<u></u>
	Does it include resi	dences (i.e., multi-us	e)? Yes No	If yes, how many?
5,	OCCUPANCY:			
	Is basement/lowest	level occupied? (Ci	rcle one)	
	Full-time	Occasionally	Seldom	Almost Never

INDOOR AIR BUILDING SURVEY AND SAMPLING FORM (continued)

Level	General Use (e.g., fan),) ∧	nily room, bedro	oom, laundry, w	orkshop, storage)	
Basement	NA				
1 st Floor	(genera)	we			
2 nd Floor				······	
3 rd Floor			<u>.</u>		
4 th Floor	25	()			
		(Use ad	ionional page(s) a	as necessary)	
6. CONSTRUCTIO	N CHARACTI	ERISTICS: (Cin	cie all that apply	r.)	
a. Above Grad	e Construction	n: (Describe typ	e. wood frame, c	oncrete, stone, brick).	
b. Basement T	ype: Full (Crawlspace) Slab	Other:	_
c. Basement F	loor: Concre	ete Dirt	Stone	Other: Jand	
d. Finished Ba	sement Floor:	Uncovered	Cov	vered NA	
If cove	red, what with	? <u>NA</u>			-
e. Foundation	Walls: Poured	Block	Stone	Other:	
f. Foundation V	Valls Unseal	ed Seale	ed Sealed w	vith:	
g. The Baseme	ent is:	Wet	Damp	Dry ///+	
h. The Baseme	ent is:	Finished	Unfinished	Partially Finished	N/I-
i. Sump Presen	1t (Y 🕼	If yes, how ma	any? <u>///</u>		
Where Disc	harged?	NA			
Water in Su	ump? Yes	No	Not Applicab	le	

DE	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013
Indoor Air Sampling Procedure Via USEPA	Method TO-15
INDOOR AIR BUILDING SURVE	Y AND SAMPLING FORM (continued)
Identify all potential soil vapor entry points and estimate	ed size (e.g., cracks, utility parts, drains).
Drains in garage r	area. Some Cracks
Are the basement walls or floor sealed with waterproof p	paint or epoxy coatings? Yes No
Type of ground cover outside of building: Grass	Concrete Asphalt Other
Is an existing subsurface depressurization (radon) syste	m in place? Yes No
If yes, is it active, or passive?	
Is a sub-slab vapor/moisture barrier in place?	Yes No
7. HEATING, VENTING, and AIR CONDITIONING	
Type of heating system(s) used in this building: (Circle a	all that apply: Note the primary).
Hot Air Circulation , Heat Pump Space Heaters Steam Radiation Electric Baseboard Wood Stove Other:	Hot Water Baseboard Radiant Floor Outdoor Wood Boiler
The primary type of fuel used is:	
Natural Gas Fuel Oil Kerose Electric Propane Solar Wood Coal	ene
Domestic hot water tank fueled by: Nation 1 605	
Location of Boiler/Furnace: Basement Outd	loors (Main Floor) Other

きいま

i i

DEQ	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013
Indoor Air Sampling Procedure Via USEPA	Method TO-15
INDOOR AIR BUILDING SURVE	Y AND SAMPLING FORM (continued)
Air Conditioning: Central Air Window Units	Open Windows None
Are air distribution ducts present?	Yes No
Is there a whole house fan?	Yes No
Describe the air intake system (outside air supply, cold a Indicate the locations on the floor plan diagram.	ir return, ductwork, etc.) and its condition where visible.
8. FACTORS THAT MAY INFLUENCE INDOOR AIR Q	UALITY
a) Is there an attached garage?	Yes No
If yes, does it have a separate heating unit?	Yes No
 Are any petroleum-powered machines or vehicle in an attached garage (e.g., lawn mower, ATV, etc.) 	es stored car) Yes No
c) Has the building ever had a fire?	Yes No
d) Is there a fuel burning or unvented gas space he	eater? Yes No
e) is there a workshop or bobby/craft area?	
cy is there a nononop of noveyforate area.	Yes No
If yes, where and what type?	Yes No
f) Is there smoking in the building?	Yes No Yes No

e.

.

	DEGI	Remediation and Redevelopment Division Standard Operating Procedure Date: February 1, 2013
dod	or Air Sampling Procedure Via USEPA I	Nethod TO-15
	INDOOR AIR BUILDING SURVEY	AND SAMPLING FORM (continued)
g)	Have cleaning products been used recently?	Yes No
	If yes, when and what type? Glaten Dupt	sfe
h)	Have cosmetic products been used recently?	Yes No
	If yes, when and what type?	
i)	Has there been painting or staining in the last six	months? Yes No
	If yes, when and where?	
j)	Is there new carpet, drapes, or other textiles?	Yes No
	If yes, when and where?	
k)	Have air fresheners been used recently?	(Yes) No
	If yes, when and what type? .) pray (41)	
I)	Is there a kitchen exhaust fan?	Yes No
	If yes, where is it vented?	
m)	Is there a clothes dryer?	Yes No
	If yes, is it vented outside?	Yes No
n)	Has there been a pesticide application?	Yes No
	If yes, when and what type? Kug Spay	used lost summer
0)	Are there odors in the building?	Yes No
	If yes, please describe:	

ł

ŧ.

PRODUCT INVENTORY FORM:

31

Make and Model of field instrument used: <u>ppb</u> <u>LAE</u> <u>X@D</u> List specific products found in the residence of area that have the potential to affect indoor air quality (e.g., gasoline or kerosene storage cans, glues, paints, cleaning solvents/products, polishes/waxes, new furniture/ carpet, nail polish/hairspray/cologne).

Potential Source	Location	Size and Condition	Chemical Ingre	dients	Field Instrument Reading (units)	Photo Y/N	
Gasoline Storage Cans and Equipment	Gurane						
Kerosene Storage Cans							
Paints/Thinners/Strippers	(ECAG A						
Cleaning Solvents	Log HL						
Hobby Supplies – Glue, Paint, Etc.					1		
Oven Cleaner	~			···			
Carpet/Uphoistery Cleaners	Kitchen						
lousehold Cleaners (non-	Kitchen		<u> </u>				
Noth Balls	Damao			na ^{tt} o	° « "		2. 30
olishes/Waxes	- He						
nsecticides	Guma P			a dê			
umiture/Floor Polish					- 14 - L		
lairspray				4.5	x = X	-	/K.F
ologne/Perfume	Rathman						
ir Fresheners	Batlann						
terior Fuel Tank							
Vood Stove/Fireplace	Kin man			:			
ew Furniture/Upholstery	pring war (
ew Carpeting/Flooring			=				
thers (fill in below)							
Volociucle							
now port							
lead Variar							
1010 - Chemicaly	of concern	Moved	nte tote and	place	ed a		
outside 3	west	() a 1	0.0	Part	G	wiel	PID.
* Spray for	am	hreat	SN1+		(Long		The PII
glass cl.	eaner	hite D. J.	+ STUF		CHOM		
- brake	cleaner	Pert	o Marks				

Product Inventory Form

I.e. gasoline cans/equipment, kerosene, paints/thinners/strippers, cleaning solvents, hobby supplies (glues), oven cleaner, carpet/upholstery cleaners, household cleaners, moth balls, polishes/waxes, insecticides, furniture/floor polish, hairspray, cologne/perfume, air fresheners, interior fuel tank, wood stove/fireplace, new furniture/upholstery, new carpet/flooring

١

1

Location	Product Description	Chemical Ingredients	Quantity	PID Reading	Photo	Removed]
Caller &	Moth balls	10(3		0			1
Gunte	Or the Hair defense	insert eides	2 carlas	Ö	V	1	1)
Garage	Rust ponetrait	Vors	Multisle	0	Y	YL.	1 /
Find Llos	6/de-Solidair	VOCS	Multide	0	F	AT-Y	1/
Barrand HL	fresherer					1.00	1/
parane	Brakleen	VOG		0	Y	Y	/
P 1- Nocr	Revolve - Pet Expert	Varions		0		I Y	
Fish Floor	Scotch-survia Anto	Various		0		Y	1 crittin
	forming charles						/ sult w
Gerry	Rustoleum - High	i var		0	N		Same
0	Filotinena Ensure					/	/tote
Gologe	Gunk-Engin deor	aver Vas	/		N.		
Gereige	Breit ling Calant	a Vacs		0	//	1	Uppo
,	Cleaner Wax	10/		8			
Gurage	WD-40	Vacs		0	<u>W.</u>	1,,	R3V
Daringe	Bullitye	VOCS		0	_/V	ľ	l l l l l l l l l l l l l l l l l l l
3	Shellac'	1100-		-	1/		Chemical
120vane	Hox Jeal	VOIS		<u>_</u>	- <u>7</u>	<u> </u>	all no
Fist floor	Kiv, - Tamp VIY	1003		OT 60	_/V		allin
C. Ortage	10alolm	ALL		3,500	r	<u> </u>	the same
Jonnale	ISCROVDIVIA M			O	<u> </u>	7	1 10
	Caulk I	ar per creater					tote
	C WARE CAO	0V	- 47				,
	ALL HALL						
	Round un						
	Brave Huil	······					1
	Phillip 100	Ing filled		- J	*		
							i i
		· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·					
							1
							2
					10		4
							2. E
			_				
			_				

ł

--

--

--

Page ___1__

Office Name & Address	s (Reporting Informa	tion):							Project Name	:	Ford LTP Off	-site Sampling							
Arcadis of Michigan, LL 28550 Cabot Drive, Sui	LC iite 500, Novi, MI 483	377							Project Numb	er:	MI001454.00	03 / 30016344							
Field Manager: Adam Richmond									Site Address:										
Phone Number:			Special Instru	uctions:					12001 STAR	<									
248.994.2240									12001 01741	·									
Email Address for Resu	ult Reporting:		Report ONL)	(: 1,1-DCE, cis	-1,2- DCE, tran	ns-1,2-DCE, 1,4-Dic	oxane, PCE, TC	E and VC. Submit	Sampler Nam	ie:									
Kristoffer.Hinskey@arc	cadis.com		results throug	gh Cadena at ji	im.tomalia@ca	dena.com. Cadena	#E203631. Lev	el IV Reporting.	Xenia Chan										
Summa Canister Size ((1L, 2.7 L, 6L)			Lab:															
6 Liter				Eurofins															
																	HVAC Sy	/stem Inform	nation
Sampl	le ID	Sampl	e Location De	scription	Indoor/ Outdoor	PID in Sampling Area (ppb)	Canister Number	Flow Controller Number	Sample Collection Start Date	Sample Collection Start Time	Beginning Canister Pressure (in. Hg)	Sample Collection End Date	Sample Collection End Time	Ending Canister Pressure (in. Hg)	HVAC Far On Start?	HVAC Fan On End?	Heat On Start?	Heat On End?	Temperate Setting (° Start
IAG12001STARK-02_1	101819		Garage		Indoor	40	6L2056	22469	10/17/2019	10:09	-29.5	10/18/2019	9:58	-6	Yes	yes	No	No	65
AA-12001STARK-01_1	101819		NW of house)	Outdoor	3	6L2065	21012	10/17/2019	10:05	-29.5	10/18/2019	9:02	-6					
IAF-12001STARK-03_1	101819	L	_iving room tal	ble	Indoor	454	6L0091	22274	10/17/2019	10:08	-29.5	10/18/2019	10:59	-8	Yes	yes	No	No	65
																		<u> </u>	
Meteorological Data										General Note	es or Observa	tions							
Date	Time	Tem	p. (°F)	Relative Humidity	Barometric Pressure	Air Speed	Source	e of Weather Inforr	nation										
		Indoor	Outdoor	(%)	(in. Hg)	(inpir)				4									
10/17/2019	9:59	65	45	70	29.89	NW 15		weather.com app		4									
10/18/2019	9:15	65	42	80	30.11	NW 4		weather.com app											
								weather.com app											

weather.com app

	9	AF	RC/	١D	IS
--	---	----	-----	----	----

--

--

--

--

--

--

Soil Vapor Collection Log Sheet

Page <u>1</u> of <u>1</u>

Office Name & Address (Reporting Information): Arcadis of Michigan, LLC	e Name & Address (Reporting Information): dis of Michigan, LLC 0 Cabot Drive, Suite 500, Novi, MI 48377						Project Name:	Ford LTP Off-site Sa	ampling									
28550 Cabot Drive, Suite 500, Novi, MI 48377							Project Number:	MI001454.0003 / 30	016344									
Field Manager: Adam Richmond							Site Address:											
Phone Number:		Special Instructions:					12001 STARK											
Email Address for Result Reporting:		Report ONLY: 1,1-DCE, cis-1,2- DC	CE, trans-1,2-DCE, 1,4-	Dioxane, PCE, TCE ar	nd VC. Submit results the	hrough Cadena at	Sampler Name:											
Kristoffer.Hinskey@arcadis.com		jim.tomalia@cadena.com. Cadena	#E203631. Level IV Re	porting.			Xenia Chan			I								
Helium Detector Model Used: Dielectric MGD-2002		Helium Leak Test Method: Bucket Shroud					Summa Canister Siz	e (1L, 2.7 L, 6L):		Lab: Eurofins								
					Helium Tracer Te	st - Performed During S	Sample Point Purge											
Sample ID	:	Sample Location Description	Date	Pre-Sampling Shut-li / Leak-Down Test Pass/Fail?	In Shroud Helium Concentration During Purge (% Helium)	Helium Reading in Purged Vapor (% Helium)	Helium Test Pass/Fail (Purge contains <5% of shroud to pass)?	Purge Volume (mL)	Purge Rate (mL/min) Canister Number	Flow Controller Number	Sample Collection Start Time	Starting Canister Pressure (in. Hg)	Sample Collection End Time	Ending Canister Pressure (in. Hg)	Post-Sampling CO ₂ Reading from GEM (%)	Post-Sampling O ₂ Reading from GEM (%)	Micromanometer Reading (in. WC)
SSMP-12001STARK-01_101819	Garage		10/18/2019	Pass	49.8	0	Pass	100	100	1L2593	24154	9:14	-29.5	9:26	-6	1.1	19.3	-0.00018
DUP-12001STARK-01_101819	Garage		10/18/2019	Pass	49.8	0	Pass	100	100	1L2976	23352	9:14	-29	9:29	-6	1.1	19.3	-0.00018
-											-							
											-							
							-				-							
							-											
Meteorological Data				•		•								•		•		•
Date		Time	Ten	np. (ºF)	Relative Humidity	Barometric Pressure	Source of Wea	ather Information	Purge Volume Calcu	lations:								
			Indoor	Outdoor	(%)	(in. Hg)			The purge volume fo	or each sample has bee	n pre-calculated using	the information below		005				
10/18/2019		9:05	65	42	80	30.10	weathe	r.com app	For sub-slab soil vap Three volumes of the To have sufficient vo	oor samples the sample e sample train is 60 mill plume to conduct helium	e train tubing length is liliters using the equat a leak testing 100 milli	~54 inches and the inte ion for volume of a cylir liters should be purged	erior tubing radius is 0 nder (volume = pi * rad from each sample po	.085". dius ² * height) where Vo int.	blume = 60 ml, radius	= 0.85" and height = 54	r.	
							weathe	r.com app	For exterior soil vapo Each additional foot To have sufficient vo	or sampling 60 milliliters of sub-grade tubing acc olume to conduct helium	s should be used for th count for approximatel n leak testing at least 1	ne above ground sampl ly 13 ml. 100 milliliters should be	ie train. purged from each sai	mple point.				
							weathe	r.com app	General Notes or Ob	oservations								
							weathe	r.com app										

weather.com app

weather.com app

ATTACHMENT 3

Off-Site Groundwater Analytical Data

Locatio Screen Interval (ft. bo	on: s):	Residential Drinking					MW 15	V-72 -20						MW- 3-	-72S 13						MW 13.5	-73D -18.5				
Da	te: Unit	Water Criteria	5/22/2017	7/26/2017	11/7/2017	2/6/2018	5/9/2018	8/10/2018	10/22/2018	3/5/2019	5/17/2019	9/23/2019	12/17/2018	3/5/2019	5/8/2019	9/23/2019	5/22/2017	7/26/2017	11/7/2017	2/6/2018	5/9/2018	8/10/2018	10/22/2018	3/4/2019	5/8/2019	9/24/2019
Semi-volatile Organic Compounds (SV	DCs)																									
1,4-Dioxane	µg/l	7.2	1.1 J	0.53 J	0.97 J	0.78 J	0.32 J	1.1 J	1.4 J	0.91 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	3.2	3.1	2.8	1.5 J	3.0	1.9 J	3.8	1.6 J	2.3	3.8
Volatile Organic Compounds (VOCs)																										
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	0.45 J	0.50 J	0.43 J	0.35 J	0.56 J	0.19 J	0.30 J	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.19 J	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	3.9	2.9	1.6	1.3	1.5 J	1.2	1.1	1.9	1.7	1.5	< 1.0	0.24 J	< 1.0	< 1.0	1.1	0.85 J	1.3	0.79 J	0.80 J	0.75 J	< 1.0	0.71 J	< 1.0	0.48 J
Metals	_																									
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																										
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)	_																									
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																										
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ARCADIS Design & Consultancy for natural and bulk assets

Location: Screen Interval (ft. bgs):		Residential Drinking				MW-73S 7-12					MW-7 2.5-	73SR 12.5						MW 14	/-74 -19				
Date	Unit	Criteria	5/22/2017	7/26/2017	11/7/2017	2/6/2018	5/9/2018	8/10/2018	10/22/2018	12/17/2018	3/4/2019	5/8/2019	9/24/2019	5/23/2017	7/26/2017	11/7/2017	2/6/2018	5/9/2018	8/9/2018	10/22/2018	3/8/2019	5/17/2019	9/18/2019
Semi-volatile Organic Compounds (SVOC	s)								· · · · · · · · · · · · · · · · · · ·														
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.86 J	0.87 J	< 2.0	< 2.0	< 2.0	< 2.0	1.5 J	1.3 J	0.66 J	0.34 J	1.6 J	2.0	< 2.0	< 2.0	1.4 J
Volatile Organic Compounds (VOCs)																							
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	1.9	1.8	1.3	1.3	1.5	1.7	2.3	2.1	1.8	3.0	NA	< 1.0	< 1.0	0.42 J	0.96 J	0.41 J	0.45 J	0.84 J	1.3	0.62 J
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	0.43 J	0.25 J	< 1.0	0.35 J	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	0.40 J	0.48 J	0.48 J	0.33 J	0.38 J	0.51 J	0.46 J	0.29 J	0.23 J	< 1.0	0.34 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	1.6	1.3	1.9	1.1	1.2	0.62 J	0.96 J	1.7	1.5	< 1.0	1.3	< 1.0	2.7	2.4	2.0	0.70 J	2.8	2.2	1.1	< 1.0	1.7
Metals																							
Iron, Dissolved	µg/l	300	3,900	NA	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	3,900	NA	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	1,200	NA	940	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	1,200	NA	890	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																							
Nitrate-N	mg/l	10	< 1.0	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	80	NA	89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																							
Carbon, Dissolved	mg/l	NS	6.1	NA	4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	5.2	NA	4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																							
Ethane	µg/l	NS	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Screen Interval (ft. bos	1:):	Residential Drinking		MW- 3-	-74S 13						MW- 12-	-75D -17									MW-75S 5-10				
Date	e: Unit	Water	12/21/2018	3/8/2019	5/8/2019	9/18/2019	5/23/2017	7/26/2017	11/8/2017	2/6/2018	5/9/2018	8/9/2018	10/22/2018	3/7/2019	5/15/2019	9/18/2019	5/23/2017	7/26/2017	11/8/2017	2/6/2018	5/9/2018	8/9/2018	10/22/2018	12/18/2018	3/7/2019
Semi-volatile Organic Compounds (SVO	Cs)																								
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	1.9 J	1.8 J	1.8 J	0.91 J	0.65 J	2.0	2.3	1.5 J	1.5 J	3.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																									
1,1-Dichloroethene	µg/l	7.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	1.3	0.82 J	0.97 J	1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	0.21 J	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.4	3.7	4.9 J	1.9	2.4	1.8	1.7	1.6	1.7	1.6	0.45 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals																									
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 100	NA	330	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	210	NA	350	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63	NA	42	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	70	NA	42	NA	NA	NA	NA	NA	NA
Anions																									
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21	NA	8.0 J	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	89	NA	110	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																									
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.6	NA	13	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.6	NA	13	NA	NA	NA	NA	NA	NA
Gases		_	,			_																			
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.95 J	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,200	NA	NA	NA	NA	NA	NA

```
Perior & Consultancy for netural and built assets
```

Location: Screen Interval (ft. bgs):		Residential Drinking		MW- 2.5-	75SR 12.5							MW-76 15-20							MW- 4.5-	-76S 14.5
Date:	Unit	Water Criteria	12/18/2019	3/7/2019	5/9/2019	9/18/2019	5/23/2017	7/26/2017	11/8/2017	2/6/2018	5/10/2018	8/9/2018	10/22/2018	12/21/2018	3/1/2019	5/17/2019	9/17/2019	12/21/2018	3/1/2019	5/8/2019
Semi-volatile Organic Compounds (SVOC	s)	_																		
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	<2.0	< 2.0	< 2.0	<2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																		_		
1,1-Dichloroethene	µg/l	7.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	< 1.0	< 1.0	< 1.0	< 1.0	NA	3.9	4.0	2.2	2.6	2.2	1.8	< 1.0	1.3	1.2	1.4	<1.0	<1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	<1.0	<1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	< 1.0	< 1.0	< 1.0	NA	0.54 J	0.49 J	< 1.0	0.35 J	0.35 J	0.25 J	< 1.0	0.22 J	< 1.0	< 1.0	<1.0	<1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	0.51 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	<1.0	<1.0	< 1.0
Metals																				
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	340	NA	270	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	480	NA	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	760	NA	760	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	800	NA	770	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																				
Nitrate-N	mg/l	10	NA	NA	NA	NA	1.2 J	NA	3.3 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	120	NA	160	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																				
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	1.1	NA	4.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	0.90 J	NA	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																				
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

19	9/17/2019
)	< 2.0
)	< 1.0
)	< 1.0
)	< 1.0
)	< 1.0
)	< 1.0
)	< 1.0
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA

Screen Interva	Location: I (ft. bgs):	Residential Drinking					MW 9-	I-77 14						MW 2.5-	-77S -12.5							MW-78 7-12					
	Date: Unit	Criteria	5/25/2017	7/26/2017	11/10/2017	2/8/2018	5/11/2018	8/6/2018	10/23/2018	3/4/2019	5/16/2019	9/17/2019	12/27/2018	3/4/2019	5/16/2019	9/17/2019	5/25/2017	7/25/2017	11/9/2017	2/8/2018	5/8/2018	8/6/2018	10/22/2018	12/19/2018	2/26/2019	5/13/2019	9/19/2019
Semi-volatile Organic Compoun	ds (SVOCs)																										
1,4-Dioxane	µg/l	7.2	NA	0.32 J	< 2.0	< 2.0	0.27 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.90 J	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (V	DCs)						_																				
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	0.67 J	0.73 J	0.66 J	0.54 J	0.61 J	0.74 J	0.60 J	0.39 J	0.66 J	< 1.0	0.30 J	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	0.28 J	0.26 J	< 1.0	0.22 J	0.19 J	0.22 J
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	0.87 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.17 J	< 1.0	< 1.0	< 1.0	0.22 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	0.51 J	0.45 J	< 1.0	< 1.0	< 1.0	0.24 J	< 1.0	0.48 J	0.24 J	0.35 J	< 1.0	0.20 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals				1	1	1						1	1		,	,	1										
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions				1	1																						
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)				1	1	1						1	1		,	,	1										
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																											
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Loc: Screen Interval (ft.	ation: bgs):	Residential Drinking		MW 2.5	-78S -12.5						MW 10	-79D -15								MW-79S 5-10					MW-7 2.5-	79SR 12.5	
	Date: Unit	Criteria	12/19/2018	2/26/2019	5/13/2019	9/19/2019	5/24/2017	7/25/2017	11/9/2017	2/8/2018	5/8/2018	8/6/2018	10/24/2018	3/7/2019	5/15/2019	9/19/2019	5/24/2017	7/25/2017	11/9/2017	2/8/2018	5/8/2018	8/6/2018	10/30/2018	12/19/2018	3/1/2019	5/15/2019	9/18/2019
Semi-volatile Organic Compounds (S	SVOCs)																										
1,4-Dioxane	µg/l	7.2	<2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	0.49 J	0.87 J	0.95 J	< 2.0	0.99 J	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																											
1,1-Dichloroethene	µg/l	7.0	<1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	<1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	<1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	<1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	<1.0	< 1.0	< 1.0	< 1.0	3.2	4.1	3.6	1.9	3.5	2.8	1.3	1.6	2.6	1.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.56 J	0.53 J	0.36 J	0.40 J
Metals																											
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	990	NA	2,500	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,100	NA	2,900	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	110	NA	200	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120	NA	200	NA	NA	NA	NA	NA	NA	NA	NA
Anions																											
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.063 J	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41	NA	69	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																											
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.1	NA	4.9	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.1	NA	4.4	NA	NA	NA	NA	NA	NA	NA	NA
Gases																								1			
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.6	NA	NA	NA	NA	NA	NA	NA	NA

Lo Screen Interval (f	cation: t. bgs):	Residential Drinking				MW-80S 7-12					MW- 2.5	-80SR -12.5						MM 8-	'-81 13						MW- 2.5-	81S 12.5	
	Date: Unit	Criteria	5/24/2017	7/25/2017	11/8/2017	2/8/2018	5/8/2018	8/6/2018	10/22/2018	12/27/2018	3/6/2019	5/10/2019	9/23/2019	5/26/2017	7/25/2017	11/9/2017	2/6/2018	5/10/2018	8/9/2018	10/23/2018	3/6/2019	5/17/2019	9/19/2019	12/26/2018	3/6/2019	5/17/2019	9/19/2019
Semi-volatile Organic Compounds	(SVOCs)																										
1,4-Dioxane	µg/l	7.2	NA	0.52 J	0.55 J	0.33 J	0.46 J	< 2.0	1.2 J	< 2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOC	s)			1		-						1										,					
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.18 J	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	4.6	7.1	7.6	2.9	6.3	6.2	4.1	1.4	2.1	3.2	3.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.69 J	< 1.0	< 1.0	< 1.0	0.66 J	< 1.0	< 1.0
Metals														1								1					
Iron, Dissolved	µg/l	300	600	NA	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	530	NA	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	200	NA	230	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	190	NA	230	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions				1	1							1			1							1					
Nitrate-N	mg/l	10	< 0.10	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	97	NA	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																						1					
Carbon, Dissolved	mg/l	NS	5.6	NA	5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	4.5	NA	5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																											
Ethane	µg/l	NS	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	55	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location: Screen Interval (ft. bgs):		Residential Drinking					MW- 18-	-82D -23								MW-82S 9-14					MW-8 5-	32SR 15	
Date	Unit	Water Criteria	5/24/2017	7/25/2017	11/8/2017	2/6/2018	5/10/2018	8/8/2018	10/23/2018	3/6/2019	5/17/2019	9/23/2019	5/24/2017	7/25/2017	11/8/2017	2/6/2018	5/10/2018	8/8/2018	10/23/2018	12/26/2018	3/5/2019	5/17/2019	9/23/2019
Semi-volatile Organic Compounds (SVOC	s)																						
1,4-Dioxane	µg/l	7.2	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																							
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.16 J	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.78 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.27 J	< 1.0	< 1.0
Metals																							
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	180	NA	710	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	380	NA	720	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	510	NA	390	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	550	NA	380	NA	NA	NA	NA	NA	NA	NA	NA
Anions																							
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.10	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	470	NA	270	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																							
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.7	NA	4.8	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1	NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA
Gases									,										1 1				
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10	NA	NA	NA	NA	NA	NA	NA	NA

Location:		Residential					MW	/-83						MW-	-83S						MM	/-84				
Screen Interval (ft. bgs):		Drinking Water					8-	13						3-	13						8-	13				
Date:	Unit	Criteria	5/26/2017	7/25/2017	11/9/2017	2/8/2018	5/11/2018	8/8/2018	10/22/2018	3/5/2019	5/22/2019	9/18/2019	12/26/2018	3/5/2019	5/22/2019	9/18/2019	5/25/2017	7/25/2017	11/9/2017	2/8/2018	5/8/2018	8/6/2018	10/23/2018	2/28/2019	5/21/2019	9/24/2019
Semi-volatile Organic Compounds (SVOC	s)																									
1,4-Dioxane	µg/l	7.2	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.92 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.86 J	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																										
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.17 J	< 1.0	< 1.0	0.23 J	0.20 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.14 J	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.27 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals																										
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																										
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																										
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																										
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ARCADIS Design & Consultancy for natural and bulk assets

Location: Screen Interval (ft. bgs):		Residential Drinking		MW- 2.5-	-84S 12.5						MV 8-	/-85 13					MW-85S 2.5-12.5	MW-8 4.5-	35SR •9.5
Date:	Unit	Water Criteria	12/21/2018	2/28/2019	5/9/2019	9/24/2019	5/25/2017	7/25/2017	11/7/2017	2/8/2018	5/8/2018	8/8/2018	10/22/2018	2/26/2019	5/17/2019	9/17/2019	12/21/2018	4/12/2019	9/17/2019
Semi-volatile Organic Compounds (SVOCs	5)																		
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	NA	0.29 J	< 2.0	0.41 J	0.45 J	< 2.0	1.0 J	< 2.0	1.3 J	< 2.0	1.1 J	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)									· · · · · · · · · · · · · · · · · · ·										
1,1-Dichloroethene	µg/l	7.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	0.17 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	8.6	7.3	7.3	5.5	7.5	7.2	5.5	5.5	5.4	6.5	7.8	2.2	2.1
Metals																			
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																			
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																			
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																			
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

L Screen Interval	ocation: (ft. bgs):	Residential Drinking					MW 12·	/-86 -17						MW- 2.5-	∙86S 12.5							MW-87 14-19					
	Date: Unit	Criteria	5/25/2017	7/26/2017	11/10/2017	2/8/2018	5/10/2018	8/6/2018	10/24/2018	2/28/2019	5/21/2019	9/19/2019	12/18/2018	2/28/2019	5/13/2019	9/19/2019	5/23/2017	7/26/2017	11/10/2017	2/8/2018	5/10/2018	8/6/2018	10/23/2018	12/21/2018	2/28/2019	5/21/2019	9/20/2019
Semi-volatile Organic Compound	s (SVOCs)						_																				
1,4-Dioxane	µg/l	7.2	NA	0.99 J	0.87 J	< 2.0	1.2 J	< 2.0	1.4 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.88 J	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VO	Cs)										1	1															
1,1-Dichloroethene	µg/l	7.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals				1												1	1				1						
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																1					1						
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)				1	1	1				1						1	1				1	1					
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases				1												1	1				1						
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location:		Residential		MW	-87S			MW	-96S			MW	-97S			MW	-98S			MW-	·99S			MW-1	00S	
Screen Interval (ft. bgs):		Drinking Water		4.5	-14.5	-		2.5-	12.5			2.5	12.5			2.5-	12.5			3-	13			3-1	3	
Date:	Unit	Criteria	12/21/2018	3/1/2019	5/13/2019	9/20/2019	12/18/2018	2/27/2019	5/16/2019	9/20/2019	12/27/2018	3/6/2019	5/10/2019	9/19/2019	12/19/2018	3/6/2019	5/10/2019	9/20/2019	12/21/2018	3/7/2019	5/9/2019	9/16/2019	12/18/2018	2/27/2019	5/9/2019	9/16/2019
Semi-volatile Organic Compounds (SVOC	5)				1																					
1,4-Dioxane	µg/l	7.2	<2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)					1																					
1,1-Dichloroethene	µg/l	7.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.21 J	0.94 J	0.57 J	0.89 J	0.30 J	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.42 J	< 1.0	< 1.0	< 1.0	0.43 J	< 1.0	< 1.0	< 1.0	0.28 J	< 1.0	< 1.0	0.22 J	< 1.0	< 1.0	< 1.0
Metals																										
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																										
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																										
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																										
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ARCADIS Design & Consultancy for natural and bulk assets

Location: Screen Interval (ft. bgs):		Residential Drinking		MW- 4.5-	101S 14.5			MW 10	-102 -15			MW- 2.5-	102S 12.5			MW- 2.5-	105S 12.5			MW- 2.5-	106S 12.5			MW- 2.5-	107S 12.5	
Date:	Unit	Criteria	12/21/2018	3/6/2019	5/8/2019	9/16/2019	12/19/2018	2/25/2019	5/17/2019	9/18/2019	12/19/2018	2/25/2019	5/14/2019	9/18/2019	12/26/2018	2/25/2019	5/14/2019	9/16/2019	12/19/2018	2/27/2019	5/16/2019	9/23/2019	12/26/2018	2/27/2019	5/10/2019	9/24/2019
Semi-volatile Organic Compounds (SVOC	s)																									
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	1.7 J	1.3 J	1.1 J	1.0 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																										
1,1-Dichloroethene	µg/l	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	0.58 J	< 1.0	< 1.0	1.6	1.7	1.8	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals																		1								
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																		1								
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)																										
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																										
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ARCADIS Design & Consultancy for natural and bulk assets

Location:		Residential Drinking		MW	-108S			MW-	131S			MW-	-132S			MW-133S			MW-134S			MW-135S			MW-136S	
Screen interval (it. bgs).	Unit	Water	12/26/2018	2/25/2019	5/14/2019	9/19/2019	12/26/2018	2/26/2019	5/14/2019	9/16/2019	12/26/2018	2/26/2019	5/14/2019	9/16/2019	2/14/2019	4-9 5/23/2019	9/17/2019	2/14/2019	5/20/2019	9/17/2019	2/14/2019	5/20/2019	9/16/2019	2/19/2019	5/22/2019	9/18/2019
Semi-volatile Organic Compounds (SVOC	s)	Cinterna																							ļ	
1,4-Dioxane	µg/l	7.2	0.90 J	NS	0.93 J	< 2.0	1.0 J	< 2.0	1.3 J	1.3 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)																										
1,1-Dichloroethene	µg/l	7.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	NS	< 1.0	< 1.0	0.98 J	0.69 J	0.85 J	0.87 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.96 J
Metals																										
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions																										
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (TOC)	1					1																				
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gases																										
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location:		Residential		MW-137S			MW-138S			MW-139S			MW-140S			MW-141S			MW-142S	
Screen Interval (ft. bgs):	:	Drinking Water		2-7			2-7			2-7			2-7			3-8	-		2.5-7.5	
Date:	Unit	Criteria	2/23/2019	5/13/2019	9/23/2019	2/19/2019	5/16/2019	9/23/2019	2/26/2019	5/9/2019	9/20/2019	2/26/2019	5/16/2019	9/18/2019	2/27/2019	5/15/2019	9/18/2019	2/25/2019	5/23/2019	9/16/2019
Semi-volatile Organic Compounds (SVOC	s)																			
1,4-Dioxane	µg/l	7.2	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Volatile Organic Compounds (VOCs)														· · · · · · · · · · · · · · · · · · ·						
1,1-Dichloroethene	µg/l	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene	µg/l	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene	µg/l	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	µg/l	1.0	< 1.0	0.91 J	1.1	1.7	1.6	1.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Metals																				
Iron, Dissolved	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Iron, Total	µg/l	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Manganese, Dissolved	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Manganese, Total	µg/l	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Anions																				
Nitrate-N	mg/l	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Sulfate	mg/l	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Total Organic Carbon (TOC)														· · · · · · · · · · · · · · · · · · ·						
Carbon, Dissolved	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Total Organic Carbon	mg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Gases																				
Ethane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Ethene	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Methane	µg/l	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						

	MW-	192S
	2.5	-7.5
019	4/11/2019	9/20/2019
0	< 2.0	< 2.0
C	< 1.0	< 1.0
0	< 1.0	0.34 J
0	< 1.0	< 1.0
0	< 1.0	< 1.0
C	< 1.0	< 1.0
D	< 1.0	< 1.0
	NA	NA
	NA	NA
	NA	NA
	NA	NA
	NA	NA
	NA	NA
	NA	NA
	NA	NA

Notes:

All results are compared to the MDEQ Part 201 Generic Cleanup Criteria, December 31, 2013. **Bolded** Result exceeds residential Drinking Water criteria Descher detected descher descripted learlie

< Result not detected above reporting limit.

Footnote:

* Residential Drinking Water Criteria for 1,4-dioxane is derived from the MDEQ Proposed Rule Changes (September 2016) and Emergency Rules (October 27, 2016).

** Groundwater results for Trichloroethene and Vinyl Chloride are compared to the published MDEQ Remediation and Redevelopment Division Target Detection Limit of 1.0 µg/l.

Abbreviations:

EGLE Michigan Department of Environment, Great Lakes, and Energy

ft. bgs feet below ground surface

J estimated result

- MDEQ Michigan Department of Environmental Quality
- mg/l milligrams per liter
- NA not analyzed
- NS no standard / not sampled
- µg/l micrograms per liter

Analytical Methods:

8260B

8260 SIM

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

Appendix A – Summary of 1Q 2019 Off-Site Shallow Groundwater Sampling Results Ford Livonia Transmission Plant

				Location:	MW-72	MW-72	MW-72	MW-72	MW-72S	MW-73D	MW-73D	MW-73D	MW-73D	MW-73S	MW-73S	MW-73S	MW-73S	MW-73SR	
					Date:	2/6/2018	5/9/2018	8/10/2018	10/22/2018	12/17/2018	2/6/2018	5/9/2018	8/10/2018	10/22/2018	2/6/2018	5/9/2018	8/10/2018	10/22/2018	12/17/2018
	Sample Name:					MW-72-020618	MW-72_050818	MW-72_081018	MW-72_102218	MW-72S-121718	MW-73D-020618	MW-73D_050918	MW-73D_081018	MW-73D_102218	MW-73S-020618	MW-73S_050818	MW-73S_081018	MW-73S_102218	MW-73SR- 121718
Screen Interval (ft. bgs						15-20	15-20	15-20	15-20	3-13	13.5-18.5	13.5-18.5	13.5-18.5	13.5-18.5	7-12	7-12	7-12	7-12	2.5-12.5
					Lab SDG #:	91361-1	95403-1	99859-1	103231-1	106083-1	91361-1	95547-1	99859-1	103231-1	91361-1	95403-1	99859-1	103231-1	106083-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTF Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	0.78 J	0.32 J	1.1 J	1.4 J	< 2.0	1.5 J	3.0	1.9 J	3.8	< 2.0	< 2.0	< 2.0	0.86 J	0.87 J
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.43 J	0.35 J	0.56 J	0.19 J	1.3	1.3	1.5	1.7	2.3
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	0.43 J
SW8260B	Trichloroethene	T	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.33 J	0.38 J	0.51 J	0.46 J	0.29 J
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	1.3	1.5 J	1.2	1.1	< 1.0	0.79 J	0.80 J	0.75 J	< 1.0	1.1	1.2	0.62 J	0.96 J	1.7

				Location:	MW-74	MW-74	MW-74	MW-74	MW-74S	MW-75D	MW-75D	MW-75D	MW-75D	MW-75S	MW-75S	MW-75S	MW-75S	MW-75SR	
					Date:	2/6/2018	5/9/2018	8/9/2018	10/22/2018	12/21/2018	2/6/2018	5/9/2018	8/9/2018	10/22/2018	2/6/2018	5/9/2018	8/9/2018	10/22/2018	12/18/2018
Sample Name						MW-74-020618	MW-74_050918	MW-74_080918	MW-74_102218	MW-74S-122118	MW-75D-020618	MW-75D_050918	MW-75D_080918	MW-75D_102218	MW-75S-020618	MW-75S_050918	MW-75S_080918	MW-75S_102218	MW-75 SR- 121818
Screen Interval (ft. bgs						14-19	14-19	14-19	14-19	3-13	12-17	12-17	12-17	12-17	5-10	5-10	5-10	5-10	2.5-12.5
					Lab SDG #:	91361-1	95547-1	99859-1	103231-1	106317-1	91361-1	95547-1	99859-1	103231-1	91361-1	95547-1	99859-1	103231-1	106083-2
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	0.66 J	0.34 J	1.6 J	2.0	< 2.0	0.91 J	0.65 J	2.0	2.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	2 70	70	0.42 J	0.96 J	0.41 J	0.45 J	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	2.0	0.70 J	2.8	2.2	< 1.0	1.9	2.4	1.8	1.7	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0

	Location:							MW-76	MW-76	MW-76S	MW-77	MW-77	MW-77	MW-77	MW-77S	MW-78	MW-78	MW-78	MW-78
					Date:	2/6/2018	5/10/2018	8/9/2018	10/22/2018	12/21/2018	2/8/2018	5/11/2018	8/6/2018	10/23/2018	12/27/2018	2/8/2018	5/8/2018	8/6/2018	10/22/2018
	Sample Name:						MW-76_051018	MW-76_080918	MW-76_102218	MW-76S- MS/MSD-122118	MW-77_020818	MW-77_051118	MW-77_080618	MW-77_102318	MW-77S_122718	MW-78_020818	MW-78_050818	MW-78_080618	MW-78_102218
			Screen Inte	rval (ft. bgs):	15-20	15-20	15-20	15-20	4.5-14.5	9-14	9-14	9-14	9-14	2.5-12.5	7-12	7-12	7-12	7-12	
					Lab SDG #:	91361-1	95547-1	99859-1	103231-1	106318-1	91428-1	95547-1	99575-1	103472-1	106464-1	91428-1	95403-1	99575-1	103230-1
analytic_method	chemical_name	fractior	n cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	< 2.0	0.27 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.90 J
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	2 70	70	2.2	2.6	2.2	1.8	< 1.0	0.66 J	0.54 J	0.61 J	0.74 J	< 1.0	< 1.0	< 1.0	0.28 J	0.26 J
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	0.35 J	0.35 J	0.25 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.24 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter.

Abbreviations:

ft bgs	Feet below ground surface
J	Estimated value
<	Less than

This document is a DRAFT document that has not received approval from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

Appendix A – Summary of 1Q 2019 Off-Site Shallow Groundwater Sampling Results Ford Livonia Transmission Plant

				Location:	MW-78S	MW-79D	MW-79D	MW-79D	MW-79D	MW-79S	MW-79S	MW-79S	MW-79S	MW-79SR	MW-80S	MW-80S	MW-80S	MW-80S	
					Date:	12/19/2018	2/8/2018	5/8/2018	8/6/2018	10/24/2018	2/8/2018	5/8/2018	8/6/2018	10/30/2018	12/19/2018	2/8/2018	5/8/2018	8/6/2018	10/22/2018
	Sample Nam						MW-79D_020818	MW-79D_050818	MW-79D_080618	MW-79_102418	MW-79S_020818	MW-79S_050818	MW-79S_080618	MW-79S_103018	MW-79SR- 121918	MW-80S_020818	MW-80S_050818	MW-80S_080618	MW-80S_102218
			Screen Inter	val (ft. bgs):	2.5-12.5	10-15	10-15	10-15	10-15	5-10	5-10	5-10	5-10	2.5-12.5	7-12	7-12	7-12	7-12	
					Lab SDG #:	106260-1	91428-1	95403-1	99575-1	103472-1	91428-1	95403-1	99575-1	103818-1	106257-1	91428-1	95403-1	99575-1	103230-1
analytic_method	chemical_name	fractior	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	0.49 J	0.87 J	0.95 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.33 J	0.46 J	< 2.0	1.2 J
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	1.9	3.5	2.8	1.3	< 1.0	< 1.0	< 1.0	< 1.0	0.56 J	2.9	6.3	6.2	4.1

				Location:	MW-80SR	MW-81	MW-81	MW-81	MW-81	MW-81S	MW-82D	MW-82D	MW-82D	MW-82D	MW-82S	MW-82S	MW-82S	MW-82S	
					Date:	12/27/2018	2/6/2018	5/10/2018	8/9/2018	10/23/2018	12/26/2018	2/6/2018	5/10/2018	8/8/2018	10/23/2018	2/6/2018	5/10/2018	8/8/2018	10/23/2018
Sample Name						MW- 80SR_122718	MW-81-020618	MW-81_051018	MW-81_080918	MW-81_102318	MW-81S_122618	MW-82D-020618	3 MW-82D_051018	MW-82D-080818	MW-82D_102318	MW-82S-020618	MW-82S_051018	MW-82S-080818	MW-82S_102318
	Screen Interval (ft. bgs						8-13	8-13	8-13	8-13	2.5-12.5	18-23	18-23	18-23	18-23	9-14	9-14	9-14	9-14
					Lab SDG #:	106467-1	91361-1	95547-1	99859-1	103472-1	106456-1	91361-1	95547-1	99733-1	103472-1	91361-1	95547-1	99733-1	103472-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	T	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	1.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Location:	MW-82SR	MW-83	MW-83	MW-83	MW-83	MW-83S	MW-84	MW-84	MW-84	MW-84	MW-84S	MW-85	MW-85	MW-85			
					Date:	12/26/2018	2/8/2018	5/11/2018	8/8/2018	10/22/2018	12/26/2018	2/8/2018	5/8/2018	8/6/2018	10/23/2018	12/21/2018	2/8/2018	5/8/2018	8/8/2018
Sample Name:						MW- 82SR_122618	MW-83_020818	MW-83_051118	MW-83-080818	MW-83_102218	MW-83S- MS/MSD_122618	MW-84_020818	MW-84_050818	MW-84_080618	MW-84_102318	MW-84S-122118	MW-85_020818	MW-85_050818	MW-85-080818
	Screen Interval (ft. bgs)						8-13	8-13	8-13	8-13	3-13	8-13	8-13	8-13	8-13	2.5-12.5	8-13	8-13	8-13
					Lab SDG #:	106456-1	91428-1	95547-1	99733-1	103230-1	106456-1	91428-1	95403-1	99575-1	103472-1	106318-1	91428-1	95403-1	99733-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	0.92 J	< 2.0	< 2.0	< 2.0	< 2.0	0.86 J	< 2.0	0.41 J	0.45 J	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.23 J	< 1.0	< 1.0	0.14 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.5	7.5	7.2

Notes:

All units are measured in micrograms per liter.

Abbreviations:

ft bgs	Feet below ground surface
J	Estimated value
<	Less than

This document is a DRAFT document that has not received approval from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

Appendix A – Summary of 1Q 2019 Off-Site Shallow Groundwater Sampling Results Ford Livonia Transmission Plant

					Location:	MW-85	MW-85S	MW-86	MW-86	MW-86	MW-86	MW-86S	MW-87	MW-87	MW-87	MW-87	MW-87S	MW-88S	MW-89S
					Date:	10/22/2018	12/21/2018	2/8/2018	5/10/2018	8/6/2018	10/24/2018	12/18/2018	2/8/2018	5/10/2018	8/6/2018	10/23/2018	12/21/2018	12/17/2018	12/19/2018
				Sa	ample Name:	MW-85_102218	MW-85S-122118	MW-86_020818	MW-86_051018	MW-86_080618	MW-86_102418	MW-86S-121818	MW-87_020818	MW-87_051018	MW-87_080618	MW-87_102318	MW-87S-122118	MW-88S-121718	MW-89S-121918
				Screen Inter	rval (ft. bgs):	8-13	2.5-12.5	12-17	12-17	12-17	12-17	2.5-12.5	14-19	14-19	14-19	14-19	4.5-14.5	3-13	3-13
					Lab SDG #:	103230-1	106318-1	91428-1	95547-1	99575-1	103472-1	106083-2	91428-1	95547-1	99575-1	103472-1	106317-1	106083-1	106257-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	1.0 J	1.1 J	< 2.0	1.2 J	< 2.0	1.4 J	< 2.0	< 2.0	< 2.0	< 2.0	0.88 J	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	5.5	7.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-90S	MW-91S	MW-92S	MW-93S	MW-94S	MW-94S	MW-95S	MW-96S	MW-97S	MW-98S	MW-99S	MW-100S	MW-101S	MW-102
					Date:	12/27/2018	12/28/2018	12/19/2018	12/17/2018	12/21/2018	12/21/2018	12/19/2018	12/18/2018	12/27/2018	12/19/2018	12/21/2018	12/18/2018	12/21/2018	12/19/2018
				Sa	mple Name:	MW-90S_122718	MW-91S_122818	MW-92S-121918	3 MW-93S-121718	MW-94S-122118	DUP-02-122118	MW-95S-121918	8 MW-96S-121818	MW-97S_122718	MW-98S_121918	MW-99S-122118	MW-100S- 121818	MW-101S- 122118	MW-102_121918
				Screen Inter	val (ft. bgs):	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	3-13	3-13	4.5-14.5	10-15
					Lab SDG #:	106467-1	106462-1	106257-1	106083-1	106317-1	106317-1	106257-1	106083-2	106464-1	106260-1	106317-1	106083-2	106318-1	106260-1
analytic_method	chemical_name	fractior	n cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.0 J	< 2.0	1.7 J
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	0.16 J	0.18 J	< 1.0	< 1.0	< 1.0	< 1.0	0.94 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	0.22 J	< 1.0	1.6

					Location:	MW-102	MW-102S	MW-102S	MW-103S	MW-104S	MW-105S	MW-105S	MW-106S	MW-107S	MW-108S	MW-109S	MW-110S	MW-111S	MW-112S
					Date:	2/25/2019	12/19/2018	2/25/2019	2/5/2019	2/5/2019	12/26/2018	2/25/2019	12/19/2018	12/26/2018	12/26/2018	12/28/2018	2/5/2019	2/4/2019	12/28/2018
				S	ample Name:	MW-102_022519	MW- 102S_121918	MW- 102S_022519	MW-103S- 020519	MW-104S- 020519	MW- 105S_122618	MW- 105S_022519	MW- 106S_121918	MW- 107S_122618	MW- 108S_122618	MW- 109S_122818	MW-110S- 020519	MW- 111S_020419	MW- 112S_122818
				Screen Inte	erval (ft. bgs):	10-15	2.5-12.5	2.5-12.5	2-7	9-14	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	8-13	8-13	2.5-12.5
					Lab SDG #:	108565-1	106260-1	108565-1	107779-1	107781-1	106468-1	108565-1	106260-1	106456-1	106468-1	106461-1	107782-1	107780-1	106461-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	1.3 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.90 J	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	T	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	T	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.45 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	T	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.25 J	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	1.7	< 1.0	< 1.0	0.58 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.28 J	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter.

Abbreviations:

ft bgs	Feet below ground surface
J	Estimated value
<	Less than

This document is a DRAFT document that has not received approval from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

Appendix A – Summary of 1Q 2019 Off-Site Shallow Groundwater Sampling Results Ford Livonia Transmission Plant

					Location:	MW-115S	MW-116S	MW-117S	MW-118S	MW-118S	MW-119S	MW-121S	MW-123S	MW-123S	MW-126S	MW-127S	MW-128S	MW-128S	MW-130S
					Date:	12/26/2018	12/26/2018	12/26/2018	12/27/2018	12/27/2018	12/27/2018	12/27/2018	12/28/2018	12/28/2018	12/27/2018	12/28/2018	12/27/2018	12/27/2018	12/28/2018
				Sa	mple Name:	MW- 115S_122618	MW- 116S_122618	MW- 117S_122618	MW- 118S_122718	DUP-04_122718	MW- 119S_122718	MW- 121S_122718	MW- 123S_122818	DUP-05_122818	MW- 126S_122718	MW- 127S_122818	MW- 128S_122718	DUP-03_122718	MW- 130S_122818
				Screen Inter	val (ft. bgs):	2.5-12.5	3-13	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	3-13	3-13	4-14	4-14	3-13
					Lab SDG #:	106465-1	106465-1	106465-1	106466-1	106466-1	106466-1	106466-1	106463-1	106463-1	106464-1	106462-1	106467-1	106467-1	106463-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.19 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	0.29 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	2.7	< 1.0	0.92 J	0.68 J	0.74 J	< 1.0	< 1.0	4.6	3.2	< 1.0	1.5	< 1.0	< 1.0	1.1

					Location:	MW-131S	MW-132S	MW-133S	MW-134S	MW-135S	MW-136S	MW-137S	MW-138S	MW-139S	MW-140S	MW-141S	MW-142S	MW-143S	MW-145S
					Date:	12/26/2018	12/26/2018	2/14/2019	2/14/2019	2/14/2019	2/19/2019	2/23/2019	2/19/2019	2/26/2019	2/26/2019	2/27/2019	2/25/2019	2/20/2019	2/20/2019
				84	ample Name:	MW-	MW-	MW-	MW-	MW-	MW-	MW-137S-	MW-138S-	MW-139S-	MW-140S-	MW-	MW-	MW-143S-	MW-145S-
					ample Name.	131S_122618	132S_122618	133S_021419	134S_021419	135S_021419	136S_021919	022319	021919	022619	022619	141S_022719	142S_022519	022019	022019
				Screen Inter	rval (ft. bgs):	2.5-12.5	2.5-12.5	4-9	5-10	5-10	2-7	2-7	2-7	2-7	2-7	3-8	2.5-7.5	5.5-10.5	6-11
					Lab SDG #:	106468-1	106468-1	108101-1	108101-1	108101-1	108389-1	108500-1	108384-1	108628-1	108630-1	108722-1	108560-1	108383-1	108385-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	1.0 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	0.98 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-146S	MW-147S	MW-148S	MW-149S	MW-150S	MW-151S	MW-152S	MW-153S	MW-154S	MW-155S	MW-155S	MW-156S	MW-158S	MW-159S
					Date:	2/20/2019	2/20/2019	2/23/2019	2/21/2019	2/25/2019	2/23/2019	2/21/2019	2/21/2019	2/21/2019	2/26/2019	2/26/2019	2/27/2019	2/22/2019	2/22/2019
				S	ample Name:	MW-146S- 022019	MW-147S- 022019	MW-148S- 022319	MW-149S- 022119	MW- 150S_022519	MW-151S- 022319	MW-152S- 022119	MW-153S- 022119	MW-154S- 022119	MW-155S- 022619	DUP-03-022619	MW- 156S_022719	MW-158S- 022219	MW-159S- 022219
				Screen Inte	erval (ft. bgs):	6-11	2-7	2-7	2-7	2-7	2.5-7.5	2.5-7.5	2-7	2-7	2-7	2-7	3-8	2.5-7.5	4-9
					Lab SDG #:	108387-1	108386-1	108504-1	108469-1	108559-1	108502-1	108464-1	108463-1	108462-1	108631-1	108631-1	108723-1	108465-1	108467-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP Offsite Re DW	MI GW (DEQ2018) NON-RES DW														
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	0.23 J	0.38 J	0.94 J	1.4	0.46 J	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter.

Abbreviations:

ft bgs	Feet below ground surface
J	Estimated value
<	Less than

This document is a DRAFT document that has not received approval from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

Appendix A – Summary of 1Q 2019 Off-Site Shallow Groundwater Sampling Results Ford Livonia Transmission Plant

					Location:	MW-160S	MW-161S	MW-162S	MW-163S	MW-163S	MW-164S	MW-167S	MW-168S
					Date:	2/27/2019	2/27/2019	2/28/2019	2/28/2019	2/28/2019	2/22/2019	2/25/2019	2/25/2019
				Sa	mple Name:	MW- 160S_022719	MW- 161S_022719	MW-162S- 022819	MW-163S- 022819	DUP-04-022819	MW-164S- 022219	MW- 167S_022519	MW- 168S_022519
				Screen Inter	val (ft. bgs):	4-9	2.5-7.5	3-8	2-7	2-7	3-8	5-10	2-7
					Lab SDG #:	108721-1	108720-1	108810-1	108808-1	108808-1	108468-1	108557-1	108561-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW								
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-169S	MW-170S	MW-171S	MW-172S	MW-173S	MW-174S	MW-175S	MW-176S
					Date:	2/25/2019	3/6/2019	2/23/2019	2/28/2019	2/28/2019	2/28/2019	3/1/2019	3/5/2019
				Sa	mple Name:	MW- 169S_022519	MW- 170S_030619	MW-171S- 022319	MW-172S- 022819	MW-173S- 022819	MW-174S- 022819	MW-175S- 030119	MW- 176S_030519
				Screen Inter	val (ft. bgs):	2-7	4.5-9.5	2-7	4.5-9.5	5.5-10.5	5.5-10.5	6-11	5-10
					Lab SDG #:	108555-1	109088-1	108503-1	108806-1	108812-1	108804-1	108807-1	109011-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW								
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	0.21 J	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.14 J	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	0.21 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

					Location:	MW-1779	MW-178S	MW_179S	MW-181S	MW-182S	MW-182S	MW-183S
					Date:	3/5/2019	3/4/2019	3/4/2019	3/4/2019	3/5/2019	3/5/2019	3/1/2019
				Sa	mple Name:	MW- 177S_030519	MW- 178S_030419	MW- 179S_030419	MW- 181S_030419	MW- 182S_030519	DUP-05_030519	MW-183S- 030119
				Screen Inter	val (ft. bgs):	4-9	4.5-9.5	6-11	3.5-8.5	4-9	4-9	8-13
					Lab SDG #:	109013-1	108923-1	108922-1	108920-1	109010-1	109010-1	108813-1
analytic_method	chemical_name	fraction	cas_rn	Ford_LTP_ Offsite Res DW	MI GW (DEQ2018) NON-RES DW							
SW8468260BBYSIM	1,4-Dioxane	Т	123-91-1	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	Т	75-35-4	7.0	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	Т	156-59-2	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	Т	127-18-4	5.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	Т	156-60-5	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	Т	79-01-6	1.0	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	Т	75-01-4	1.0	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter.

Abbreviations:

ft bgs	Feet below ground surface
J	Estimated value
<	Less than

This document is a DRAFT document that has not received approval from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

			Location:	MW-72	MW-72S	MW-73D	MW-73SR	MW-74	MW-74S	MW-75D	MW-75SR	MW-76	MW-76S	MW-77	MW-77S	MW-78	MW-78S	MW-79D
			Date:	5/17/2019	5/8/2019	5/8/2019	5/8/2019	5/17/2019	5/8/2019	5/15/2019	5/9/2019	5/17/2019	5/8/2019	5/16/2019	5/16/2019	5/13/2019	5/13/2019	5/15/2019
		Scre	en Interval (ft. bgs):	15-20	3-13	13.5-18.5	2.5-12.5	14-19	3-13	12-17	2.5-12.5	15-20	4.5-14.5	9-14	2.5-12.5	7-12	2.5-12.5	10-15
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	2.3	< 2.0	< 2.0	< 2.0	1.5 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.99 J
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	1.8	1.3	0.97 J	< 1.0	< 1.0	1.2	< 1.0	0.39 J	< 1.0	0.19 J	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1	2	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7	< 1.0	< 1.0	< 1.0	0.24 J	< 1.0	< 1.0	< 1.0	2.6

			Location:	MW-79SR	MW-80SR	MW-81	MW-81S	MW-82D	MW-82SR	MW-83	MW-83S	MW-84	MW-84S	MW-85	MW-85SR	MW-86	MW-86S	MW-87
			Date:	5/15/2019	43595	5/17/2019	5/17/2019	5/17/2019	5/17/2019	5/22/2019	5/22/2019	5/21/2019	5/9/2019	5/17/2019	4/12/2019	5/21/2019	5/13/2019	5/21/2019
		Scree	en Interval (ft. bgs):	2.5-12.5	2.5-12.5	8-13	2.5-12.5	18-23	5-15	8-13	3-13	8-13	2.5-12.5	8-13	4.5-9.5	12-17	2.5-12.5	14-19
		Ford I TD Officito	MI GW															
Analytic Method	Chemical Name	Res DW	(EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.3 J	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1	2	0.36 J	3.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.4	2.2	< 1.0	< 1.0	< 1.0

			Location:	MW-87S	MW-88S	MW-89S	MW-90S	MW-91S	MW-92S	MW-93S	MW-94S	MW-95S	MW-96S	MW-97S	MW-98S	MW-99S	MW-100S	MW-101S
			Date:	5/13/2019	5/16/2019	5/10/2019	5/14/2019	5/21/2019	5/17/2019	5/13/2019	5/15/2019	5/16/2019	5/16/2019	5/10/2019	5/10/2019	5/9/2019	5/9/2019	5/8/2019
		Scree	en Interval (ft. bgs):	4.5-14.5	3-13	3-13	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	3-13	3-13	4.5-14.5
		Ford I TP Offeite	MI GW															
Analytic Method	Chemical Name	Res DW	(EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	1.3 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	0.43 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.89 J	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	0.24 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	2	< 1.0	< 1.0	2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

 Notes:

 All units are measured in micrograms per liter (µg/l).

 All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

 Bolded
 Result exceeds residential Drinking Water criteria

 Result not detected above reporting limit.

Abbreviations:

Michigan Department of Environment, Great Lakes, and Energy feet below ground surface EGLE

ft. bgs

J estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

			Location:	MW-102	MW-102S	MW-103S	MW-104S	MW-105S	MW-106S	MW-107S	MW-108S	MW-109S	MW-110S	MW-111S	MW-112S
			Date:	5/17/2019	5/14/2019	5/16/2019	5/15/2019	5/14/2019	5/16/2019	5/10/2019	5/14/2019	5/10/2019	5/15/2019	5/15/2019	5/16/2019
		Scre	en Interval (ft. bgs):	10-15	2.5-12.5	2.0-7.0	9.0-14.0	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	2.5-12.5	8.0-13.0	8.0-13.0	2.5-12.5
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW												
SW8468260BBYSIM	1,4-Dioxane	7.2	350	1.1 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	0.93 J	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.21 J	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinvl chloride	1	2	1.8	< 1.0	0.36 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Location:	MW-118S	MW-119S	MW-121S	MW-125	MW-125S	MW-126S	MW-127S	MW-128S	MW-129	MW-129S	MW-130S	MW-131S	MW-132S	MW-133S	MW-134S
			Date:	5/15/2019	5/10/2019	5/13/2019	4/18/2019	4/18/2019	5/13/2019	5/16/2019	5/22/2019	4/18/2019	4/18/2019	5/13/2019	5/14/2019	5/14/2019	5/23/2019	5/20/2019
		Scree	en Interval (ft. bgs):	2.5-12.5	2.5-12.5	2.5-12.5	7-12	2-7	3-13	3-13	4-14	10-15	2-7	3-13	2.5-12.5	2.5-12.5	4-9	5-10
		Ford I TD Officito	MI GW															
Analytic Method	Chemical Name	Res DW	(EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.4 J	1.3 J	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	0.16 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.97 J	0.85 J	< 1.0	< 1.0	< 1.0	

			Location:	MW-135S	MW-136S	MW-137S	MW-138S	MW-139S	MW-140S	MW-141S	MW-142S	MW-143S	MW-144S	MW-145S	MW-146S	MW-147S	MW-148S	MW-150S
			Date:	5/20/2019	5/22/2019	5/13/2019	5/16/2019	5/9/2019	5/16/2019	5/15/2019	5/23/2019	5/23/2019	5/20/2019	5/23/2019	5/14/2019	5/15/2019	5/15/2019	5/22/2019
		Scree	en Interval (ft. bgs):	5-10	2-7	2-7	2-7	2-7	2-7	3-8	2.5-7.5	5.5-10.5	7-12	6-11	6-11	2-7	2-7	2-7
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.2 J	< 2.0	1.1 J	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1	2	< 1.0	< 1.0	0.91 J	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	< 1.0	0.76 J	< 1.0

 Notes:

 All units are measured in micrograms per liter (µg/l).

 All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

 Bolded
 Result exceeds residential Drinking Water criteria

 Result not detected above reporting limit.

Abbreviations:

Michigan Department of Environment, Great Lakes, and Energy feet below ground surface EGLE

ft. bgs

J estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

MW-115S	MW-116S	MW-117S
5/17/2019	5/16/2019	5/16/2019
2.5-12.5	3-13	2.5-12.5
< 2.0	< 2.0	< 2.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	0.16 J
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	0.37 J
2.2 J	< 1.0	1.1

			Location:	MW-151S	MW-152S	MW-153S	MW-154S	MW-155S	MW-156S	MW-157S	MW-158S	MW-159S	MW-160S	MW-161S	MW-162S
			Date:	5/21/2019	5/14/2019	5/10/2019	5/14/2019	5/9/2019	5/17/2019	5/16/2019	5/10/2019	5/9/2019	5/16/2019	5/9/2019	5/17/2019
		Scre	en Interval (ft. bgs):	2.5-7.5	2.5-7.5	2-7	2-7	2-7	3-8	2.5-7.5	2.5-7.5	4-9	4-9	2.5-7.5	3-8
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW												
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1	2	0.92 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Location:	MW-166S	MW-167S	MW-168S	MW-169S	MW-170S	MW-171S	MW-172S	MW-173S	MW-174S	MW-175S	MW-176S	MW-177S	MW-178S	MW-179S	MW-180SR
			Date:	5/23/2019	5/20/2019	5/15/2019	5/15/2019	5/10/2019	5/13/2019	5/13/2019	5/13/2019	5/13/2019	5/13/2019	5/13/2019	5/15/2019	5/15/2019	5/17/2019	5/16/2019
		Scree	en Interval (ft. bgs):	6-11	5-10	2-7	2-7	4.5-9.5	2-7	4.5-9.5	5.5-10.5	5.5-10.5	6-11	5-10	4-9	4.5-9.5	6-11	6.5-11.5
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.8
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	JB Inchloroethene 1 5 JB Vinyl chloride 1 2				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

			Location:	MW-181S	MW-182S	MW-183S	MW-184S	MW-185S	MW-186S	MW-187	MW-187S	MW-188S	MW-189	MW-189S	MW-190	MW-190S	MW-191S	MW-192S
			Date:	5/16/2019	5/13/2019	5/13/2019	5/15/2019	5/9/2019	4/12/2019	4/12/2019	4/12/2019	4/18/2019	4/16/2019	4/16/2019	4/19/2019	4/19/2019	4/22/2019	4/11/2019
		Scree	en Interval (ft. bgs):	3.5-8.5	4-9	8-13	4.5-9.5	6-11	2.5-7.5	13-Aug	8-Mar	8-Mar	15-Oct	4.5-9.5	14-Sep	2.5-7.5	2.5-7.5	2.5-7.5
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	0.74 J	1.0	2.3	< 1.0
SW8260B	Tetrachloroethene	5	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	0.57 J	< 1.0
SW8260B	Vinyl chloride	2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

 Notes:

 All units are measured in micrograms per liter (µg/l).

 All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

 Bolded
 Result exceeds residential Drinking Water criteria

 Result not detected above reporting limit.

Abbreviations:

Michigan Department of Environment, Great Lakes, and Energy feet below ground surface EGLE

ft. bgs

J estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

MW-163S	MW-164S	MW-165S
5/10/2019	5/10/2019	5/10/2019
2-7	3-8	2-7
< 2.0	< 2.0	< 2.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0
< 1.0	< 1.0	< 1.0

Appendix A – Summary of Off-Site Shallow Groundwater Sampling Results 3Q 2019 **Ford Livonia Transmission Plant**

		Scree	Location: Date: n Interval (ft. bgs):	MW-72 9/23/2019 15-20	MW-72S 9/23/2019 3-13	MW-73D 9/24/2019 13.5-18.5	MW-73SR 9/24/2019 2.5-12.5	MW-74 9/18/2019 14-19	MW-74S 9/18/2019 3-13	MW-75D 9/18/2019 12-17	MW-75SR 9/18/2019 2.5-12.5	MW-76 9/17/2019 15-20	MW-76S 9/17/2019 4.5-14.5	MW-77 9/17/2019 9-14	MW-77S 9/17/2019 2.5-12.5	MW-78 9/19/2019 7-12	MW-78S 9/19/2019 2.5-12.5	MW-79D 9/19/2019 10-15
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	3.8	< 2.0	1.4 J	< 2.0	3.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	3.0	0.62 J	1.0	< 1.0	< 1.0	1.4	< 1.0	0.66 J	< 1.0	0.22 J	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	0.35 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	0.34 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	1.5	< 1.0	0.48 J	1.3	1.7	< 1.0	1.6	0.51 J	< 1.0	< 1.0	0.35 J	< 1.0	< 1.0	< 1.0	1.5

		Scree	Location: Date: en Interval (ft. bgs):	MW-79SR 9/18/2019 2.5-12.5	MW-80SR 9/23/2019 2.5-12.5	MW-81 9/19/2019 8-13	MW-81S 9/19/2019 2.5-12.5	MW-82D 9/23/2019 18-23	MW-82SR 9/23/2019 5-15	MW-83 9/18/2019 8-13	MW-83S 9/18/2019 3-13	MW-84 9/24/2019 8-13	MW-84S 9/24/2019 2.5-12.5	MW-85 9/17/2019 8-13	MW-85SR 9/17/2019 4.5-9.5	MW-86 9/19/2019 12-17	MW-86S 9/19/2019 2.5-12.5	MW-87 9/20/2019 14-19
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.17 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	0.40 J	3.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.5	2.1	< 1.0	< 1.0	< 1.0

		Screer	Location: Date: n Interval (ft. bgs):	MW-87S 9/20/2019 4.5-14.5	MW-88S 9/17/2019 3-13	MW-89S 9/24/2019 3-13	MW-90S 9/20/2019 2.5-12.5	MW-91S 9/18/2019 2.5-12.5	MW-92S 9/18/2019 2.5-12.5	MW-93S 9/16/2019 2.5-12.5	MW-94S 9/19/2019 2.5-12.5	MW-95S 9/18/2019 2.5-12.5	MW-96S 9/20/2019 2.5-12.5	MW-97S 9/19/2019 2.5-12.5	MW-98S 9/20/2019 2.5-12.5	MW-99S 9/16/2019 3-13	MW-100S 9/16/2019 3-13	MW-101S 9/16/2019 4.5-14.5
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	0.87 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.23 J	< 1.0	< 1.0	0.21 J	0.30 J	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	< 1.0	< 1.0	2.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.54 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter (µg/l). All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

Bolded Result exceeds residential Drinking Water criteria

Result not detected above reporting limit. <

Abbreviations:

EGLE	Michigan Department of Environment, Great Lakes, and Energy
ft. bgs	feet below ground surface
J	estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not

Appendix A – Summary of Off-Site Shallow Groundwater Sampling Results 3Q 2019 **Ford Livonia Transmission Plant**

		Scree	Location: Date: n Interval (ft. bgs):	MW-102 9/18/2019 10-15	MW-102S 9/18/2019 2.5-12.5	MW-103S 9/20/2019 2-7	MW-104S 9/17/2019 9-14	MW-105S 9/16/2019 2.5-12.5	MW-106S 9/23/2019 2.5-12.5	MW-107S 9/24/2019 2.5-12.5	MW-108S 9/19/2019 2.5-12.5	MW-109S 9/23/2019 2.5-12.5	MW-110S 9/17/2019 8-13	MW-111S 9/19/2019 8-13	MW-112S 9/17/2019 2.5-12.5	MW-115S 9/18/2019 2.5-12.5	MW-116S 9/16/2019 3-13	MW-117S 9/18/2019 2.5-12.5
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	1.0 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.38 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.27 J
SW8260B	Vinyl chloride	1.0	2.0	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.1	< 1.0	0.54 J

		Scree	Location: Date: en Interval (ft. bgs):	MW-118S 9/18/2019 2.5-12.5	MW-119S 9/16/2019 2.5-12.5	MW-121S 9/19/2019 2.5-12.5	MW-123S 9/16/2019 2.5-12.5	MW-125 9/25/2019 7-12	MW-125S 9/25/2019 2-7	MW-126S 9/17/2019 3-13	MW-127S 9/18/2019 3-13	MW-128S 9/20/2019 4-14	MW-129 9/24/2019 10-15	MW-129S 9/23/2019 2-7	MW-130S 9/20/2019 3-13	MW-131S 9/16/2019 2.5-12.5	MW-132S 9/16/2019 2.5-12.5	MW-133S 9/17/2019 4-9
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	1.1 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.3 J	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	0.21 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	0.50 J	< 1.0	< 1.0	3.9	< 1.0	< 1.0	< 1.0	2.7	< 1.0	< 1.0	< 1.0	1.2	0.87 J	< 1.0	< 1.0

		Scree	Location: Date: n Interval (ft. bgs):	MW-134S 9/17/2019 5-10	MW-135S 9/16/2019 5-10	MW-136S 9/18/2019 2-7	MW-137S 9/23/2019 2-7	MW-138S 9/23/2019 2-7	MW-139S 9/20/2019 2-7	MW-140S 9/18/2019 2-7	MW-141S 9/18/2019 3-8	MW-142S 9/16/2019 2.5-7.5	MW-143S 9/19/2019 5.5-10.5	MW-144S 9/19/2019 7-12	MW-145S 9/19/2019 6-11	MW-146S 9/17/2019 6-11	MW-147S 9/19/2019 2-7	MW-148S 9/20/2019 2-7
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.1 J	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	< 1.0	< 1.0	0.96 J	1.1	1.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.20 J	0.82 J	2.2

Notes:

All units are measured in micrograms per liter (μ g/l).

All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

Bolded Result exceeds residential Drinking Water criteria

Result not detected above reporting limit. <

Abbreviations:

EGLE	Michigan Department of Environment, Great Lakes, and Energy
ft. bgs	feet below ground surface
J	estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not

Appendix A – Summary of Off-Site Shallow Groundwater Sampling Results 3Q 2019 **Ford Livonia Transmission Plant**

			Location: Date:	MW-149S 9/18/2019	MW-150S 9/19/2019	MW-152S 9/20/2019	MW-153S 9/20/2019	MW-154S 9/20/2019	MW-155S 9/17/2019	MW-156S 9/19/2019	MW-157S 9/19/2019	MW-158S 9/23/2019	MW-159S 9/23/2019	MW-160S 9/18/2019	MW-161S 9/24/2019	MW-162S 9/18/2019	MW-163S 9/18/2019	MW-164S 9/19/2019	MW-165S 9/19/2019
		Scree	en Interval (ft. bgs):	2-7	2-7	2.5-7.5	2-7	2-7	2-7	3-8	2.5-7.5	2.5-7.5	4-9	4-9	2.5-7.5	3-8	2-7	3-8	2-7
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON RES DW																
SW8468260BBYSIM	1,4-Dioxane	7.2	350	0.96 J	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinvl chloride	1.0	2.0	1.9	0.35 J	0.34 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Scre	Location: Date: een Interval (ft. bgs):	MW-166S 9/17/2019 6-11	MW-167S 9/20/2019 5-10	MW-168S 9/16/2019 2-7	MW-169S 9/17/2019 2-7	MW-170S 9/24/2019 4.5-9.5	MW-171S 9/16/2019 2-7	MW-172S 9/20/2019 4.5-9.5	MW-173S 9/20/2019 5.5-10.5	MW-174S 9/24/2019 5.5-10.5	MW-175S 9/20/2019 6-11	MW-176S 9/23/2019 5-10	MW-177S 9/19/2019 4-9	MW-178S 9/18/2019 4.5-9.5	MW-179S 9/17/2019 6-11	MW-180SR 9/17/2019 6.5-11.5	MW-181S 9/17/2019 3.5-8.5
Analytic Method	Chemical Name	Ford LTP Offsi Res DW	te (EGLE2018) NON- RES DW																
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.2 J	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.16 J	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	< 1.0	< 1.0	0.38 J	0.28 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

		Scree	Location: Date: n Interval (ft. bgs):	MW-182S 9/18/2019 4-9	MW-183S 9/17/2019 8-13	MW-184S 9/24/2019 4.5-9.5	MW-185S 9/23/2019 6-11	MW-186S 9/24/2019 2.5-7.5	MW-187 9/19/2019 8-13	MW-187S 9/19/2019 3-8	MW-188S 9/19/2019 3-8	MW-189 9/18/2019 10-15	MW-189S 9/18/2019 4.5-9.5	MW-190 9/19/2019 9-14	MW-190S 9/19/2019 2.5-7.5	MW-191S 9/17/2019 2.5-7.5	MW-192S 9/20/2019 2.5-7.5	MW-193S 9/16/2019 3-8
Analytic Method	Chemical Name	Ford LTP Offsite Res DW	MI GW (EGLE2018) NON- RES DW															
SW8468260BBYSIM	1,4-Dioxane	7.2	350	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
SW8260B	1,1-Dichloroethene	7.0	7.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	cis-1,2-Dichloroethene	70	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	1.1	5.2	0.34 J	< 1.0
SW8260B	Tetrachloroethene	5.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	trans-1,2-Dichloroethene	100	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SW8260B	Trichloroethene	1.0	5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.59 J	< 1.0	< 1.0
SW8260B	Vinyl chloride	1.0	2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

All units are measured in micrograms per liter (μ g/l).

All results are compared to the EGLE Part 201 Generic Cleanup Criteria, December 31, 2013.

Bolded Result exceeds residential Drinking Water criteria

Result not detected above reporting limit. <

Abbreviations:

EGLE	Michigan Department of Environment, Great Lakes, and Energy
ft. bgs	feet below ground surface
J	estimated result

This document is a DRAFT document that has not received approval from the Michigan Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not

Arcadis of Michigan, LLC

28550 Cabot Drive Suite 500 Novi, Michigan 48377 Tel 248 994 2240 Fax 248 994 2241

www.arcadis.com