

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 12/2/2022 8:19:02 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-176622-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

but

Authorized for release by Opal Johnson, Project Manager II <u>Opal.Johnson@et.eurofinsus.com</u> Designee for Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Generated 12/2/2022 8:19:02 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

Qualifiers

GC/MS VOA	Qualifier Description
Qualifier	Qualifier Description Indicates the analyte was analyzed for but not detected.
0	
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

Job ID: 240-176622-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-176622-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 11/17/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.1° C and 1.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 240-176622-1

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CAN
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-176622-1	TRIP BLANK_216	Water	11/15/22 00:00	11/17/22 08:00
240-176622-2	MW-116S_111522	Water	11/15/22 11:32	11/17/22 08:00

Detection Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_216

No Detections.

Client Sample ID: MW-116S_111522

No Detections.

Job ID: 240-176622-1

Lab Sample ID: 240-176622-1

Lab Sample ID: 240-176622-2

This Detection Summary does not include radiochemical test results.

Client Sample ID: TRIP BLANK_216 Date Collected: 11/15/22 00:00 Date Received: 11/17/22 08:00

Job ID: 240-176622-1

Lab Sample ID: 240-176622-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 14:44	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 14:44	1	
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 14:44	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 14:44	1	
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 14:44	1	
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 14:44	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	ī
1,2-Dichloroethane-d4 (Surr)	97		62 - 137					11/25/22 14:44	1	
4-Bromofluorobenzene (Surr)	77		56 - 136					11/25/22 14:44	1	
Toluene-d8 (Surr)	92		78 - 122					11/25/22 14:44	1	
Dibromofluoromethane (Surr)	93		73 - 120					11/25/22 14:44	1	

Client Sample ID: MW-116S_111522 Date Collected: 11/15/22 11:32 Date Received: 11/17/22 08:00

Job ID: 240-176622-1

Lab Sample ID: 240-176622-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/23/22 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		66 - 120					11/23/22 15:52	1
Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 18:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 18:55	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 18:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 18:55	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 18:55	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137					11/25/22 18:55	1
4-Bromofluorobenzene (Surr)	76		56 - 136					11/25/22 18:55	1
Toluene-d8 (Surr)	94		78 - 122					11/25/22 18:55	1
Dibromofluoromethane (Surr)	96		73 - 120					11/25/22 18:55	1

Surrogate Summary

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Water

			Pe	ercent Surro	gate Recovery (Acc	eptance Limits)
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)	
240-176621-A-2 MS	Matrix Spike	84	95	95	84	
240-176621-D-2 MSD	Matrix Spike Duplicate	85	94	96	85	
240-176622-1	TRIP BLANK_216	97	77	92	93	
240-176622-2	MW-116S_111522	100	76	94	96	
LCS 240-553445/5	Lab Control Sample	86	92	97	88	
MB 240-553445/8	Method Blank	89	77	91	88	
Surrogate Legend						
DCA = 1,2-Dichloroeth	ane-d4 (Surr)					
BFB = 4-Bromofluorob	enzene (Surr)					
TOL = Toluene-d8 (Su	rr)					
IOL - Ioluelle-uo (Su						

			Percent Surrogate Recovery (Acceptance Limits)	
		DCA		13
Lab Sample ID	Client Sample ID	(66-120)		
240-176555-B-1 MS	Matrix Spike	77		
240-176555-B-1 MSD	Matrix Spike Duplicate	81		
240-176622-2	MW-116S_111522	76		
LCS 240-553221/3	Lab Control Sample	76		
MB 240-553221/4	Method Blank	76		
Surrogate Legend				

DCA = 1,2-Dichloroethane-d4 (Surr)

12/2/2022

5 6

9

Prep Type: Total/NA

Prep Type: Total/NA

5

10

Client Sample ID: Method Blank

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-553445/8 Matrix: Water

Analysis Batch: 553445

MB	MB							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene 1.0	U	1.0	0.49	ug/L			11/25/22 13:03	1
cis-1,2-Dichloroethene 1.0	U	1.0	0.46	ug/L			11/25/22 13:03	1
Tetrachloroethene 1.0	U	1.0	0.44	ug/L			11/25/22 13:03	1
trans-1,2-Dichloroethene 1.0	U	1.0	0.51	ug/L			11/25/22 13:03	1
Trichloroethene 1.0	U	1.0	0.44	ug/L			11/25/22 13:03	1
Vinyl chloride 1.0	U	1.0	0.45	ug/L			11/25/22 13:03	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		62 - 137		11/25/22 13:03	1
4-Bromofluorobenzene (Surr)	77		56 - 136		11/25/22 13:03	1
Toluene-d8 (Surr)	91		78 - 122		11/25/22 13:03	1
Dibromofluoromethane (Surr)	88		73 - 120		11/25/22 13:03	1

Lab Sample ID: LCS 240-553445/5 Matrix: Water Analysis Batch: 553445

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	28.1		ug/L		112	63 - 134	
cis-1,2-Dichloroethene	25.0	24.6		ug/L		98	77 - 123	
Tetrachloroethene	25.0	22.9		ug/L		92	76 - 123	
trans-1,2-Dichloroethene	25.0	23.7		ug/L		95	75_124	
Trichloroethene	25.0	21.7		ug/L		87	70 - 122	
Vinyl chloride	12.5	13.5		ug/L		108	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		62 - 137
4-Bromofluorobenzene (Surr)	92		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	88		73 - 120

95

Lab Sample ID: 240-176621-A-2 MS Matrix: Water Analysis Batch: 553445

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	25.0	24.1		ug/L		97	56 - 135
cis-1,2-Dichloroethene	1.0	U	25.0	21.7		ug/L		87	66 - 128
Tetrachloroethene	1.0	U	25.0	21.4		ug/L		85	62 - 131
trans-1,2-Dichloroethene	1.0	U	25.0	21.1		ug/L		84	56 - 136
Trichloroethene	1.0	U	25.0	19.6		ug/L		78	61_124
Vinyl chloride	3.2		12.5	15.5		ug/L		99	43 - 157
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	84		62 - 137						
4-Bromofluorobenzene (Surr)	95		56 - 136						

78 - 122

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Type: Total/NA

QC Sample Results

Job ID: 240-176622-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Analysis Batch: 553445	21-A-2 MS									ent Sa	mple ID: I Prep Ty		
	MS			1 for 14 -									
Surrogate		Quali	tier	Limits									
Dibromofluoromethane (Surr)	84			73 - 120									
Lab Sample ID: 240-17662 Matrix: Water Analysis Batch: 553445	21-D-2 MSD						Clier	ıt Sar	mpl	e ID: N	latrix Spil Prep Ty		
	Sample	Samp	ole	Spike	MSD	MSD					%Rec		RP
Analyte	Result		fier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
1,1-Dichloroethene	1.0	U		25.0	23.9		ug/L			95	56 - 135	1	2
cis-1,2-Dichloroethene	1.0	U		25.0	21.3		ug/L			85	66 - 128	2	1
Tetrachloroethene	1.0	U		25.0	22.4		ug/L			90	62 - 131	5	2
trans-1,2-Dichloroethene	1.0	U		25.0	20.3		ug/L			81	56 - 136	4	1
Trichloroethene	1.0	U		25.0	19.7		ug/L			79	61 - 124	0	1
Vinyl chloride	3.2			12.5	14.4		ug/L			90	43 - 157	8	2
							-						
_		MSD											
Surrogate		Quali	fier	Limits									
1,2-Dichloroethane-d4 (Surr)	85			62 - 137									
4-Bromofluorobenzene (Surr)	94			56 - 136									
Toluene-d8 (Surr)	96			78_122									
lethod: 8260D SIM - V Lab Sample ID: MB 240-5		gani	c Com	pounds	(GC/M	S)		C	Clie	nt Sam	iple ID: M Prep Ty		
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water		ganio MB I		pounds	(GC/M	S)		C	Clie	nt Sam	-		
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221	53221/4	MB I		-		S) MDL Unit		D		nt Sam	-	pe: To	tal/N
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte	53221/4	MB I	MB Qualifier		RL						Prep Ty	pe: To	tal/N
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte	53221/4	MB sult (2.0 (MB Qualifier J		RL	MDL Unit					Prep Ty Analyz	pe: To	
Iethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane	53221/4	MB I sult (2.0 (MB /	MB Qualifier J MB		RL	MDL Unit			Pr	epared	Prep Ty <u>Analyz</u> <u>11/23/22</u>	2ed 06:09	tal/N Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane	53221/4	MB I sult (2.0 (MB / very (MB Qualifier J		RL	MDL Unit			Pr		Prep Ty 	2ed 06:09	tal/N Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane	53221/4	MB I sult (2.0 (MB /	MB Qualifier J MB		RL	MDL Unit			Pr	epared	Prep Ty <u>Analyz</u> <u>11/23/22</u>	2ed 06:09	tal/N Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water	53221/4 Re % <i>R</i> econ	MB I sult (2.0 (MB / very (MB Qualifier J MB		RL	MDL Unit		- <mark>D</mark> -	Pr Pr	epared repared	Prep Ty - Analyz 11/23/22 - Analyz 11/23/22 : Lab Cor Prep Ty	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	Dil Fa Dil Fa Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221	53221/4 Re % <i>R</i> econ	MB I sult (2.0 (MB / very (MB Qualifier J MB	<u>Limits</u> 66 - 12	RL	MDL Unit	CI	- <mark>D</mark> -	Pr Pr San	epared epared nple ID	Prep Ty <u>Analyz</u> 11/23/22 <u>Analyz</u> <u>Analyz</u> 11/23/22 : Lab Cor Prep Ty %Rec	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	tal/N Dil Fa Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte	53221/4 Re % <i>R</i> econ	MB I sult (2.0 (MB / very (MB Qualifier J MB	 	RL 2.0 0 LCS Result	MDL Unit	Cl	- <mark>D</mark> -	Pr Pr	epared epared nple ID	Analyz 4nalyz 11/23/22 4nalyz 11/23/22 11/23/22 Lab Cor Prep Ty %Rec Limits	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	Dil Fa Dil Fa Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte	53221/4 Re % <i>R</i> econ	MB I sult (2.0 (MB / very (MB Qualifier J MB	<u>Limits</u> 66 - 12	RL	MDL Unit	CI	- <mark>D</mark> -	Pr Pr San	epared epared nple ID	Prep Ty <u>Analyz</u> 11/23/22 <u>Analyz</u> <u>Analyz</u> 11/23/22 : Lab Cor Prep Ty %Rec	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	Dil Fa Dil Fa Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte	53221/4 Re % <i>R</i> econ	MB I sult (2.0 0 MB I very (76	MB Qualifier J MB	 	RL 2.0 0 LCS Result	MDL Unit	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID	Analyz 4nalyz 11/23/22 4nalyz 11/23/22 11/23/22 Lab Cor Prep Ty %Rec Limits	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	tal/N Dil Fa Dil Fa ampl
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane	53221/4 %Recov 553221/3	MB I sult 0 2.0 0 MB I very 0 76	MB Qualifier J MB Qualifier	 	RL 2.0 0 LCS Result	MDL Unit	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID	Analyz 4nalyz 11/23/22 4nalyz 11/23/22 11/23/22 Lab Cor Prep Ty %Rec Limits	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	tal/N Dil Fa Dil Fa ampl
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate	53221/4 Re %Recov 553221/3 	MB I sult 0 2.0 0 MB I very 0 76	MB Qualifier J MB Qualifier		RL 2.0 0 LCS Result	MDL Unit	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID	Analyz 4nalyz 11/23/22 4nalyz 11/23/22 11/23/22 Lab Cor Prep Ty %Rec Limits	pe: To 2ed 06:09 2ed 06:09 - 100 - - - - - - - - - - - - -	Dil Fa Dil Fa Dil Fa
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1765 Matrix: Water	53221/4 Re %Recov 553221/3 LCS %Recovery 	MB I sult 0 2.0 0 MB I very 0 76	MB Qualifier J MB Qualifier		RL	MDL Unit 0.86 ug/L LCS Qualifier	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID <u>%Rec</u> 93	Prep Ty Analyz 11/23/22 Analyz 11/23/22 Lab Cor Prep Ty %Rec Limits 80 - 122 mple ID: I Prep Ty	pe: To red 06:09 06:09 ntrol Sa pe: To Matrix	tal/N Dil Fa Dil Fa ampl tal/N
lethod: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1765 Matrix: Water	53221/4 Re %Recov 553221/3 LCS %Recovery 	MB I sult (2.0 (MB I very (76	MB Qualifier J MB Qualifier		RL	MDL Unit	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID <u>%Rec</u> 93	Prep Ty <u>Analyz</u> 11/23/22 <u>Analyz</u> 11/23/22 : Lab Cor Prep Ty %Rec Limits 80 - 122 mple ID: I	pe: To red 06:09 06:09 ntrol Sa pe: To Matrix	tal/N Dil Fa Dil Fa ampl tal/N
Dibromofluoromethane (Surr) Attend: 8260D SIM - V Lab Sample ID: MB 240-5 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-4 Matrix: Water Analysis Batch: 553221 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 240-1765 Matrix: Water Analysis Batch: 553221 Analysis Batch: 553221 Analysis Batch: 553221 Analysis Batch: 553221	53221/4 	MB I sult (2.0 0 MB I very (76 LCS Quali	MB Qualifier J MB Qualifier		RL 2.0 0 LCS Result 9.27 MS	MDL Unit 0.86 ug/L LCS Qualifier	Cl	- <mark>D</mark> -	Pr Pr San	epared epared nple ID <u>%Rec</u> 93	Prep Ty Analyz 11/23/22 Analyz 11/23/22 Lab Cor Prep Ty %Rec Limits 80 - 122 mple ID: I Prep Ty	pe: To red 06:09 06:09 ntrol Sa pe: To Matrix	tal/N, Dil Fa Dil Fa ampl tal/N,

Eurofins Canton

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS Qualifier	l imits									
77	Quanner	66 - 120									5
5-B-1 MSD					Client	Samp	le ID: N				6
•	•	Spike Added	-	-	Unit	р	%Rec	%Rec Limits	RPD	RPD Limit	
14		10.0	27.3		ug/L		128	51 - 153	4	16	8
MSD	MSD										
%Recovery	Qualifier	Limits									9
81		66 - 120									
	5-B-1 MSD Sample Result 14 <i>MSD</i> %Recovery	5-B-1 MSD Sample Result 14 MSD MSD %Recovery Qualifier	77 66 - 120 5-B-1 MSD Sample Spike Result Qualifier Added 14 10.0 MSD MSD %Recovery Qualifier Limits	Triangle Sample Spike MSD 5-B-1 MSD Sample Spike MSD Result Qualifier Added Result 14 10.0 27.3 MSD MSD %Recovery Qualifier Limits	Triangle Sample Spike MSD Sample Sample Spike MSD Result Qualifier Added Result 14 10.0 27.3 Qualifier MSD MSD MSD %Recovery Qualifier Limits	77 66 - 120 5-B-1 MSD Client Sample Sample Spike MSD Result Qualifier Added Result Qualifier Unit 14 10.0 27.3 ug/L MSD MSD %Recovery Qualifier Limits	77 66 - 120 5-B-1 MSD Client Sample Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier Unit D MSD MSD 10.0 27.3 Qualifier Unit D MSD MSD MSD %Recovery Qualifier Limits	77 66 - 120 5-B-1 MSD Client Sample ID: N Sample Spike MSD MSD Result Qualifier Added Result Qualifier Unit D %Rec MSD MSD MSD MSD Unit D %Rec MSD MSD MSD MSD Unit D %Rec %Recovery Qualifier Limits Limits Limits	77 66 - 120 5-B-1 MSD Client Sample ID: Matrix Spil Prep Ty Sample Sample Qualifier Spike Added 10.0 MSD 27.3 MSD ug/L D %Rec 128 MSD %Recovery MSD Qualifier MSD Limits	Triangle Spike MSD MSD Client Sample ID: Matrix Spike Dup Prep Type: Tot Sample Sample Spike MSD MSD WRec MSD MSD 27.3 Qualifier Unit D %Rec MSD MSD 27.3 Qualifier Unit D %Rec Elimits RPD %Recovery Qualifier Limits Limits RPD 4	Triangle Spike MSD MSD

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 553221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-176622-2	MW-116S_111522	Total/NA	Water	8260D SIM	
MB 240-553221/4	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-553221/3	Lab Control Sample	Total/NA	Water	8260D SIM	
240-176555-B-1 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-176555-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-176622-1	TRIP BLANK_216	Total/NA	Water	8260D	
240-176622-2	MW-116S_111522	Total/NA	Water	8260D	
MB 240-553445/8	Method Blank	Total/NA	Water	8260D	
LCS 240-553445/5	Lab Control Sample	Total/NA	Water	8260D	
240-176621-A-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-176621-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Job ID: 240-176622-1

Matrix: Water

Lab Sample ID: 240-176622-1

Client Sample ID: TRIP BLANK_216 Date Collected: 11/15/22 00:00 Date Received: 11/17/22 08:00

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1 _	553445	LEE	EET CAN	11/25/22 14:44	
Client Sam	ple ID: MW	/-116S_111522					Lab	Sample ID: 240-1766	522
Date Collecte	d: 11/15/22 1	1:32						Matrix:	Wat
Date Receive	d: 11/17/22 0	8:00							
_	Batch	Batch		Dilution	Batch			Prepared	
D	T			F		A			

Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	553445	LEE	EET CAN	11/25/22 18:55
Total/NA	Analysis	8260D SIM		1	553221	CS	EET CAN	11/23/22 15:52

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-27-23	
Connecticut	State	PH-0590	12-31-23	
Florida	NELAP	E87225	06-30-23	
Georgia	State	4062	02-27-23	
Illinois	NELAP	200004	07-31-23	
lowa	State	421	06-01-23	
Kentucky (UST)	State	112225	02-27-23	
Kentucky (WW)	State	KY98016	12-31-22	
Minnesota	NELAP	039-999-348	12-31-22	
Minnesota (Petrofund)	State	3506	08-01-23	
New Jersey	NELAP	OH001	06-30-23	
New York	NELAP	10975	04-01-23	
Ohio	State	8303	02-27-23	
Ohio VAP	State	CL0024	02-27-23	
Oregon	NELAP	4062	02-27-23	
Pennsylvania	NELAP	68-00340	08-31-23	
Texas	NELAP	T104704517-22-17	08-31-23	
Virginia	NELAP	460175	09-14-23	
Washington	State	C971	01-12-23	
West Virginia DEP	State	210	12-31-22	

No. Sult 646 Control funder Control funder Control funder 4877 4877 Control funder Control funder 4877 2000 Control funder Control funder 7015 2000 2000 Control funder 7015 2000 2000 2000 7015 2016 2000 2000 7015 2016 2000 2000 7015 2016 2000 2000 7015 2016 2000 2000 7015 2016 2000 2000 7015 2016 2000 2000 7015 2015 2000 2000 7015 2000 2000 2000 7015 2000 2000 2000 <th>Client Contact Tes</th> <th>tAmerica Laboratory location: Brighton</th> <th>10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 DW F NPDES F KCRA F Other</th> <th>29-2763</th> <th>THE LEADER IN & NURONNENTAL LENTING</th>	Client Contact Tes	tAmerica Laboratory location: Brighton	10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 DW F NPDES F KCRA F Other	29-2763	THE LEADER IN & NURONNENTAL LENTING
Ond Haldey Jan Contact Chrindia Wearer Jan Contact Was 10,4073-036 Contact Chrindia Wearer Contact March Industrie Contact March Industrie Contact Chrindia Wearer Contact March Industrie Contact March Indus	ompany Name: Arcadis	T			TestAmerica Laboratories. Inc.
Reprint Tophne: July 100 Tophne: July 100 Tophne: July 100 Tophne: July 100 With Tophne: July 100 Market 100 Market 100 Market 100 Market 100 With Tophne: July 100 Market 100 Market 100 Market 100 Market 100 With Tophne: July 100 Market 100 Market 100 Market 100 Market 100 With Tophne: July 100 Market 100 Market 100 Market 100 Market 100 With Toph 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Market 100 Ma	dress: 28550 Cabot Drive, Suite 500	Client Project Manager: Kris Hinskey	Site Contact: Christina Weaver	Lab Contact: Mike DelMonico	
Garceliston Australia Australia Contraction	v/State/Zin-Novi MI 48177	Telephone: 248-994-2240	Telephone: 248-994-2293	Telephone: 330-497-9396	
Multi-field Multi-field Multi-field Multi-field ur. 1045 1<	1/004 TAL TAL TAL	Email: kristoffer.hinskey@arcadis.com	Analysis Turnaround Time	Analyses	
Image: Notation of the state of th	ne: 243-994-1240 ject Name: Ford LTP Off-Site ject Number: 30146655.402.04	.5	reeks reeks		Walk-in client Lab sampling
Image: Name Antimetry Constants Constants <thconstants< th=""> <thcons< th=""> Con</thcons<></thconstants<>	# 30146655.402.04		C \ CL8P=	€ 8560B 5E 8560E 8560B	Job/SDG No:
1 1 1 NGG X X X X X X 1 1 1 NGG K X X X X X X 3 VONG for 82 3 VONG for 82 4	Sample Identification	Sample Time Air Sould Sample Time	Composite=Compos	Cls-1,2-DCE Trans-1,2-DCE PCE 82608 Vinyl Chlorid	Sample Specific Notes / Special Instructions:
12 6 14 14 3 VOAs for £2 3 VOAs for £2 4 VOAS for £2 10 VITAN 10 VIT	TRIP BLANK_216		0 Z	X X X	1 Trip Blank
Profile Profile Profile Classical Compared Compared	2023111-5911-MW	11:32	6 N	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3 VOAs for 8260B 3 VOAs for 8260B SIM
DaterTime: 12 15:25 Received by: 14/15/22 15:25 Received by: 11/15/22 15:25 Received by: 11/16/22 Company: Company: Company: DaterTime: 11/16/22 DaterTime: 11/16/22 Loi4G PORAMINE: Company: Company: DaterTime: 11/16/22 Loi4G PORAMINE: DaterTime: 11/16/22 Loi4G PORAMINE: DaterTime: 11/1733	ossible Hazard Identification < Non-Hazard Contification	C Unkr	Sample Disposal (A fee may be assessed if as	mples are retained longer than 1 month) the Archive For Months	
applied with TUPUN. TOPOLOGIC Partition: 15:25 Records and Company and the Part of 11/15/22 Phyloche and Company and the Part of 11/16/27 1033 Records and a company. Company: Date Time: Date Time: Date that contains a name of the Part of 11/16/22 Loi 4G ADA Contains Company: Company: Date Time:	nple Address: 24651 WudSWO mit all results through Cadena at jtomalia@cade et IV Reporting requested.	ſ		Bandis	
1-1/2 MILES 10: 10 Margare X 10 10 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Date/Time Date/Time Date/Time Date/Time	Received by Received by Received in Lation Action	Сопралу:	5/22
	18. Fandwares I. Gondona, Jr., Al Agin maneed America I. Unago * are retaining a l'advinces I. accasors, je.,				199

5

14

					2.2
Eurofins - Canton San	nple Receipt Form/N	arrative	Login #	: 1766	dd
Barberton Facility					1.11
lient HRCadi D		Site Name			packed by:
Cooler Received on		Opened on <u> - </u>	7-22	KAchel	le HAidet
FedEx: 1 st Grd Exp	UPS FAS Clipper	Client Drop Off 1	Eurofins Courier (Other	
Receipt After-hours: Dr			Storage Location		
Eurofins Cooler #	Form Box	Client Cooler Bo			
Packing material use		Foam Plastic Bag			
COOLANT: Cooler temperature u	Wet Ice Blue Ice	Dry Ice Water	None See Multiple Cooler	P	
-	F +0.7 °C) Observed		°C Corrected Cooler		°C
	F 0.0°C) Observed (C Corrected Cooler		C
2. Were tamper/custody				es No	
	the outside of the coole			es No (NA)	Tests that are not checked for pH by
	ody seals on the bottle(s			es No	Receiving:
-Were tamper/custo	ody seals intact and unc	ompromised?	Y	es No NA	
3. Shippers' packing slip				es No	VOAs Oil and Grease
4. Did custody papers a				es No	TOC
	ers relinquished & sign			es No	
-	(s) who collected the same		7	es No	az
7. Did all bottles arrive 8. Could all bottle labels		,		es No	and y do
9. For each sample, doe					rab/comp
10. Were correct bottle(s				es No	
1. Sufficient quantity re				es) No	
12. Are these work share			Y	es No.	
If yes, Questions 13-	17 have been checked a	t the originating labora		\sim	
13. Were all preserved sa		H upon receipt?	Y	es No NA pl	H Strip Lot# HC286797
14. Were VOAs on the (e	es No	
 Were air bubbles >6 Was a VOA trip blar 				es No NA	
17. Was a LL Hg or Me		s)? The Blank Lot # C	1042010	es No	
Contacted PM	Date	by	via Verbal	Voice Mail Oth	er
Concerning					
18. CHAIN OF CUSTO			dditional next page	Complexed	and have
a. CHAIN OF CUSIC	JDY & SAMPLE DISC	CREPANCIES Da	dditional next page	Samples proc	cessed by:
					-
19. SAMPLE CONDIT	TION				
Sample(s)	-	were received after th	e recommended hold	ding time had ex	pired.
Sample(s)			were receive	d in a broken co	ntainer.
Sample(s)		were received	with bubble >6 mm	in diameter. (No	otify PM)
20. SAMPLE PRESER					
ample(s)			were fi	uther preserved	in the laboratory
Sample(s) Fime preserved:	Preservative(s) a	dded/Lot number(s):	weie It	inder preserved	ai are incortatory.
/OA Sample Preservatio	n - Date/Time VOAs Fi	rozen.			

Login #: 176622

	Eurofins - Canton	and and the second s		Content
Cooler Description (Circle)	IR Gun #	Observed Temp_°C	Corrected Temp °C	Coolant (Circle)
	(Circle)		Tenip G	Wet Ice Blue Ice Dry k
Client Box Other	IR-1 H-1			Wet Ice) Blue Ice Dry Ic
TA Client Box Other	IR-13 IR-15	.6	.(0 (Water None
n Client Box Other	IR-13 IR-15		V X	Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15	<u></u>		Wet ice Blue ice Dry ic
TA Client Box Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ic
	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ic
TA Client Box Other	IR-13 IR-15		· · · · · · · · · · · · · · · · · · ·	Water None Wetice Blue ice Dry ic
TA Client Box Other			and the second	Water None
TA Client Box Other	iR-13 IR-15			Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15		an a	Wetice Blue Ice Dry Ic
TA Client Box Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ic
	IR-13 IR-15			Water None Wet ice Blue ice Dry ic
TA Client Box Other	IR-13 IR-15			Water None Wet ice Blue ice Dry ice
TA Client Box Other				Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15	an a		Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wellice Bluelice Dry ka
TA Client Box Other	IR-13 IR-15			Water None Wetice Blue ice Dry ice
	IR-13 IR-15			Water None Wet ice Blue ice Dry ice
TA Client Box Other	IR-13 IR-15			Water None Wetice Blue ice Dry ice
TA Client Box Other				Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice
	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Client Box Other	IR-13 IR-15			Water None Wet ice Blue ice Dry ice
TA Client Box Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry ice
TA Client Box Other				Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

DATA VERIFICATION REPORT

December 03, 2022

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30146655.402.04 off-site Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Barberton Laboratory submittal: 176622-1 Sample date: 2022-11-15 Report received by CADENA: 2022-12-02 Initial Data Verification completed by CADENA: 2022-12-03 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than $10x$ the blank concentration and is considered non-detect at the reported concentration.
E	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Barberton Laboratory Submittal: 176622-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BL/ 2401760 11/15/2		j		MW-116 2401766 11/15/2	5222	22	
				Report		Valid	Report			Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
<u>OSW-826</u>	<u>0D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-826</u>	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-176622-1 CADENA Verification Report: 2022-12-03

Analyses Performed By: TestAmerica North Canton, Ohio

Report # 47934R Review Level: Tier III Project: 30146655.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-176622-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

O annual a ID			Sample Collection	Devent Occursio	Analysis			
Sample ID	Lab ID	Matrix	Date	Parent Sample	VOC	VOC SIM		
TRIP BLANK_216	240-176622-1	Water	11/15/2022		Х			
MW-116S_111522	240-176622-2	Water	11/15/2022		Х	Х		

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of Quality Assurance or sample problems provided		х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005 November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified, and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample is not collected for samples from this SDG.

DATA REVIEW

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

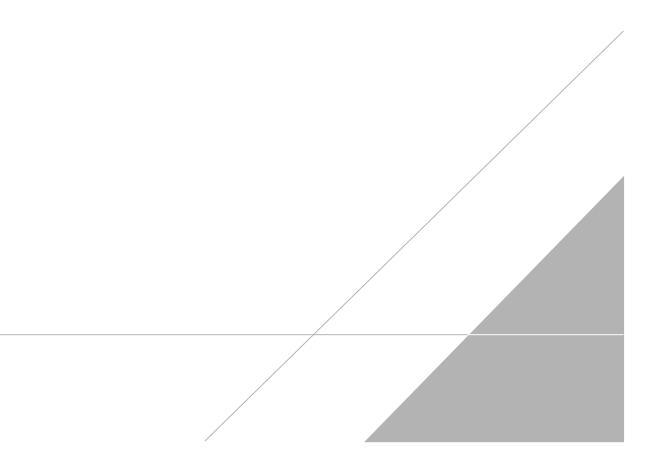
VOCs: 8260D/8260D-SIM	Rep	orted		rmance eptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation		I			1	
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
lon abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	Х				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

- RPD Relative percent difference
- %D Percent difference


VALIDATION PERFORMED BY:	Hareesha Naik
SIGNATURE:	Habit
DATE:	December 16, 2022

PEER REVIEW: Andrew Korycinski

DATE: December 17, 2022

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

Client Contact ompany Name: Arcadis	Regulat						N			r RC			Other	1							Te	stAmerica Laboratories,
Idress: 28550 Cabot Drive, Suite 500	Client Project N	lanager: Kris	Hinske	y			Site Co	ntact: (Chris	tina W	/eaver			1.1	b Con	act: N	fike D	elMor	nico			OC No:
	Telephone: 248	-994-2240					Telephone: 248-994-2293				T	Telephone: 330-497-9396 Analyses										
ty/State/Zip: Novi, MI, 48377	Email: kristoff	r hinskav(a a	cadie e													1 of 1 COCs For lab use only						
ione: 248-994-2240	E-mail. Ki istorit	er	cauis.co	FIG							Thick			Т	-	—	Т		7303		For	Tab use only
roject Name: Ford LTP Off-Site	Sampler Name		. 1	-			TAT if d	ifferent fr		low 3 weeks	, L										Wa	lk-in client
		Method of Shipment/Carrier:			10 d	lay		2 weeks			15								Lat	sampling		
roject Number: 30146655.402.04	Method of Ship								l week 2 days		Î	Ŷ		g				SIM		12		
D # 30146655.402.04	Shipping/Track	ing No:							r i			Ś	Grab					PEDF	OB		Jot	SDG No:
			-	Ma	trix	_	C	ntainer	A P	reserve	titre	Sample (Y / N)	C/ C					Vinyl Chloride 8260B	1,4-Dioxane 8260B			
					TT		T		T	TCSCI VA	T	1 Sar	Composite=C / (CIS-1,Z-UCE 02 Trans-1 2-DCE		TCE 82608	lorid	kane		F	
				Aqueous	2	Others	H2SO4 HN03	-	HOW	H	E Li	Filtered	Composite	3 3		a	8		Dio			Sample Specific Notes / Special Instructions:
Sample Identification	Sample Date	Sample Time	Air	Aqueo	Solid	õ	H	HCI	N	Capril Capril	ίõ	Ē	ů ;		L CIS		P P	, i	4.			special instructions.
TRIP BLANK_216	11/15/22			1				1				N	G)	$\langle \rangle$	$\langle \rangle$							1 Trip Blank
1. 1. 1. 0		11.00			+	_		+		-			-	+						┝─┝─┝─		
MW-1165_111522	11/15/22	11:32	- 16	2				6				M	0	$\chi/$	(K		K	X	X			3 VOAs for 8260B 3 VOAs for 8260B SIM
								11					1	1				-	-			
			+	_	+		_		_		1	\downarrow	-	_		-		_	_			
			++		+			+-+	-+-	+	+			-+-		-	-	+	_			· · · · · · · · · · · · · · · · · · ·
	i.																					
											1					-	-					
			++	-	\vdash			\downarrow	_		-						-		non icht	1001010		
												1 1										
				+	+			+	-+	-+-	+	- 1										
												11										
				+				+	+		+	1 1					IMAL		u unuu mu	18 (18t (801	-	· ··· ·· ··· ··· ···
												1 :	240-1	7662	22 Ch	ain d	of Cu	stou				
												T								E E I I		
Possible Hazard Identification					1.1	-+	Sam	ale Dis	Dosal	(A fee	may be	1	d lf en		050 50	lainad	lones	r than	1			
Non-Hazard Flammable Skin I	Irritant 👘 Poiso	n B	Unkno	wn	_		Γ	Return	n to C	lient	. may be	Disposa	By L	ib	Г	Arch	ive For	ſ		onths		
pecial Instructions/QC Requirements & Comments: ample Address: 34851 Wadswor ubmit all results through Cadena at jtomalia@caden	the																					
ubmit all results through Cadena at jtomalia@caden	aco.com. Cadena #	E203631																				
evel IV Reporting requested.					_							_								Andis		
elinquished by DMith Remem	Company:	fic	D	ate/Tir	151	01	15:	10	Receiv	Yer	π (ald	0	- 4	GI		Cor	поалу	11.2	W Star	Dat	le/Time:
elinquished by:	Company:	~		ate/Tjr	121	4	-		Danais	ved by:	1 p	311	Y	0//	X		1	V.L.		and the		1/15/22 15
++ MAKATAN	ARCI	AOTS			6/2	7	103	351	Recen		K	/	00	_	1		Cot	npany	2	TA	Dat	1/16/22 1039
elinquished by:	Company:	- 1		ate/Tir					Recei	ived in	Labora	ory by:	T			<u></u>	Co	пралу		_ 11		te/Time:
mentto	Company: EE	H	1	116	122	2 10	5:41		K	an	Ael	2	kin	10	100	0		15	-	THIC		-1722 FOC
12008. TestAmerica Laboratorias, Inc., All rights reserved. estAmerica & Usegn ** are trademarka of FestAmerica Laboratorias, Inc.	1			U	1			- '	T				V									
All-America & Usedan " are tradements (I LastAmerica) storationes									- 1													

12/2/2022

Qualifiers

GC/MS VOA	Outlifier Description
Qualifier	Qualifier Description Indicates the analyte was analyzed for but not detected.
0	
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

Client Sample ID: TRIP BLANK_216 Date Collected: 11/15/22 00:00 Date Received: 11/17/22 08:00

Job ID: 240-176622-1

Lab Sample ID: 240-176622-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 14:44	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 14:44	1	
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 14:44	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 14:44	1	
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 14:44	1	
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 14:44	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	ī
1,2-Dichloroethane-d4 (Surr)	97		62 - 137					11/25/22 14:44	1	
4-Bromofluorobenzene (Surr)	77		56 - 136					11/25/22 14:44	1	
Toluene-d8 (Surr)	92		78 - 122					11/25/22 14:44	1	
Dibromofluoromethane (Surr)	93		73 - 120					11/25/22 14:44	1	

Client Sample ID: MW-116S_111522 Date Collected: 11/15/22 11:32 Date Received: 11/17/22 08:00

Job ID: 240-176622-1

Lab Sample ID: 240-176622-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/23/22 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		66 - 120			-		11/23/22 15:52	1
Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 18:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 18:55	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 18:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 18:55	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 18:55	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137			-		11/25/22 18:55	1
4-Bromofluorobenzene (Surr)	76		56 - 136					11/25/22 18:55	1
Toluene-d8 (Surr)	94		78 - 122					11/25/22 18:55	1
Dibromofluoromethane (Surr)	96		73 - 120					11/25/22 18:55	1