PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 12/2/2022 10:13:18 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-176627-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 12/2/2022 10:13:18 AM

Authorized for release by
Opal Johnson, Project Manager II
Opal.Johnson@et.eurofinsus.com
Designee for
Michael DelMonico, Project Manager I
Michael.DelMonico@et.eurofinsus.com

(330)497-9396

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-176627-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

6

4

6

8

10

11

13

Definitions/Glossary

Client: ARCADIS U.S., Inc.

Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Canton

Page 4 of 20 12/2/2022

Case Narrative

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-176627-1

Job ID: 240-176627-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-176627-1

Comments

No additional comments.

Receipt

The samples were received on 11/17/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.1° C and 1.6° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-176627-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CAN
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

5

6

Q

10

12

13

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Job ID: 240-176627-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-176627-1	TRIP BLANK_195	Water	11/15/22 00:00	11/17/22 08:00
240-176627-2	MW-180SR_111522	Water	11/15/22 15:10	11/17/22 08:00

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_195 Lab Sample ID: 240-176627-1

No Detections.

No Detections.

3

4

5

_

8

9

11

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_195

Date Collected: 11/15/22 00:00 Date Received: 11/17/22 08:00 Lab Sample ID: 240-176627-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 15:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 15:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 15:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 15:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 15:34	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					11/25/22 15:34	1
4-Bromofluorobenzene (Surr)	79		56 ₋ 136					11/25/22 15:34	1
Toluene-d8 (Surr)	95		78 - 122					11/25/22 15:34	1
Dibromofluoromethane (Surr)	92		73 - 120					11/25/22 15:34	1

2

5

g

10

12

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-180SR_111522 Lab Sample ID: 240-176627-2

72

90

95

Date Collected: 11/15/22 15:10 **Matrix: Water**

Date Received: 11/17/22 08:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: SW846 8260D SIM	l - Volatile Orga	anic Comp	ounds (GC/M	IS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/27/22 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		66 - 120			•		11/27/22 23:56	1
_ Method: SW846 8260D - Vo	olatile Organic	Compound	ds bv GC/MS						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 19:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 19:45	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 19:45	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 19:45	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 19:45	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137					11/25/22 19:45	1

56 - 136

78 - 122

73 - 120

11/25/22 19:45

11/25/22 19:45

11/25/22 19:45

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Pe	ercent Surro	ogate Reco
			DCA	BFB	TOL	DBFM
L	Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
2	240-176621-A-2 MS	Matrix Spike	84	95	95	84
2	240-176621-D-2 MSD	Matrix Spike Duplicate	85	94	96	85
2	240-176627-1	TRIP BLANK_195	98	79	95	92
2	240-176627-2	MW-180SR_111522	99	72	90	95
L	_CS 240-553445/5	Lab Control Sample	86	92	97	88
Ν	MB 240-553445/8	Method Blank	89	77	91	88

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-176627-2	MW-180SR_111522	80	
240-176634-I-5 MS	Matrix Spike	80	
240-176634-O-5 MSD	Matrix Spike Duplicate	80	
LCS 240-553480/3	Lab Control Sample	76	
MB 240-553480/4	Method Blank	76	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Canton

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-553445/8

Matrix: Water

Analysis Batch: 553445

Client Sample ID: Mo	ethod Blank
Prep Ty	pe: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 13:03	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 13:03	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 13:03	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 13:03	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 13:03	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 13:03	1

	MB MB				
Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	62 - 137		11/25/22 13:03	1
4-Bromofluorobenzene (Surr)	77	56 - 136		11/25/22 13:03	1
Toluene-d8 (Surr)	91	78 - 122		11/25/22 13:03	1
Dibromofluoromethane (Surr)	88	73 - 120		11/25/22 13:03	1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	89 77 91	62 - 137 56 - 136 78 - 122		11/25/22 13:03 11/25/22 13:03	

Lab Sample ID: LCS 240-553445/5

Matrix: Water

Analysis Batch: 553445

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene 25.0 28.1 ug/L 112 63 - 134 cis-1,2-Dichloroethene 25.0 24.6 ug/L 98 77 - 123 Tetrachloroethene 25.0 22.9 92 76 - 123 ug/L 75 - 124 trans-1,2-Dichloroethene 25.0 ug/L 23.7 95 Trichloroethene 25.0 21.7 ug/L 87 70 - 122 Vinyl chloride 108 60 - 144 12.5 13.5 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		62 - 137
4-Bromofluorobenzene (Surr)	92		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	88		73 - 120

Lab Sample ID: 240-176621-A-2 MS

Matrix: Water

Analysis Batch: 553445

Client Sample ID: Matrix Spike Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	25.0	24.1		ug/L		97	56 - 135	
cis-1,2-Dichloroethene	1.0	U	25.0	21.7		ug/L		87	66 - 128	
Tetrachloroethene	1.0	U	25.0	21.4		ug/L		85	62 - 131	
trans-1,2-Dichloroethene	1.0	U	25.0	21.1		ug/L		84	56 - 136	
Trichloroethene	1.0	U	25.0	19.6		ug/L		78	61 - 124	
Vinyl chloride	3.2		12.5	15.5		ug/L		99	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		62 - 137
4-Bromofluorobenzene (Surr)	95		56 - 136
Toluene-d8 (Surr)	95		78 - 122

Eurofins Canton

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-176621-A-2 MS

Matrix: Water

Analysis Batch: 553445

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 84 73 - 120

Lab Sample ID: 240-176621-D-2 MSD

Matrix: Water

Analysis Batch: 553445

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	25.0	23.9		ug/L		95	56 - 135	1	26
cis-1,2-Dichloroethene	1.0	U	25.0	21.3		ug/L		85	66 - 128	2	14
Tetrachloroethene	1.0	U	25.0	22.4		ug/L		90	62 - 131	5	20
trans-1,2-Dichloroethene	1.0	U	25.0	20.3		ug/L		81	56 - 136	4	15
Trichloroethene	1.0	U	25.0	19.7		ug/L		79	61 - 124	0	15
Vinyl chloride	3.2		12.5	14.4		ug/L		90	43 - 157	8	24

MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 85 62 - 137 4-Bromofluorobenzene (Surr) 94 56 - 136 Toluene-d8 (Surr) 96 78 - 122 Dibromofluoromethane (Surr) 85 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-553480/4

Matrix: Water

Analysis Batch: 553480

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 11/27/22 19:42 2.0 U 0.86 ug/L

MB MB

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 76 66 - 120 11/27/22 19:42

Lab Sample ID: LCS 240-553480/3

Matrix: Water Prep Type: Total/NA **Analysis Batch: 553480**

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec 1,4-Dioxane 10.0 8.98 ug/L 90 80 - 122

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 76

Lab Sample ID: 240-176634-I-5 MS

Matrix: Water

Analysis Batch: 553480

Analysis Batom 600400	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.2		ug/L		102	51 - 153	

Eurofins Canton

12/2/2022

Prep Type: Total/NA

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	MS %Recovery		Limits								
1,2-Dichloroethane-d4 (Surr)	80		66 - 120								
Lab Sample ID: 240-1766 Matrix: Water Analysis Batch: 553480	634-O-5 MSD					Client	Samp	le ID: N	latrix Spil Prep Ty		
Times Control Contro	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	10.4		ug/L		104	51 - 153	2	16
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1 2-Dichloroethane-d4 (Surr)	80		66 120								

_

4

0

8

9

4 4

14

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1 Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 553445

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-176627-1	TRIP BLANK_195	Total/NA	Water	8260D	
240-176627-2	MW-180SR_111522	Total/NA	Water	8260D	
MB 240-553445/8	Method Blank	Total/NA	Water	8260D	
LCS 240-553445/5	Lab Control Sample	Total/NA	Water	8260D	
240-176621-A-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-176621-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 553480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-176627-2	MW-180SR_111522	Total/NA	Water	8260D SIM	
MB 240-553480/4	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-553480/3	Lab Control Sample	Total/NA	Water	8260D SIM	
240-176634-I-5 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-176634-O-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Date Received: 11/17/22 08:00

Client Sample ID: TRIP BLANK_195

Lab Sample ID: 240-176627-1 Date Collected: 11/15/22 00:00

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number Analyst or Analyzed Type Lab 11/25/22 15:34 Total/NA Analysis 8260D 553445 LEE EET CAN

Client Sample ID: MW-180SR_111522 Lab Sample ID: 240-176627-2

Date Collected: 11/15/22 15:10 **Matrix: Water**

Date Received: 11/17/22 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	553445	LEE	EET CAN	11/25/22 19:45
Total/NA	Analysis	8260D SIM		1	553480	CS	EET CAN	11/27/22 23:56

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23
Connecticut	State	PH-0590	12-31-23
Florida	NELAP	E87225	06-30-23
Georgia	State	4062	02-27-23
Illinois	NELAP	200004	07-31-23
Iowa	State	421	06-01-23
Kentucky (UST)	State	112225	02-27-23
Kentucky (WW)	State	KY98016	12-31-22
Minnesota	NELAP	039-999-348	12-31-22
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	04-01-23
Ohio	State	8303	02-27-23
Ohio VAP	State	CL0024	02-27-23
Oregon	NELAP	4062	02-27-23
Pennsylvania	NELAP	68-00340	08-31-23
Texas	NELAP	T104704517-22-17	08-31-23
Virginia	NELAP	460175	09-14-23
Washington	State	C971	01-12-23
West Virginia DEP	State	210	12-31-22

4

5

6

8

9

10

12

13

MICHIGAN 190	Chain TestAmerica Laboratory Incation: Briotton — 10448 Citatis	Chain of Custody Record 10448 Citation Drive. Suite 2007 Britain M 48116 / 810-228-2763	<u>TestAmerica</u>
Client Contact	-	NPDES RCRA Other	THE TAX THE INTERPRETABLE IN THE PARTY OF TH
Company Name: Arcadis	Client Project Manager: Kris Hinskey	Site Contact: Christina Weaver I ab Contact: Mike Del Monico	TestAmerica Laboratories, Inc.
Address: 28550 Cabot Drive, Suite 500	Telephone: 248, 994-2240		
City/State/Zip: Novi, MI, 48377			1 of 1
Phone: 248-994-2240	Email: kristoffer.binskey@arcadis.com	Analysis Turnaround Time	ylly
Project Name: Ford LTP Off-Site Project Number: 30146655.402.04	Sampler Name: Sampler Name: Sampler Szeachler Method of Shipment Carrier:		Walk-in client Lab sampling
PO # 30146655.402.04	Shipping/I racking No:	608 Grab=6	
	Matrix	-DCE 850	
Sample Identification	Sample Date Sample Time Air Aducous Sediment	H12O4 H12O4 H12O4 H12O4 H12O4 H12O6 H13O4	Vinyl Sample Specific Notes / Specific N
TRIP BLANK_ 195	11/15/22	X X X X X X X X X X X X X X X X X X X	X 1 Trip Blank
1 MW-18052 111522	01:512215111	X X X X S 3	3 VOAs for 8260B 3 VOAs for 8260B SIM
		240-176627 Chain of Custody	
Possible Hazard Identification Non-Hazard Skin	Skin Irritani Poison II-	Sample Disposal (A fee may be assessed if samples are retained longer than I month)	an I month)
s/QC Requirements & Comments through Cadena at jtomalia@	3		Months
Relinquishophy: Relinquishophy:	Date/Time:	16.10 Received by: Cond Storage Graphy:	Theny: DateTime: 16.
Reinquished by:	S Date Time S	STAP CO	Date Time:
Relinquished by:	Date/Time	Received in Laboratory by Company	Date/Time:
	111111111	10:30 / March March & 1 of	2010

Login#: 176627

		Eurofins - Canton	Sample Receipt Mu	Iltiple Cooler Form	
Cooler Desc	ription	IR Gun#	Observed	Corrected	Coolant
(Circle)	(Circle)	Temp °C	Temp °C	(Circle)
Client Bo	x Other	IR-1 IR-15		-	Wet ice Blue ice Dry ice
TA Client So	x Other	IR-13 IR-15	1.6	.60	Wet ice Blue Ice Dry ice
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wel Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client So	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client So	x Other	ir-13 ir-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client 8c	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Bo	x Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
				☐ See Temp	erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

DATA VERIFICATION REPORT

December 05, 2022

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30146655.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory submittal: 176627-1 Sample date: 2022-11-15

Report received by CADENA: 2022-12-02

Initial Data Verification completed by CADENA: 2022-12-05

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory Submittal: 176627-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLANK_195 2401766271 11/15/2022				MW-180SR_111522 2401766272 11/15/2022			
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
<u>OSW-826</u>	<u>60D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-826	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

DATA REVIEW

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-176627-1

CADENA Verification Report: 2022-12-05

Analyses Performed By:

TestAmerica

North Canton, Ohio

Report # 47938R Review Level: Tier III Project: 30146655.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-176627-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) includes a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Analysis		
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM	
TRIP BLANK_195	240-176627-1	Water	11/15/22		Х		
MW-180SR_111522	240-176627-2	Water	11/15/22		X	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	Reported		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D- SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

Rep	orted	Performance Acceptable		Not
No	Yes	No	Yes	Required
C/MS)				
	Х		Х	
·				
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
Х				Х
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	X		X	
	Х		Х	
	No C/MS)	X X X X X X X X X X X X X X X X X X X	Reported Acce No Yes No C/MS) X X X X X X X X X X X X X	No Yes No Yes

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Vinayak Hegde

SIGNATURE:

DATE: December 14, 2022

PEER REVIEW: Andrew Korycinski

DATE: December 17, 2022

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

MICHIGAN

Chain of Custody Record

TestAmerica Laboratory location: Brighton — 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: NPDES RCRA Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Christina Weaver Lab Contact: Mike DelMonico Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2293 Telephone: 330-497-9396 City/State/Zip: Novi, M1, 48377 COCs 1 of 1 Analysis Turnaround Time Email: kristoffer.hinskey@arcadis.com Analyses For lab use only Phone: 248-994-2240 Sampler Name: TAT if different from below Walk-in client Project Name: Ford LTP Off-Site 3 weeks Samantha Szpaichler → 2 weeks Lab sampling Project Number: 30146655.402.04 1 week ~C/Grab=G 1.4-Dioxane 8260B SIM 2 days Vinyl Chloride 8260B PO# 30146655.402.04 Shipping/Tracking No: 1 day Job/SDG No: Matrix Containers & Preservatives Composite Sample Specific Notes / NaOH Solid HCI Special Instructions: Sample Identification Sample Date Sample Time TRIP BLANK_ 195 NGX X X X X 1 Trip Blank 11/15/22 MW-180SR_111522 3 VOAs for 8260B W 6 11/15/22/5:10 X 3 VOAs for 8260B SIM Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than I month) Non-Hazard Flammable Skin Irritant Disposal By Lab Special Instructions/QC Requirements & Comments:
Sample Address:
Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203631 Special Instructions/QC Requirements & Comments: Wadsworth St Level IV Reporting requested. Date/Time: 16 11/15/22 16:10 11/15/27 Date/Time (S) Relinquished b Date/Time: 11/1427 1035 Relinquished by Date/Time: 11-1722 800 62008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Dasign ** are trademarks of TestAmerica Laboratories, Inc.

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_195

Date Collected: 11/15/22 00:00 Date Received: 11/17/22 08:00 Lab Sample ID: 240-176627-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 15:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 15:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 15:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 15:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 15:34	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137					11/25/22 15:34	1
4-Bromofluorobenzene (Surr)	79		56 ₋ 136					11/25/22 15:34	1
Toluene-d8 (Surr)	95		78 - 122					11/25/22 15:34	1
Dibromofluoromethane (Surr)	92		73 - 120					11/25/22 15:34	1

2

5

g

10

12

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-176627-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-180SR_111522

Lab Sample ID: 240-176627-2

Date Collected: 11/15/22 15:10 **Matrix: Water** Date Received: 11/17/22 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/27/22 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		66 - 120					11/27/22 23:56	1
Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/22 19:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/22 19:45	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 19:45	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/22 19:45	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/22 19:45	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/22 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137			,		11/25/22 19:45	1
4-Bromofluorobenzene (Surr)	72		56 ₋ 136					11/25/22 19:45	1
Toluene-d8 (Surr)	90		78 - 122					11/25/22 19:45	1
Dibromofluoromethane (Surr)	95		73 - 120					11/25/22 19:45	1

12/2/2022