PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 3/29/2023 6:40:28 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-182082-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 3/29/2023 6:40:28 AM

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)497-9396

-6

4

5

7

8

10

11

13

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-182082-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
	8
Client Sample Results	9
	11
	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	

10

12

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	These commonly used appreviations may not be present in this report.			
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery			
CFL	Contains Free Liquid			
CFU	Colony Forming Unit			
CNF	Contains No Free Liquid			
DER	Duplicate Error Ratio (normalized absolute difference)			

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Canton

Page 4 of 19

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Job ID: 240-182082-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-182082-1

Receipt

The samples were received on 3/17/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.6°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

- 0

4

5

6

7

8

16

1 1

12

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-182082-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CAN
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Δ

-

O

R

9

11

12

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-182082-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-182082-1	TRIP BLANK_88	Water	03/16/23 00:00	03/17/23 08:00
240-182082-2	MW-150S_031623	Water	03/16/23 12:03	03/17/23 08:00

3

4

6

R

9

4 4

14

Detection Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-182082-1

Client Sample ID: TRIP BLANK_88 Lab Sample ID: 240-182082-1

No Detections.

No Detections.

1

6

g

10

11

13

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Date Received: 03/17/23 08:00

Client Sample ID: TRIP BLANK_88

Lab Sample ID: 240-182082-1 Date Collected: 03/16/23 00:00

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1.0 1,1-Dichloroethene 1.0 U 0.49 ug/L 03/23/23 19:47 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 03/23/23 19:47 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 03/23/23 19:47 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 03/23/23 19:47 Trichloroethene 1.0 U 1.0 0.44 ug/L 03/23/23 19:47 Vinyl chloride 1.0 U 1.0 0.45 ug/L 03/23/23 19:47 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 96 62 - 137 03/23/23 19:47 4-Bromofluorobenzene (Surr) 88 03/23/23 19:47 56 - 136 93 78 - 122 03/23/23 19:47 Toluene-d8 (Surr) Dibromofluoromethane (Surr) 94 73 - 120 03/23/23 19:47

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-150S_031623

Date Collected: 03/16/23 12:03 Date Received: 03/17/23 08:00

Dibromofluoromethane (Surr)

Lab Sample ID: 240-182082-2

03/23/23 23:57

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/20/23 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		66 - 120			-		03/20/23 15:01	1
Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/23/23 23:57	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/23/23 23:57	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 23:57	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/23/23 23:57	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 23:57	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/23/23 23:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		62 - 137			-		03/23/23 23:57	1
4-Bromofluorobenzene (Surr)	86		56 ₋ 136					03/23/23 23:57	1
Toluene-d8 (Surr)	94		78 ₋ 122					03/23/23 23:57	1

73 - 120

2

4

6

8

10

12

13

Surrogate Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-182082-1	TRIP BLANK_88	96	88	93	94
240-182082-2	MW-150S_031623	96	86	94	93
240-182089-E-2 MS	Matrix Spike	90	98	97	89
240-182089-F-2 MSD	Matrix Spike Duplicate	87	99	94	88
LCS 240-566543/4	Lab Control Sample	88	100	98	91
MB 240-566543/7	Method Blank	94	89	95	90

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-182082-2	MW-150S_031623	84	
240-182162-C-5 MSD	Matrix Spike Duplicate	95	
240-182162-F-5 MS	Matrix Spike	82	
LCS 240-566034/4	Lab Control Sample	86	
MB 240-566034/6	Method Blank	83	

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Canton

6

9

12

13

Job ID: 240-182082-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-566543/7

Matrix: Water

Analysis Batch: 566543

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 03/23/23 17:18 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 03/23/23 17:18 1.0 U 1.0 0.44 ug/L 03/23/23 17:18 Tetrachloroethene trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 03/23/23 17:18 Trichloroethene 1.0 U 1.0 0.44 ug/L 03/23/23 17:18 Vinyl chloride 1.0 U 1.0 0.45 ug/L 03/23/23 17:18

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		62 - 137		03/23/23 17:18	1
4-Bromofluorobenzene (Surr)	89		56 - 136		03/23/23 17:18	1
Toluene-d8 (Surr)	95		78 - 122		03/23/23 17:18	1
Dibromofluoromethane (Surr)	90		73 - 120		03/23/23 17:18	1

Lab Sample ID: LCS 240-566543/4

Matrix: Water

Analysis Batch: 566543

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	24.8		ug/L		99	63 - 134	
cis-1,2-Dichloroethene	25.0	23.9		ug/L		96	77 - 123	
Tetrachloroethene	25.0	26.8		ug/L		107	76 - 123	
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	75 - 124	
Trichloroethene	25.0	24.3		ug/L		97	70 - 122	
Vinyl chloride	12.5	9.62		ug/L		77	60 - 144	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		62 - 137
4-Bromofluorobenzene (Surr)	100		56 ₋ 136
Toluene-d8 (Surr)	98		78 - 122
Dibromofluoromethane (Surr)	91		73 - 120

Lab Sample ID: 240-182089-E-2 MS

Matrix: Water

Analysis Batch: 566543

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	25.0	22.0		ug/L		88	56 - 135	
cis-1,2-Dichloroethene	1.0	U	25.0	22.2		ug/L		89	66 - 128	
Tetrachloroethene	1.0	U	25.0	22.9		ug/L		92	62 - 131	
trans-1,2-Dichloroethene	1.0	U	25.0	21.9		ug/L		88	56 - 136	
Trichloroethene	1.0	U	25.0	21.4		ug/L		86	61 - 124	
Vinyl chloride	1.0	U	12.5	8.79		ug/L		70	43 - 157	

MS MS

Surrogate	%Recovery Qualifie	er Limits
1,2-Dichloroethane-d4 (Surr)	90	62 - 137
4-Bromofluorobenzene (Surr)	98	56 - 136
Toluene-d8 (Surr)	97	78 - 122

Eurofins Canton

3/29/2023

Client: ARCADIS U.S., Inc.

Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-182089-E-2 MS

Matrix: Water

Analysis Batch: 566543

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Dibromofluoromethane (Surr) 89

Lab Sample ID: 240-182089-F-2 MSD

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 566543

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.0	U	25.0	22.4		ug/L		90	56 - 135	2	26
1.0	U	25.0	22.1		ug/L		89	66 - 128	0	14
1.0	U	25.0	23.2		ug/L		93	62 - 131	1	20
1.0	U	25.0	21.9		ug/L		88	56 - 136	0	15
1.0	U	25.0	22.3		ug/L		89	61 - 124	4	15
1.0	U	12.5	9.02		ug/L		72	43 - 157	3	24
	Result 1.0 1.0 1.0 1.0 1.0 1.0	Sample Result Qualifier	Result Qualifier Added 1.0 U 25.0 25.0 25.0 25.0	Result Qualifier Added Result 1.0 U 25.0 22.4 1.0 U 25.0 22.1 1.0 U 25.0 23.2 1.0 U 25.0 21.9 1.0 U 25.0 22.3	Result Qualifier Added Result Qualifier 1.0 U 25.0 22.4 1.0 U 25.0 22.1 1.0 U 25.0 23.2 1.0 U 25.0 21.9 1.0 U 25.0 22.3	Result Qualifier Added Result Qualifier Unit 1.0 U 25.0 22.4 ug/L 1.0 U 25.0 22.1 ug/L 1.0 U 25.0 23.2 ug/L 1.0 U 25.0 21.9 ug/L 1.0 U 25.0 22.3 ug/L	Result Qualifier Added Result Qualifier Unit D 1.0 U 25.0 22.4 ug/L 1.0 U 25.0 22.1 ug/L 1.0 U 25.0 23.2 ug/L 1.0 U 25.0 21.9 ug/L 1.0 U 25.0 22.3 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1.0 U 25.0 22.4 ug/L 90 1.0 U 25.0 22.1 ug/L 89 1.0 U 25.0 23.2 ug/L 93 1.0 U 25.0 21.9 ug/L 88 1.0 U 25.0 22.3 ug/L 89	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.0 U 25.0 22.4 ug/L 90 56 - 135 1.0 U 25.0 22.1 ug/L 89 66 - 128 1.0 U 25.0 23.2 ug/L 93 62 - 131 1.0 U 25.0 21.9 ug/L 88 56 - 136 1.0 U 25.0 22.3 ug/L 89 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1.0 U 25.0 22.4 ug/L 90 56 - 135 2 1.0 U 25.0 22.1 ug/L 89 66 - 128 0 1.0 U 25.0 23.2 ug/L 93 62 - 131 1 1.0 U 25.0 21.9 ug/L 88 56 - 136 0 1.0 U 25.0 22.3 ug/L 89 61 - 124 4

Limits

73 - 120

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 87 62 - 137 4-Bromofluorobenzene (Surr) 99 56 - 136 Toluene-d8 (Surr) 94 78 - 122 Dibromofluoromethane (Surr) 88 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 240-566034/6

Matrix: Water

Analysis Batch: 566034

Client	Sample	ID:	Meth	od E	Blank	
	D			T - 4	1/81.4	

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/20/23 13:24	1
	МВ	MB							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 83 66 - 120 03/20/23 13:24

Lab Sample ID: LCS 240-566034/4

Matrix: Water

1,4-Dioxane

Matrix: Water						Prep Type: Total/NA
Analysis Batch: 566034						
_	Spike	LCS LCS				%Rec
Analyte	Added	Result Qualifier	r Unit	D	%Rec	Limits

11.9

ug/L

10.0

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 86

Lab Sample ID: 240-182162-C-5 MSD

Client Sample ID: Matrix Spike Duplicate

119

Client Sample ID: Lab Control Sample

80 - 122

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 566034

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	11.5		ug/L		115	51 - 153	3	16

Eurofins Canton

QC Sample Results

Client: ARCADIS U.S., Inc.

Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Surrogate

1,2-Dichloroethane-d4 (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

MS MS

%Recovery Qualifier

82

	MSD	MSD								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	95		66 - 120							
Lab Sample ID: 240-182162-F-5 Matrix: Water Analysis Batch: 566034	5 MS							Client	•): Matrix Spike Type: Total/NA
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	11.1		ug/L		111	51 - 153	

Limits

66 - 120

10

44

12

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 566034

Lab Sample ID 240-182082-2	Client Sample ID MW-150S 031623	Prep Type Total/NA	Matrix Water	Method 8260D SIM	Prep Batch
MB 240-566034/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-566034/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-182162-C-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	
240-182162-F-5 MS	Matrix Spike	Total/NA	Water	8260D SIM	

Analysis Batch: 566543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-182082-1	TRIP BLANK_88	Total/NA	Water	8260D	
240-182082-2	MW-150S_031623	Total/NA	Water	8260D	
MB 240-566543/7	Method Blank	Total/NA	Water	8260D	
LCS 240-566543/4	Lab Control Sample	Total/NA	Water	8260D	
240-182089-E-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-182089-F-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

4

0

8

9

4 4

۳

13

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_88

Lab Sample ID: 240-182082-1 Date Collected: 03/16/23 00:00

Matrix: Water

Date Received: 03/17/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	566543	BAJ	EET CAN	03/23/23 19:47

Client Sample ID: MW-150S_031623 Lab Sample ID: 240-182082-2

Date Collected: 03/16/23 12:03 Matrix: Water

Date Received: 03/17/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	566543	BAJ	EET CAN	03/23/23 23:57
Total/NA	Analysis	8260D SIM		1	566034	BAJ	EET CAN	03/20/23 15:01

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1 Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23 *
Connecticut	State	PH-0590	12-31-23
Florida	NELAP	E87225	06-30-23
Georgia	State	4062	02-28-24
Illinois	NELAP	200004	07-31-23
lowa	State	421	06-01-23
Kentucky (UST)	State	112225	02-27-23 *
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-23 *
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	04-01-23
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	02-28-24
Pennsylvania	NELAP	68-00340	08-31-23
Texas	NELAP	T104704517-22-17	08-31-23
Virginia	NELAP	460175	09-14-23
West Virginia DEP	State	210	12-31-23

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

-	Chain TestAmerica Laboratory location: Brighton 10448 Citatic	Chain of Custody Record 10448 Clieton Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763	29-2763	TestAmerico
Client Contact	Regulatory program: DW	NPDES RCRA Other		
Company Name: Arcadis	Client Project Manager: Kris Hinskey	Site Contact: Christina Weaver	Lab Contact: Mike DelMonico	TestAmerica Laboratories, Inc.
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240	Telephone: 248-994-2240	Telephone: 330-497-9396	
	Email: kristoffer.hinskey@arcadis.com	Analysis Turnaround Time	Analyses	For lab use only
Phono: 248-994-2240	Sampe Name:	TAT if different from below		Walk-in client
Project Name: Ford LTP Off-Site	Samuetra Grancille	10 day 5 weeks		Lab sampling
Project Number: 30167538.402.04	Method of Shipment/Carrier:		8	
PO#30167538.402.04	Shipping/Tracking No:	LE (Y	8098 8590	Job/SDG No:
		NO3 CI Blerred Semp CI	1-DCE 8260 8-1,2-DCE 8 3ns-1,2-DCI CE 8260B 7yl Chloride 4-Dloxane 8	Sample Specific Notes / Special Instructions:
TRIP BLANK_ & \(\lambda \)	s s	O O Z	ib X if X if X if X if X if X	1 Trip Blank
001				
mw-1505_031623	3/16/23 1203 6	500	*	3 VOAs for 8260B 3 VOAs for 8260B SIM
		240-18;	240-182082 Chain of Custody	
Possible Hazard Identification Non-Hazard	rritant Poison B Unknown	Sample Disposal (A fee may be assessed if samples are retained longer than T Return to Client Suspensal By Lab	imples are retained longer than 1 month)	
Special Instructions/QC Requirements & Comments: Semple Address: Submit all results through Cadena at itomalia@cadenaco.com, Cadena #E203631 Lavel IV Reporting requested.	aco.com. Cadena #E203631 343 (1)	Beacon St.		
Relinquished by: Rumank Sport	Company: Date/Time:	S. 11 Received by: Colly	Oompany: EEAA	Date Time:
Relinquished by: () [] Relinquished by:		Received in Laboratory by:	Se Company:	Date/Time: 8:00

Barberton Facility Login # : 181082
Cooler unpacked by:
Cooler Received on 3-17-23 Opened on 3-17-23 Mandaly
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # COOL Foam Box Client Cooler Box Other
Packing material used: State Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler Form
IR GUN # IR-13 (CF -0.2 °C) Observed Cooler Temp. 3. 6 °C Corrected Cooler Temp. 5.6 °C IR GUN # IR-16 (CF -0.1 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C IR GUN # IR-17 (CF -0.3 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? -Were tamper/custody seals intact and uncompromised? -Were tamper/custody seals intact and uncompromised? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the outside of the cooler(s)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the cooler(s)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were the custody papers relinquished to the cooler(s)? -Were the custody papers relinquished & signed in the appropriate place? -Were the custody papers relinquished & signed in the appropriate place? -Were the custody papers relinquished & signed in the appropriate place? -Were the custody papers relinquished & signed in the appropriate place? -Wes who could all bottle labels (ID/Date/Time) be reconciled with the COC? -Were cannot be reconciled with the COC? -Were correct bottle(s) used for the test(s) indicated? -Were correct bottle(s) used for the test(s) indicated? -Were correct bottle(s) used for the test(s) indicated? -Were quantity received to perform indicated analyses? -We no we have a supple with the cooler of th
Contacted PM by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:

WI-NC-099

DATA VERIFICATION REPORT

March 29, 2023

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30167538.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory submittal: 182082-1 Sample date: 2023-03-16

Report received by CADENA: 2023-03-29

Initial Data Verification completed by CADENA: 2023-03-29

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory Submittal: 182082-1

		Sample Name:	TRIP BLA	4NK_88			MW-150	OS_0316	23	
		Lab Sample ID:	2401820	0821			2401820	0822		
		Sample Date:	3/16/20	23			3/16/20	23		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-826	<u>OD</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-826	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-182082-1

CADENA Verification Report: 2023-03-29

Analyses Performed By: Eurofins North Canton, Ohio

Report # 49187R Review Level: Tier III Project: 30167538.601.01

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-182082-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Ana	ysis	
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM	
TRIP BLANK_88	240-182082-1	Water	03/16/23		Х		
MW-150S_031623	240-182082-2	Water	03/16/23		X	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					-
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

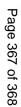
%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:


DATE: March 30, 2023

PEER REVIEW: Andrew Korycinski

DATE: March 30, 2023

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Keguiac	ory program:			DW			PDES	,		RCRA	`	1	Other												
Company Name: Arcadis	Client Project M	ianager: Kris I	linske	y			Site C	ontaci	t: Chr	istins	Weav	ver				Lab C	ontac	t: Mik	e Del	Monic	D				TestAmerica Laboratorie COC No:	s, Inc.
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-	994-2240					Telepi	hone:	248-9	94-22	40				-	Telep	hone:	330-4	97-93	96						
City/State/Zip: Novi, MI, 48377	Email: kristoffe		edis c	om			A	anlysi		parou	nd Tu	ne I								nalys	es				1 of 1 COCs For lab use only	5
Phone: 248-994-2240			auis.c				TAT if		T. h. a													T	T	Г		
Project Name: Ford LTP Off-Site	Sampler Name:	antha	C	. 00	:01	100			Г	3 wc															Walk-in client	BINE
Project Number: 30167538.402.04	Method of Shipi	ment/Carrier:	97	pa	10	w	10	day	-	2 we	ek		9	ي			_				SIM				Lab sampling	Slut #
PO # 30167538.402.04	Shipping/Track	ing No:								2 day			3/1	C/Grab=G		8	3260			8260B	08 S				Job/SDG No:	
				M	atrix		(Contain	pers &	Prese	rvative	1000	Sample (Y / N)	Ç/	808	826	荗		_	de 8	9 8 2 6					
			П	2 5					L	П				posite	1,1-DCE 8260B	cis-1,2-DCE 8260B	Trans-1,2-DCE 8260B	PCE 8260B	3260E	Vinyl Chloride	1,4-Dioxane 8260B				Sample Specific Notes	,
Sample Identification	Sample Date	Sample Time	Ϋ́	Sedim	Se de	Other	H2S04	H L	N O H	ZaAc/ NaOH	Unpres		Filtered	Com	5.	cis-1,	Trans	PCE	TCE 8260B	Viny	1,4-D				Special Instructions:	
TRIP BLANK_ & &				1				1					N	G	X	Х	Х	Х	Х	Х					1 Trip Blank	
mw-1505_031623	3/16/2	1203		6				6	,				U	6	K	X	K	X	K	X	X				3 VOAs for 8260B 3 VOAs for 8260B S	MI
								\top																		
				1				+														+				
			П	1				+				7							181181	1011 1011	110110	11/10/1	+			
			\vdash	+				+	+	Н													_	-		
				+	+			+	+	H		-											_	-		
					Ш			\perp	\perp	Ц			24	0-18	208	2 Ch	ain c	of Cu	stod	())	10110 111					
												1														
			П							Г																
Possible Hazard Identification Non-Hazard Flammable Skin Irritan	nt Poiso	n B	Unkn	own			Sar		Dispos turn to			y be a				es are		ned loi rchive		han 1		nths				
Special Instructions/QC Requirements & Comments: Sample Address: Submit all results through Cadena at jtomalia@cadenaco.c Level IV Reporting requested.	com, Cadena #	E203631	3	34'	38	0		Be	ea	0	(V	7 8	st	-												
Rollinquished by: SWNAWY Sypan	Company:	dis	I	Bate/Ti	me:	3 1	<u>5</u>		Rec	eived	by:	lo	lls	//	M	1			Comp	eny:	E	NA			Date/Time:	
Relinquished by:	Company:	BM	ľ	Sate/T	ime	0/3			Rec	7	Ta	na	lu	ly	B	6	_		Comp	00	n				3-17-23 8	5:00
Rolinquished by:	Company:		I	Date/Ti	ime:	7			Rec	eived	in Lai	borator	ry by						Comp	any:					Date/Time:	

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-182082-1 Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_88

Lab Sample ID: 240-182082-1 Date Collected: 03/16/23 00:00 **Matrix: Water**

Date Received: 03/17/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/23/23 19:47	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/23/23 19:47	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 19:47	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/23/23 19:47	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 19:47	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/23/23 19:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		62 - 137					03/23/23 19:47	1
4-Bromofluorobenzene (Surr)	88		56 - 136					03/23/23 19:47	1
Toluene-d8 (Surr)	93		78 - 122					03/23/23 19:47	1
Dibromofluoromethane (Surr)	94		73 - 120					03/23/23 19:47	

Client Sample ID: MW-150S_031623

Date Collected: 03/16/23 12:03

Date Received: 03/17/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/20/23 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84	·	66 - 120			-		03/20/23 15:01	1

WEUTOU. 344040 0200D - 401	atile Organic	Compounds	by GC/WG						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/23/23 23:57	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/23/23 23:57	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 23:57	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/23/23 23:57	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/23/23 23:57	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/23/23 23:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		62 - 137		03/23/23 23:57	1
4-Bromofluorobenzene (Surr)	86		56 - 136		03/23/23 23:57	1
Toluene-d8 (Surr)	94		78 - 122		03/23/23 23:57	1
Dibromofluoromethane (Surr)	93		73 - 120		03/23/23 23:57	1

Lab Sample ID: 240-182082-2

Matrix: Water