PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 3/3/2023 5:09:38 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-180963-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 3/3/2023 5:09:38 AM

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)497-9396 Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-180963-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Chain of Custody	19

4

8

10

11

13

14

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)
MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Canton

Page 4 of 21

3/3/2023

Case Narrative

Client: ARCADIS U.S., Inc.

Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Job ID: 240-180963-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-180963-1

Receipt

The samples were received on 2/25/2023~8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.4° C and 0.6° C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

6

7

0

10

11

4.0

12

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-180963-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CAN
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Canton

Page 6 of 21 3/3/2023

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-180963-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-180963-1	TRIP BLANK_29	Water	02/23/23 00:00	02/25/23 08:00
240-180963-2	MW-137S_022323	Water	02/23/23 13:50	02/25/23 08:00

3

4

9

10

13

14

Detection Summary

Client: ARCADIS U.S., Inc.

Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_29 Lab Sample ID: 240-180963-1

No Detections.

Client Sample ID: MW-137S_022323 Lab Sample ID: 240-180963-2

No Detections.

3

4

5

^

7

0

10

12

13

14

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Date Received: 02/25/23 08:00

Client Sample ID: TRIP BLANK_29

Lab Sample ID: 240-180963-1 Date Collected: 02/23/23 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/28/23 18:27	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/28/23 18:27	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/28/23 18:27	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/28/23 18:27	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/28/23 18:27	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/28/23 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			-		02/28/23 18:27	1
4-Bromofluorobenzene (Surr)	85		56 ₋ 136					02/28/23 18:27	1
Toluene-d8 (Surr)	88		78 - 122					02/28/23 18:27	1
Dibromofluoromethane (Surr)	96		73 - 120					02/28/23 18:27	1

3/3/2023

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Date Received: 02/25/23 08:00

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: MW-137S_022323

Date Collected: 02/23/23 13:50

94

96

Lab Sample ID: 240-180963-2 **Matrix: Water**

03/01/23 19:57

03/01/23 19:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/01/23 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 120			-		03/01/23 16:28	1
Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/01/23 19:57	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/01/23 19:57	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/01/23 19:57	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/01/23 19:57	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/01/23 19:57	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/01/23 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		62 - 137			-		03/01/23 19:57	1

78 - 122

73 - 120

Surrogate Summary

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1 Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-180962-B-2 MS	Matrix Spike	101	90	94	96
240-180962-B-2 MSD	Matrix Spike Duplicate	97	92	91	93
240-180963-1	TRIP BLANK_29	104	85	88	96
240-180963-2	MW-137S_022323	107	84	94	96
240-180985-F-8 MS	Matrix Spike	106	91	93	98
240-180985-I-8 MSD	Matrix Spike Duplicate	104	90	93	98
LCS 240-563755/5	Lab Control Sample	98	92	92	98
LCS 240-563897/5	Lab Control Sample	110	93	92	99
MB 240-563755/8	Method Blank	105	90	92	98
MB 240-563897/8	Method Blank	108	87	90	97

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-180963-2	MW-137S_022323	89	
240-180977-E-2 MS	Matrix Spike	84	
240-180977-K-2 MSD	Matrix Spike Duplicate	83	
LCS 240-563886/4	Lab Control Sample	87	
MB 240-563886/6	Method Blank	95	
Surrogate Legend			

Page 11 of 21

Job ID: 240-180963-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-563755/8

Matrix: Water

Analysis Batch: 563755

Client Sample ID: Method Blank
Pren Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 02/28/23 15:32 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 02/28/23 15:32 1.0 U 1.0 0.44 ug/L 02/28/23 15:32 Tetrachloroethene trans-1,2-Dichloroethene 1.0 U 02/28/23 15:32 1.0 0.51 ug/L Trichloroethene 1.0 U 1.0 0.44 ug/L 02/28/23 15:32 Vinyl chloride 1.0 U 1.0 0.45 ug/L 02/28/23 15:32

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	62 - 137		02/28/23 15:32	1
4-Bromofluorobenzene (Surr)	90	56 - 136		02/28/23 15:32	1
Toluene-d8 (Surr)	92	78 - 122		02/28/23 15:32	1
Dibromofluoromethane (Surr)	98	73 - 120		02/28/23 15:32	1

Lab Sample ID: LCS 240-563755/5

Matrix: Water

Analysis Batch: 563755

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier (Jnit I	D %Rec	Limits	
1,1-Dichloroethene	20.0	17.3	ι	ıg/L	86	63 - 134	
cis-1,2-Dichloroethene	20.0	18.1	ι	ıg/L	91	77 - 123	
Tetrachloroethene	20.0	20.1	ι	ıg/L	100	76 - 123	
trans-1,2-Dichloroethene	20.0	19.8	ι	ıg/L	99	75 - 124	
Trichloroethene	20.0	18.8	ι	ıg/L	94	70 - 122	
Vinyl chloride	20.0	19.7	ι	ıg/L	99	60 - 144	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		62 - 137
4-Bromofluorobenzene (Surr)	92		56 ₋ 136
Toluene-d8 (Surr)	92		78 - 122
Dibromofluoromethane (Surr)	98		73 - 120

Lab Sample ID: 240-180962-B-2 MS

Matrix: Water

Analysis Batch: 563755

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
100	U	2000	1740		ug/L		87	56 - 135	
120		2000	1910		ug/L		90	66 - 128	
100	U	2000	1990		ug/L		99	62 - 131	
180		2000	2160		ug/L		99	56 - 136	
2100		2000	3860		ug/L		88	61 - 124	
100	U	2000	2010		ug/L		100	43 - 157	
	Result 100 120 100 180 2100	100 U 180	Result Qualifier Added 100 U 2000 120 2000 100 U 2000 180 2000 2100 2000	Result Qualifier Added Result 100 U 2000 1740 120 2000 1910 100 U 2000 1990 180 2000 2160 2100 3860	Result Qualifier Added Result Qualifier 100 U 2000 1740 120 2000 1910 100 U 2000 1990 180 2000 2160 2100 3860 3860	Result Qualifier Added Result Qualifier Unit 100 U 2000 1740 ug/L 120 2000 1910 ug/L 100 U 2000 1990 ug/L 180 2000 2160 ug/L 2100 3860 ug/L	Result Qualifier Added Result Qualifier Unit D 100 U 2000 1740 ug/L 120 2000 1910 ug/L 100 U 2000 1990 ug/L 180 2000 2160 ug/L 2100 3860 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 100 U 2000 1740 ug/L 87 120 2000 1910 ug/L 90 100 U 2000 1990 ug/L 99 180 2000 2160 ug/L 99 2100 3860 ug/L 88	Result Qualifier Added Result Qualifier Unit D %Rec Limits 100 U 2000 1740 ug/L 87 56 - 135 120 2000 1910 ug/L 90 66 - 128 100 U 2000 1990 ug/L 99 62 - 131 180 2000 2160 ug/L 99 56 - 136 2100 2000 3860 ug/L 88 61 - 124

MS MS

Surrogate	%Recovery Qu	alifier Limits
1,2-Dichloroethane-d4 (Surr)	101	62 - 137
4-Bromofluorobenzene (Surr)	90	56 - 136
Toluene-d8 (Surr)	94	78 - 122

Eurofins Canton

Page 12 of 21

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site Job ID: 240-180963-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-180962-B-2 MS

Matrix: Water

Analysis Batch: 563755

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 96 73 - 120

Lab Sample ID: 240-180962-B-2 MSD

Matrix: Water

Analysis Batch: 563755

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	100	U	2000	1680		ug/L		84	56 - 135	4	26
cis-1,2-Dichloroethene	120		2000	1860		ug/L		87	66 - 128	3	14
Tetrachloroethene	100	U	2000	1970		ug/L		98	62 - 131	1	20
trans-1,2-Dichloroethene	180		2000	2080		ug/L		95	56 - 136	4	15
Trichloroethene	2100		2000	3730		ug/L		81	61 - 124	3	15
Vinyl chloride	100	U	2000	2010		ug/L		101	43 - 157	0	24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	92		56 - 136
Toluene-d8 (Surr)	91		78 - 122
Dibromofluoromethane (Surr)	93		73 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 563897

Lab Sample ID: MB 240-563897/8

MB MB

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.49	ug/L			03/01/23 15:46	1
1.0	U	1.0	0.46	ug/L			03/01/23 15:46	1
1.0	U	1.0	0.44	ug/L			03/01/23 15:46	1
1.0	U	1.0	0.51	ug/L			03/01/23 15:46	1
1.0	U	1.0	0.44	ug/L			03/01/23 15:46	1
1.0	U	1.0	0.45	ug/L			03/01/23 15:46	1
	1.0 1.0 1.0 1.0 1.0	Result Qualifier	1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0	1.0 U 1.0 0.49 1.0 U 1.0 0.46 1.0 U 1.0 0.44 1.0 U 1.0 0.51 1.0 U 1.0 0.44	1.0 U 1.0 0.49 ug/L 1.0 U 1.0 0.46 ug/L 1.0 U 1.0 0.44 ug/L 1.0 U 1.0 0.51 ug/L 1.0 U 1.0 0.44 ug/L	1.0 U 1.0 0.49 ug/L 1.0 U 1.0 0.46 ug/L 1.0 U 1.0 0.44 ug/L 1.0 U 1.0 0.51 ug/L 1.0 U 1.0 0.44 ug/L	1.0 U 1.0 0.49 ug/L 1.0 U 1.0 0.46 ug/L 1.0 U 1.0 0.44 ug/L 1.0 U 1.0 0.51 ug/L 1.0 U 1.0 0.44 ug/L	1.0 U 1.0 U 0.49 ug/L 03/01/23 15:46 1.0 U 1.0 0.46 ug/L 03/01/23 15:46 1.0 U 1.0 0.44 ug/L 03/01/23 15:46 1.0 U 1.0 0.51 ug/L 03/01/23 15:46 1.0 U 1.0 0.44 ug/L 03/01/23 15:46 1.0 U 1.0 0.44 ug/L 03/01/23 15:46

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	62 - 137		03/01/23 15:46	1
4-Bromofluorobenzene (Surr)	87	56 - 136		03/01/23 15:46	1
Toluene-d8 (Surr)	90	78 - 122		03/01/23 15:46	1
Dibromofluoromethane (Surr)	97	73 - 120	(03/01/23 15:46	1

Lab Sample ID: LCS 240-563897/5

Matrix: Water

Analysis Batch: 563897

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	16.3		ug/L		82	63 - 134	
cis-1,2-Dichloroethene	20.0	18.1		ug/L		90	77 - 123	
Tetrachloroethene	20.0	19.1		ug/L		95	76 - 123	
trans-1,2-Dichloroethene	20.0	19.8		ug/L		99	75 - 124	
Trichloroethene	20.0	19.2		ug/L		96	70 - 122	

Eurofins Canton

3/3/2023

Page 13 of 21

Spike

Added

20.0

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

LCS LCS

20.7

Result Qualifier

Unit

ug/L

ug/L

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-563897/5 Matrix: Water

Project/Site: Ford LTP - Off Site

Analysis Batch: 563897

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec D %Rec Limits

60 - 144

103

103

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 110 62 - 137 56 - 136 4-Bromofluorobenzene (Surr) 93 Toluene-d8 (Surr) 78 - 122 92 Dibromofluoromethane (Surr) 99 73 - 120

Lab Sample ID: 240-180985-F-8 MS

Matrix: Water

Vinyl chloride

Analyte

Vinyl chloride

Analysis Batch: 563897

Client Sample ID: Matrix Spike Prep Type: Total/NA

10

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit 1,1-Dichloroethene 1.0 U 20.0 16.2 ug/L 81 56 - 135 1.0 U 20.0 ug/L cis-1,2-Dichloroethene 16.8 84 66 - 128 Tetrachloroethene 1.0 U 20.0 17.4 87 62 - 131 ug/L trans-1,2-Dichloroethene 20.0 1.0 U 17.9 ug/L 89 56 - 136 20.0 87 Trichloroethene 1.0 U 17.3 ug/L 61 - 124

20.5

20.0

MS MS Qualifier Limits Surrogate %Recovery 62 - 137 1,2-Dichloroethane-d4 (Surr) 106 91 56 - 136 4-Bromofluorobenzene (Surr) 78 - 122 Toluene-d8 (Surr) 93 Dibromofluoromethane (Surr) 98 73 - 120

1.0 U

Lab Sample ID: 240-180985-I-8 MSD

Matrix: Water

Analysis Batch: 563897

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

43 - 157

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	20.0	16.0		ug/L		80	56 - 135	1	26
cis-1,2-Dichloroethene	1.0	U	20.0	17.2		ug/L		86	66 - 128	3	14
Tetrachloroethene	1.0	U	20.0	18.2		ug/L		91	62 - 131	5	20
trans-1,2-Dichloroethene	1.0	U	20.0	18.0		ug/L		90	56 - 136	1	15
Trichloroethene	1.0	U	20.0	17.7		ug/L		88	61 - 124	2	15
Vinyl chloride	1.0	U	20.0	20.6		ug/L		103	43 - 157	1	24

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		62 - 137
4-Bromofluorobenzene (Surr)	90		56 - 136
Toluene-d8 (Surr)	93		78 - 122
Dibromofluoromethane (Surr)	98		73 - 120

Eurofins Canton

Job ID: 240-180963-1

Client: ARCADIS U.S., Inc. Project/Site: Ford LTP - Off Site

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-563886/6 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 563886

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/01/23 13:13	1

MB MB

MD MD

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 66 - 120 03/01/23 13:13 1,2-Dichloroethane-d4 (Surr) 95

Lab Sample ID: LCS 240-563886/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 563886

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	9.85		ug/L		98	80 - 122	

LCS LCS

84

Surrogate	%Recovery Qualifier	Limits
1 2-Dichloroethane-d4 (Surr)	87	66 120

Client Sample ID: Matrix Spike Lab Sample ID: 240-180977-E-2 MS **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563886

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1.4-Dioxane	2.0	U	10.0	10.3		ua/L		103	51 - 153	

MS MS Surrogate %Recovery Qualifier Limits

Lab Sample ID: 240-180977-K-2 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

66 - 120

Matrix: Water

Analysis Batch: 563886

1,2-Dichloroethane-d4 (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1 4-Dioxane	2.0	U	10.0	10.2		ua/l		102	51 - 153	1	16

MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 83 66 - 120

Eurofins Canton

QC Association Summary

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 563755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep I
240-180963-1	TRIP BLANK_29	Total/NA	Water	8260D	_ <u> </u>
MB 240-563755/8	Method Blank	Total/NA	Water	8260D	
LCS 240-563755/5	Lab Control Sample	Total/NA	Water	8260D	
240-180962-B-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-180962-B-2 MSD	Matrix Snike Dunlicate	Total/NA	Water	8260D	

Analysis Batch: 563886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-180963-2	MW-137S_022323	Total/NA	Water	8260D SIM	
MB 240-563886/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-563886/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-180977-E-2 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-180977-K-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 563897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-180963-2	MW-137S_022323	Total/NA	Water	8260D	
MB 240-563897/8	Method Blank	Total/NA	Water	8260D	
LCS 240-563897/5	Lab Control Sample	Total/NA	Water	8260D	
240-180985-F-8 MS	Matrix Spike	Total/NA	Water	8260D	
240-180985-I-8 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

4

0

8

9

11

12

IJ

12

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_29

Lab Sample ID: 240-180963-1 Date Collected: 02/23/23 00:00

Matrix: Water

Date Received: 02/25/23 08:00

	Batch	Batch		Dilution	Batch		Prepa		
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	563755	TES	EET CAN	02/28/23 18:27	

Client Sample ID: MW-137S_022323 Lab Sample ID: 240-180963-2

Date Collected: 02/23/23 13:50 Matrix: Water

Date Received: 02/25/23 08:00

	Batch	Batch		Dilution	Batch		Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	563897	TES	EET CAN	03/01/23 19:57	
Total/NA	Analysis	8260D SIM		1	563886	BAJ	EET CAN	03/01/23 16:28	

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23 *
Connecticut	State	PH-0590	12-31-23
Florida	NELAP	E87225	06-30-23
Georgia	State	4062	02-27-23 *
Illinois	NELAP	200004	07-31-23
Iowa	State	421	06-01-23
Kentucky (UST)	State	112225	02-27-23 *
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-23 *
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	04-01-23
Ohio	State	8303	02-27-23 *
Ohio VAP	State	CL0024	02-27-23 *
Oregon	NELAP	4062	02-28-24
Pennsylvania	NELAP	68-00340	08-31-23
Texas	NELAP	T104704517-22-17	08-31-23
Virginia	NELAP	460175	09-14-23
West Virginia DEP	State	210	12-31-23

Eurofins Canton

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

Page 19 of 21

0

3

3/3/2023

telinquished by: Relinquished by:

Eurofins - Canton Sample Receipt Form/Narrative Login #: Barberton Facility
Client ArCa di S Site Name Cooler unpacked by:
Cooler Received on 2-25-23 Opened on 2-27-23
FedEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # Foam Box Client Cooler Box Other
Packing material used: Bubble Wrap Foam Plastic Bag None Other
COOLANT: Wet Ice Blue Ice Dry Ice Water None
1. Cooler temperature upon receipt See Multiple Cooler Form
IR GUN # IR-13 (CF -0.2 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
IR GUN # IR-16 (CF -0.1°C) Observed Cooler Temp°C Corrected Cooler Temp°C
IR GUN # IR-17 (CF -0.3°C) Observed Cooler Temp°C Corrected Gooler Temp°C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity (CQC) Yes No
-Were the seals on the outside of the cooler(s) signed & dated? Tests that are not checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes (No) Receiving:
-Were tamper/custody seals intact and uncompromised? Yes No. NA
3. Shippers' packing slip attached to the cooler(s)? Yes (No) VOAs
4. Did custody papers accompany the sample(s)? Yes No Oil and Grease
5. Were the custody papers relinquished & signed in the appropriate place? Yes No
6. Was/were the person(s) who collected the samples clearly identified on the COC? Yes No
7. Did all bottles arrive in good condition (Unbroken)?
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC?
9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample type of grab/comp(Y/N)?
10. Were correct bottle(s) used for the test(s) indicated?
11. Sufficient quantity received to perform indicated analyses? Yes No.
12. Are these work share samples and all listed on the COC? Yes No
If yes, Questions 13-17 have been checked at the originating laboratory.
13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? Yes No (NA)pH Strip Lot# HC203864
14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials? Larger than this. Yes No NA
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Ver ed Yes No
17. Was a LL Hg or Me Hg trip blank present? Yes (No)
Contacted PM by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
Samples processe by
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) Were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:

		Eurofins - Cantor	Sample Receipt Mu	Itiple Cooler Form	
Cooler Des	scription	IR Gun#	Observed	Corrected	Coolant
(Circ	ele)	(Circle)	Temp °C	Temp °C	(Circle)
EO Client	Box Other	IR-13 IR-16 IR-17	0.6	0.4	Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17	0,8	0.6	Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wellice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wet Ice Stue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue Ice Dy Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wellice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wellice Blue Ice Dry Ice Water None
EC Client	Box Other	M-13 M-16 M-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	M-13 M-16 M-17			Wat ice Blue Ice Dry ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wellice Blue Ice Dry Ice Water None
EC Client	Box Other	探-13 探-16 探-17			Wellce Blue Ice Dry Ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wel ice Blue ice Dy ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wet Ice Sive Ice Dry Ice Water None
EC Client	Box Other	R-13 H-16 W-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	R-13 IR-16 IR-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	R-13 R-16 R-17			Wet Ice Blue Ice Dry Ice Water None
EC Client	Box Other	R-13 R-16 R-17			Water None
EC Client (Box Other	IR-13 IR-16 IR-17			Wat ice Blue ice Dry ice Water None
EC Client I	Box Other	M-13 M-16 M-17			Wat ice Blue ice Dry ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wet Ice Blue Ice Dry Ice Water None
EC Client I	Box Other	IR-13 IR-16 IR-17			Wel ice Blue ice Dry ice Water None
EC Client	Box Other	IR-13 IR-16 IR-17			Wellice Blue Ice Dry Ice Water None
EC Client I	lox Other	IR-13 IR-16 IR-17			Wet Ice Sive Ice Dry Ice Water None
EC Client I	lox Other	M-13 M-16 M-17			Wet Ice Blue Ice Dry Ice Water None
EC Client B	lox Other	IR-13 IR-16 IR-17			Wet ice Blue ice Dry ice Water None
				☐ See Temp	erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

5

7

8

10

11

4.0

1 1

DATA VERIFICATION REPORT

March 06, 2023

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30146655.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory submittal: 180963-1 Sample date: 2023-02-23

Report received by CADENA: 2023-03-03

Initial Data Verification completed by CADENA: 2023-03-06

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Barberton

Laboratory Submittal: 180963-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLANK_29 2401809631 2/23/2023			MW-137S_022323 2401809632 2/23/2023				
			Report			Valid		Report	Valid	
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-8260										
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260	<u>DDSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-180963-1

CADENA Verification Report: 2023-03-06

Analyses Performed By: Eurofins North Canton, Ohio

Report # 48948R Review Level: Tier III Project: 30167538.601.01

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-180963-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample Collection		Ana	lysis
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	VOC SIM
TRIP BLANK_29	240-180963-1	Water	02/23/23		Х	
MW-137S_022323	240-180963-2	Water	02/23/23		Х	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
1. Sample receipt condition		X		X	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					-
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Hrishikesh Upadhyaya

SIGNATURE:

DATE: March 15, 2023

PEER REVIEW: Andrew Korycinski

DATE: March 17, 2023

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

MICHIGAN

Chain of Custody Record

Client Contact	stAmerica Labora Regulat	ory program:			DW			PDES	200	RO			Oth		2700					_				THE LEADER IN ENVIRONMENTA	. 123110		
Company Name: Arcadis	Client Project N			_	-				Chri	istina W					Lab	Conta	et: Mil	ke Del	Monic	,				TestAmerica Laborato	ries, Inc		
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	hone: 248-994-2240				Telephone: 248-994-2240				Telephone: 330-497-9396																	
City/State/Zip: Novi, MI, 48377											1 of 1 COCs																
Phone: 248-994-2240	Email: kristoff	er.hinskey@ar	adis.con	1			AR	aiysts	I Wro	nround	1 have	\dashv		⊢		Analyses					For lab use only	-					
Project Name: Ford LTP Off-Site	Sampler Name	- 1	,			T.	AT if c	lifferent		3 weeks														Walk-in client			
	Sam	Sukas	19				10 c	lay	4	2 weeks												Lab sampling					
Project Number: 30167538.402.04	Method of Ship	ment/Carrier:	•			- 1				1 week 2 days		Z	9	ı		8			<u>ш</u>	SIM							
PO # 30167538,402.04	Shipping/Track	ing No:				\neg			F	I day		mple (Y / N)	Grab		82608	826			8260	260B				Job/SDG No:			
				Mat	rix		C	ontain	ers &	Preserva	tives		J.	32601	E 8	JQ.	_ g	۵	ride	ne 82					100		
Sample Identification	Sample Date	Sample Time	Air	Sediment	Solid	03.1	HNO3	HCI	NaOH	ZaAc NaOH Unores	Other:	Filtered S	Composit	1,1-DCE 8260B	cis-1,2-DCE	Trans-1,2-DCE 8260B	PCE 8260B	TCE 82608	Vinyl Chloride 8260B	1,4-Dioxane 8260B SIM				Sample Specific No Special Instruction			
TRIP BLANK_ 29			1					1				N	G	X	X	X	Х	Х	X					1 Trip Blank			
TRIP BLANK_ 29 MW-1675-022323	52/23/23	1350	6					6				V	6	X	X	x	X	X	X	X				3 VOAs for 8260B 3 VOAs for 8260B			
					\top			1																			
			\vdash	Н	+	\dashv	+	+	\vdash	\vdash	-	+	╁	-	-	1						-		<u> </u>			
				Ш	_	_		\perp			$oxed{oxed}$	\perp															
														L	1			l				_ 1					
								\top				\top						Kpois	חב זכ	uiei	J CC	eno	240-1	-			
				Н	+	+	+	+		\vdash	+	+	+		111												
			\sqcup			\rightarrow	\perp	_		Ш	ļ	\perp	\perp				Ш										
																			Ш								
								\top				\top	T	1	1	urcumui 1	L	1			W 17044 11		SOBIORIT	1			
Possible Hazard Identification ✓ Non-Hazard Flammable Skin Irr				Ш		+				ol (A fee									han 1								
Non-Hazard Flammable Skin Irr Special Instructions/QC Requirements & Comments: Sample Address: Submit all results through Cadena at itomalia acadenacteristics.	1 RC	MAL (S	S)	n			-	Ketu	irn to	Client		Dispo	sal B	y Lab		_ <i>/</i>	Archive	e For 1		Me	onths						
Relinquished by:	Company:	lic	Dat	e/Time	21	73	50	10	Reco	eived by	CAC	r (C/01	11		tre		Comp	any	70	Ar			Date/Time:	50		
Relinquished by:	Company:	ADIS	Dat	2/2	41	3/		•	Reco	cived by	2	en	Q	7)		Comp		7	A	-		Date/Time: /	013		
Relinquished by:	Company:	A	Dat	e/Tim	e:	311	514	15	Rec	eived in	Labora	tory b	y:	1	4	19		Com	any.	17	٥٥	_		Date/Time: 33	800		

D2008, TestAmerica Laboratories, Inc., All rights reserved. LestAmerica & Design "" are tradements of FestAmerica Laboratories, In

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 240-180963-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_29 Lab Sample ID: 240-180963-1

Date Collected: 02/23/23 00:00 Matrix: Water Date Received: 02/25/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/28/23 18:27	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/28/23 18:27	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/28/23 18:27	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/28/23 18:27	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/28/23 18:27	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/28/23 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			•		02/28/23 18:27	1
4-Bromofluorobenzene (Surr)	85		56 ₋ 136					02/28/23 18:27	1
Toluene-d8 (Surr)	88		78 - 122					02/28/23 18:27	1
Dibromofluoromethane (Surr)	96		73 - 120					02/28/23 18:27	1

Date Collected: 02/23/23 13:50 Date Received: 02/25/23 08:00

Dibromofluoromethane (Surr)

Method: SW846 8260D SIM	- Volatile Orga	anic Comp	ounds (GC/N	IS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/01/23 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 120			=		03/01/23 16:28	1

	00		00 = 120					00/01/20 10/20	•
_ Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/01/23 19:57	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/01/23 19:57	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/01/23 19:57	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/01/23 19:57	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/01/23 19:57	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/01/23 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		62 - 137					03/01/23 19:57	1
4-Bromofluorobenzene (Surr)	84		56 - 136					03/01/23 19:57	1
Toluene-d8 (Surr)	94		78 - 122					03/01/23 19:57	1

73 - 120

Matrix: Water

03/01/23 19:57