TRANSMITTAL LETTER

Michigan Environm Energy 27700 Do	Paul Owens Michigan Department of Environment, Great Lakes & Energy 27700 Donald Court Warren, MI 48092			key Suite 500 Novi Michigan 48377	28550 Cabot Drive Suite 500 Novi	
Copies:		I	Date:			
			August 1	, 2023		
Subject:		,	Arcadis Proje	ct No.:		
Utility Co Monthly U	ransmission P rridor Assessn Jpdate for the SSVE ResAP	nent – Utility	3016753	8		
We are send Attached Shop Dra Prints Other:	awings	Under Separa Plans Samples	☐ Sp	the Following Items: ecifications		
Copies	Delivery Date	Drawing No.	Rev.	Description	Action*	
1	8/1/2023			Utility Corridor Assessment – Monthly Update for the Utility Corridor SSVE ResAP IRA Activities – hard copy		
1	8/1/2023			Utility Corridor Assessment – Monthly Update for the Utility Corridor SSVE ResAP IRA Activities – electronic copy CD		
☐ AN Ap ☐ AS As ☑ Other: _A		e provided to		CR Correct and Resubmit Resubmit Resubmit Resubmit Resubmit Return CF Review and Cothe Utility Corridor ResAP IRA provided to EGLE on May	Copies mment	
	nod al Service 1 st Clas Registered Mail		/Hand Deliv Parcel Serv			

MEMO

To:

Paul Owens, District Supervisor EGLE Warren District Office 27700 Donald Court Warren, Michigan 48092-2793 owensp@michigan.gov Copies:

Jeanne Schlaufman, EGLE Matt Williams, EGLE Beth Vens, EGLE Todd Walton, Ford Chuck Pinter, Ford

Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 Novi

Michigan 48377 Tel 248 994 2240

From:

Kris Hinskey

Date: Arcadis Project No.:

August 1, 2023 30167538

Subject

Utility Corridor Assessment – Monthly Update for the Utility Corridor SSVE ResAP IRA Activities 36200 Plymouth Road, Livonia, Wayne County, Michigan Consent Decree No 2:1712372-GAD-RSW (CD)

Site ID No.: 82002970

On behalf of Ford Motor Company (Ford), Arcadis of Michigan, LLC (Arcadis) has prepared this memorandum (memo) for the Livonia Transmission Plant (LTP) site (the site). This memo is intended to update the Michigan Department of Environment, Great Lakes, and Energy (EGLE) with the most recent field activities related to the Utility Corridor Sanitary Sewer Vapor Extraction (SSVE) System Response Activity Plan for Interim Response Activities (Utility Corridor SSVE ResAP IRA) submitted to EGLE on May 31, 2022 (approved by EGLE June 23, 2022) and serves as the submittal for the month of July 2023. This memo also meets the obligations outlined in Section A (ii) of EGLE's June 8, 2023 letter.

Utility Corridor SSVE Response Activity Plan for Interim Response Activities – Update

On-site Response Activities

Sanitary Sewer Vapor Extraction System Operation and Compliance Sampling

The SSVE system continues to run at a flowrate of approximately 900 cubic feet per minute (cfm). The location of the SSVE system is provided on **Figure 1**. Compliance sampling continues to be completed monthly in accordance with the sampling frequency described in the Utility Corridor SSVE ResAP IRA.

Compliance samples were collected on July 13, 2023. Analytical results from the vapor grab sample collected at SAMH-1231 were above the site-specific volatilization to indoor air criteria (SSVIAC) for vinyl chloride, however, analytical results from vapor grab samples collected at the compliance sample locations SL-2 and SL-3

Utility Corridor Memo Livonia Transmission Plant

downgradient of SAMH-1231 were below the SSVIAC. Grab sampling results to date for the SSVE compliance locations are included in **Table 1**. The next vapor sampling event of the compliance locations will be completed the week of August 7, 2023.

Overall, a significant decrease in analytical vapor concentrations from samples collected at the compliance locations continues to be observed following the installation and operation of the SSVE system at the primary extraction location, as detailed in **Exhibit 1** below.

Exhibit 1: Vapor Concentrations at Compliance Locations following On-Site SSVE System Installation

Structure	Pre-SSVE Installation (Baseline) Concentration (μg/m³) May 25, 2022	Compliance Sample Results (µg/m³) July 13, 2023
SAMH-1231	1,200 (VC) / 29 (TCE)	1.9 (VC) / <0.72 (TCE)
SL-2	58 (VC) / 2.8 (TCE)	<0.46 (VC) / <0.72 (TCE)
SL-3	960 (VC) / 25 (TCE)	<0.46 (VC) / <0.72 (TCE)

Notes:

μg/m³ = micrograms per cubic meter

TCE = trichloroethylene

VC = vinyl chloride

Arcadis is coordinating the replacement of the generator powering the SSVE system with a hardwired electrical service to minimize any downtime moving forward. A horizontal boring contractor installed the conduit in July to provide electrical service to the equipment. Installation of the remaining infrastructure is anticipated to be completed in the third guarter of 2023.

In closing, information provided in this memo satisfies EGLE's request in the June 23, 2022 and June 8, 2023 EGLE letters. Ford is committed to completing the activities outlined in the Utility Corridor SSVE ResAP IRA. Monthly field activities and data associated with the SSVE system will continue to be provided to EGLE in subsequent memos.

Enc.

Table 1. Compliance Sampling Results

Figure 1. Utility Corridor Response Activities

< = Denotes not detected above method detection limit

Table 1

Compliance Sampling Results

Location:	EGLE	SAMH-1231									
Sample Name:	Residential	SSVE-MH-1231_052522	SSVE-MH-1231_052622	SSVE-MH-1231_053122	SSVE-MH-1231_060822	SSVE-MH-1231_061022	SSVE-MH-1231_061522	SSVE-MH-1231_062322			
Sample Date:	SSVIAC	5/25/2022	5/26/2022	5/31/2022	6/8/2022	6/10/2022	6/15/2022	6/23/2022			
Sample Time:	24-Hour	10:58	14:51	12:24	14:47	12:22	12:21	11:07			
Sample Type:	Exposure	Summa	Summa	Summa	Summa*	Summa	Summa	Summa			
Volatile Organic Compounds (Volatile Organic Compound (Volatile Org	Volatile Organic Compounds (VOCs)										
1,1-Dichloroethylene	210	9.3	<0.60	<0.60	<5.4	<0.60	<0.60	<0.60			
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<5.8	<0.60	<0.60	<0.60			
cis-1,2-Dichloroethylene	8.3	870	1.1	2.2	<5.5	<0.58	7.6	8.0			
Tetrachloroethylene	41	3.2	<1.0	<1.0	<8.7	<1.0	<1.0	<1.0			
trans-1,2-Dichloroethylene	83	14	<0.62	<0.62	<4.7	<0.62	<0.62	<0.62			
Trichloroethylene	2.0	29	<0.72	<0.72	<9.4	<0.72	<0.72	<0.72			
Vinyl chloride	1.6	1,200	0.87	1.8	<6.7	<0.46	<0.46	7.7			

Location:	EGLE	SAMH-1231										
Sample Name:	Residential	SSVE-MH-1231_063022	SSVE-MH-1231_070722	SSVE-MH-1231_071422	SSVE-MH-1231_071822	SSVE-MH-1231_072722	SSVE-MH-1231_080422	SSVE-MH-1231_081122				
Sample Date:	SSVIAC	6/30/2022	7/7/2022	7/14/2022	7/18/2022	7/27/2022	8/4/2022	8/11/2022				
Sample Time:	24-Hour	9:34	9:43	8:08	11:21	11:01	10:48	10:16				
Sample Type:	Exposure	Summa										
Volatile Organic Compounds (VC	/olatile Organic Compounds (VOCs)											
1,1-Dichloroethylene	210	<0.60	<0.60	<0.60	<0.60	<0.6	<0.6	<0.6				
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<0.60	<0.6	<0.6	<0.6				
cis-1,2-Dichloroethylene	8.3	<0.58	<0.58	<0.58	<0.58	87 J	3.1	<0.58				
Tetrachloroethylene	41	<1.0	<1.0	<1.0	<1.0	<1.0	1.1 J	<1.0				
trans-1,2-Dichloroethylene	83	<0.62	<0.62	<0.62	<0.62	1.3	<0.62	<0.62				
Trichloroethylene	2.0	<0.72	<0.72	<0.72	<0.72	2.1	<0.72	<0.72				
Vinyl chloride	1.6	<0.46	<0.46	<0.46	<0.46	41	3.3	<0.46				

Location:	EGLE	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231
Sample Name:	Residential	SSVE-MH-1231_081822	SSVE-MH-1231_082522	SSVE-MH-1231_090122	SSVE-MH-1231_090822	SSVE-MH-1231_100322	SSVE-MH-1231_110422	MH-1231_111522
Sample Date:	SSVIAC	8/18/2022	8/25/2022	9/1/2022	9/8/2022	10/3/2022	11/4/2022	11/15/2022
Sample Time:		13:36	10:21	12:21	11:51	12:46	13:03	9:40
Sample Type:	Exposure	Summa	Summa	Summa	Summa	Summa	Summa	Summa
Volatile Organic Compounds (V	OCs)							
1,1-Dichloroethylene	210	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.60 [<0.60]
1,4-Dioxane	5.1	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.60 [<0.60]
cis-1,2-Dichloroethylene	8.3	<0.58	<0.58	<0.58	<0.58	<0.58	7.1	1.5 [1.7]
Tetrachloroethylene	41	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 [<1.0]
trans-1,2-Dichloroethylene	83	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62 [0.92]
Trichloroethylene	2.0	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72 [<0.72]
Vinyl chloride	1.6	<0.46	<0.46	<0.46	<0.46	<0.46	3.6	<0.46 [<0.46]

See Notes on last page.

Location:	EGLE	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231	SAMH-1231
Sample Name:		MH1231-121522	MH-1231-011023	MH-1231-020723	MH-1231-030123	MH-1231-041123	MH-1231-050923	MH-1231-061523
Sample Date:	SSVIAC	12/15/2022	1/10/2023	2/7/2023	3/1/2023	4/11/2023	5/9/2023	6/15/2023
Sample Time:	24-Hour	11:41	11:06	11:08	10:21	10:12	11:16	11:59
Sample Type:	Exposure	Summa	Summa	Summa	Summa	Summa	Summa	Summa
Volatile Organic Compounds (VC	DCs)							
1,1-Dichloroethylene	210	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60
1,4-Dioxane	5.1	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60 [<0.60]	<0.60
cis-1,2-Dichloroethylene	8.3	11 [10]	<0.58 [<0.58]	1.5 [0.68 J]	<0.58 [<0.58]	<0.58 [<0.58]	<0.58 [<0.58]	<0.58
Tetrachloroethylene	41	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0
trans-1,2-Dichloroethylene	83	<0.62 [<0.62]	<0.62 [<0.62]	<0.62 [<0.62]	<0.62 [<0.62]	0.70 J [<0.62]	<0.62 [<0.62]	<0.62
Trichloroethylene	2.0	1.0 J [1.3]	<0.72 [<0.72]	<0.72 [<0.72]	<0.72 [<0.72]	<0.72 [<0.72]	<0.72 [<0.72]	<0.72
Vinyl chloride	1.6	4.6 [6.3]	<0.46 [<0.46]	0.97 [<0.46]	<0.46 [<0.46]	<0.46 [<0.46]	<0.46 [<0.46]	<0.46

Location:	EGLE	SAMH-1231	SL-2	SL-2	SL-2	SL-2	SL-2	SL-2
Sample Name:	Residential	MH-1231-071323	SSVE-SL-2_052522	SSVE-SL-2_052622	SSVE-SL-2_053122	SSVE-SL-2_060822	SSVE-SL-2_061022	SSVE-SL-2_061522
Sample Date:	SSVIAC	7/13/2023	5/25/2022	5/26/2022	5/31/2022	6/8/2022	6/10/2022	6/15/2022
Sample Time:	24-Hour	9:59	11:34	15:36	11:38	15:35	14:15	13:22
Sample Type:	Exposure	Summa	Summa	Summa	Summa	Summa*	Summa	Summa
Volatile Organic Compounds (VC	Cs)							
1,1-Dichloroethylene	210	<0.60	<0.60	<0.60	<0.60	<5.7	<0.60	<0.60
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<0.60	<6.0	<0.60	<0.60
cis-1,2-Dichloroethylene	8.3	3.7	57	<0.58	6.3	19	<0.58	<0.58
Tetrachloroethylene	41	1.2 J	14	<1.0	1.2 J	<9.1	<1.0	<1.0
trans-1,2-Dichloroethylene	83	<0.62	<0.62	<0.62	<0.62	<4.9	<0.62	<0.62
Trichloroethylene	2.0	<0.72	2.8	<0.72	<0.72	<9.7	<0.72	<0.72
Vinyl chloride	1.6	1.9	58	<0.46	6.5	<7.0	<0.46	<0.46

Location:	EGLE	SL-2						
Sample Name:	Residential	SSVE-SL-2_062322	SSVE-SL-2_063022	SSVE-SL-2_070722	SSVE-SL-2_071422	SSVE-SL-2_071822	SSVE-SL-2_072722	SSVE-SL-2_080422
Sample Date:	SSVIAC	6/23/2022	6/30/2022	7/7/2022	7/14/2022	7/18/2022	7/27/2022	8/4/2022
Sample Time:		10:36	9:04	9:14	12:54	10:21	11:37	12:44
Sample Type:	Exposure	Summa						
Volatile Organic Compounds (V	OCs)							
1,1-Dichloroethylene	210	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60
cis-1,2-Dichloroethylene	8.3	0.63 J	<0.58	<0.58	<0.58	2.6	<0.58	<0.58
Tetrachloroethylene	41	<1.0	<1.0	<1.0	<1.0	1.2 J	<1.0	<1.0
trans-1,2-Dichloroethylene	83	<0.62	<0.62	<0.62	<0.62	1.7	<0.62	<0.62
Trichloroethylene	2.0	<0.72	<0.72	<0.72	<0.72	0.80 J	<0.72	<0.72
Vinyl chloride	1.6	<0.46	<0.46	<0.46	<0.46	0.59	<0.46	<0.46

See Notes on last page.

Table 1
Compliance Sampling Results
Ford Livonia Transmission Plant
36200 Plymouth Road
Livonia, Michigan

Location:	EGLE	SL-2										
Sample Name:	Residential	SSVE-SL-2_081122	SSVE-SL-2_081822	SSVE-SL-2_082522	SSVE-SL-2_090122	SSVE-SL-2_090822	SSVE-SL-2_100322	SSVE-SL-2_110422				
Sample Date:	SSVIAC	8/11/2022	8/18/2022	8/25/2022	9/1/2022	9/8/2022	10/3/2022	11/4/2022				
Sample Time:	24-Hour	10:53	14:04	14:11	13:36	10:08	13:01	13:13				
Sample Type:	Exposure	Summa										
Volatile Organic Compounds (Vo	Volatile Organic Compounds (VOCs)											
1,1-Dichloroethylene	210	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60				
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60				
cis-1,2-Dichloroethylene	8.3	<0.58	<0.58	<0.58	<0.58	<0.58	0.67 J	<0.58				
Tetrachloroethylene	41	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
trans-1,2-Dichloroethylene	83	<0.62	<0.62	< 0.62	<0.62	<0.62	<0.62	<0.62				
Trichloroethylene	2.0	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72				
Vinyl chloride	1.6	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46				

Location:	EGLE	SL-2						
Sample Name:	Residential	SL-2-111522	SL-2-121522	SL-2-011023	SL-2-020723	SL-2-030123	SL-2-041123	SL-2-050923
Sample Date:	SSVIAC	11/15/2022	12/15/2022	1/10/2023	2/7/2023	3/1/2023	4/11/2023	5/9/2023
Sample Time:	24-Hour	9:52	11:32	10:46	10:57	10:06	10:01	10:56
Sample Type:	Exposure	Summa						
Volatile Organic Compounds (VC	OCs)							
1,1-Dichloroethylene	210	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60
1,4-Dioxane	5.1	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60
cis-1,2-Dichloroethylene	8.3	<0.58	<0.58	0.73 J	<0.58	<0.58	<0.58	<0.58
Tetrachloroethylene	41	<1.0	<1.0	1.2 J	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethylene	83	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62
Trichloroethylene	2.0	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72
Vinyl chloride	1.6	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46

Location:	EGLE	SL-2	SL-2	SL-3	SL-3	SL-3					
Sample Name:	Residential	SL-2-061523	SL-02-071323	SL-3_052522	SL-3-061523	SL-03-071323					
Sample Date:	SSVIAC	6/15/2023	7/13/2023	5/25/2022	6/15/2023	7/13/2023					
Sample Time:	24-Hour	11:50	10:57	11:36	11:40	11:11					
Sample Type:	Exposure	Summa	Summa	Summa	Summa	Summa					
Volatile Organic Compounds (VOCs)											
1,1-Dichloroethylene	210	<0.60	<0.60 [<0.60]	6.5	<0.60	<0.60					
1,4-Dioxane	5.1	<0.60	<0.60 [<0.60]	<0.60	<0.60	<0.60					
cis-1,2-Dichloroethylene	8.3	<0.58	<0.58 [<0.58]	520	<0.58	<0.58					
Tetrachloroethylene	41	<1.0	1.8 [1.3 J]	19	<1.0	<1.0					
trans-1,2-Dichloroethylene	83	<0.62	<0.62 [<0.62]	8.4	<0.62	<0.62					
Trichloroethylene	2.0	<0.72	<0.72 [<0.72]	25	<0.72	<0.72					
Vinyl chloride	1.6	<0.46	<0.46 [<0.46]	960	<0.46	<0.46					

See Notes on last page.

Table 1

Compliance Sampling Results Ford Livonia Transmission Plant 36200 Plymouth Road Livonia, Michigan

ARCADIS

Notes:

All results reported in µg/m³.

Result exceeds the EGLE site-specific volatilization to indoor air criteria (SSVIAC) to evaluate vapor migration in preferential pathways developed for residential 24-hour exposure.

Denotes not detected above method detection limit.
 Method detection limits were elevated for this sample.

[] Indicates duplicate sample

Sample Type:

Summa Indicates results are from lab analyzed summa canister.

Abbreviations:

μg/m³ micrograms per cubic meter

EGLE Michigan Department of Environment, Great Lakes, and Energy

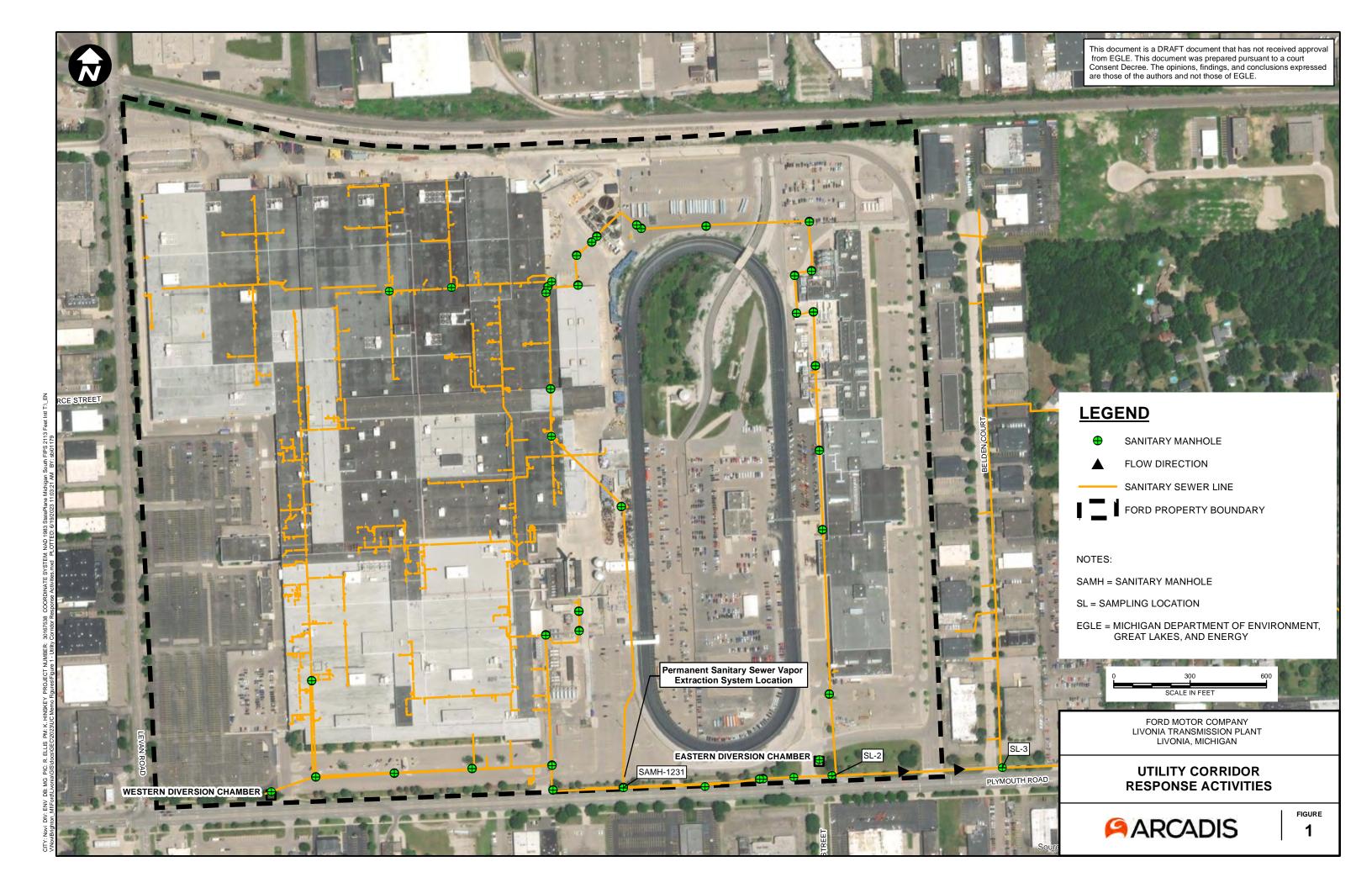
J estimated result

MH manhole

SAMH sanitary manhole

SSVE sanitary sewer vapor extraction system

SL sample location


Analytical Methods:

United States Environmental Protection Agency (USEPA) Method TO-15

This document is a DRAFT document that has not received approval from EGLE. This document was prepared pursuant to a court Consent Decree. The opinions, findings, and conclusions expressed are those of the authors and not those of EGLE.

Figure 1

Utility Corridor Response Activities

