PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS US Inc 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 11/13/2023 4:49:25 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-194771-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/13/2023 4:49:25 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-194771-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
	8
Client Sample Results	9
Surrogate Summary	12
QC Sample Results	13
Lab Chronicle	18
Certification Summary	19
Chain of Custody	20

-5

4

£

9

10

12

13

114

Definitions/Glossary

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Qualifiers

	VOA

Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		
Q1 ₊	Surrogate recovery exceeds control limits, high biased		

Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: ARCADIS US Inc

Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Job ID: 240-194771-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-194771-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/3/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 1.8°C, 2.2°C and 2.9°C

GC/MS VOA

Method 8260D_SIM: Surrogate recovery for the following sample was outside the upper control limit: MW-187_110123 (240-194771-3). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

S

3

4

_

_

8

9

12

13

| 1 4

Method Summary

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194771-1

Method **Method Description** Protocol Laboratory SW846 EET CLE 8260D Volatile Organic Compounds by GC/MS 8260D SIM Volatile Organic Compounds (GC/MS) SW846 EET CLE 5030C SW846 EET CLE Purge and Trap

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194771-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-194771-1	TRIP BLANK_8	Water	11/01/23 00:00	11/03/23 08:00
240-194771-2	MW-187S_110123	Water	11/01/23 10:28	11/03/23 08:00
240-194771-3	MW-187_110123	Water	11/01/23 11:20	11/03/23 08:00

3

4

J

7

10

11

13

14

Detection Summary

Project/Site: Ford LTP - Off Site Client Sample ID: TRIP BLANK_8 Lab Sample ID: 240-194771-1 No Detections. Client Sample ID: MW-187S_110123 Lab Sample ID: 240-194771-2 No Detections. **Client Sample ID: MW-187_110123** Lab Sample ID: 240-194771-3

Job ID: 240-194771-1

No Detections.

Client: ARCADIS US Inc

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_8

Lab Sample ID: 240-194771-1 Date Collected: 11/01/23 00:00

Matrix: Water

Date Received: 11/03/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 18:13	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 18:13	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 18:13	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 18:13	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 18:13	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			_		11/09/23 18:13	1
4-Bromofluorobenzene (Surr)	95		56 ₋ 136					11/09/23 18:13	1
Toluene-d8 (Surr)	97		78 - 122					11/09/23 18:13	1
Dibromofluoromethane (Surr)	101		73 - 120					11/09/23 18:13	1

Eurofins Cleveland

11/13/2023

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-187S_110123

Lab Sample ID: 240-194771-2 Date Collected: 11/01/23 10:28

Matrix: Water

11/09/23 19:50

11/09/23 19:50

11/09/23 19:50

Date Received: 11/03/23 08:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/23 20:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 120			-		11/09/23 20:17	1
- Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 19:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 19:50	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 19:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 19:50	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 19:50	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137			_		11/09/23 19:50	

56 - 136

78 - 122

73 - 120

93

97

102

11/13/2023

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Date Received: 11/03/23 08:00

Client Sample ID: MW-187_110123

Lab Sample ID: 240-194771-3 Date Collected: 11/01/23 11:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/10/23 14:06	
Surrogate			Limits	0.00	ug/L		Prepared	Analyzed	

1,2-Dichloroethane-d4 (Surr) -	144	S1+	66 - 120					11/10/23 14:06	1
Method: SW846 8260D - Volati	le Organic Comp	ounds by 0	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 20:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 20:14	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 20:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 20:14	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 20:14	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		62 - 137			-		11/09/23 20:14	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136					11/09/23 20:14	1
Toluene-d8 (Surr)	97		78 - 122					11/09/23 20:14	1
Dibromofluoromethane (Surr)	103		73 - 120					11/09/23 20:14	1

Surrogate Summary

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-194771-1	TRIP BLANK_8	104	95	97	101
240-194771-2	MW-187S_110123	99	93	97	102
240-194771-3	MW-187_110123	103	94	97	103
240-194858-C-5 MS	Matrix Spike	98	98	98	101
240-194858-C-5 MSD	Matrix Spike Duplicate	93	94	97	99
LCS 240-594032/5	Lab Control Sample	97	95	95	100
MB 240-594032/9	Method Blank	100	91	94	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(66-120)	
240-194630-D-4 MS	Matrix Spike	84	
240-194630-D-4 MSD	Matrix Spike Duplicate	75	
240-194709-B-1 MS	Matrix Spike	81	
240-194709-B-1 MSD	Matrix Spike Duplicate	153 S1+	
240-194771-2	MW-187S_110123	109	
240-194771-3	MW-187_110123	144 S1+	
LCS 240-594018/4	Lab Control Sample	82	
LCS 240-594170/4	Lab Control Sample	101	
MB 240-594018/6	Method Blank	93	
MB 240-594170/6	Method Blank	89	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-594032/9

Matrix: Water

Analysis Batch: 594032

Client S	ample ID: Method Blank
	Pren Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/09/23 14:12 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/09/23 14:12 1.0 U 1.0 0.44 ug/L 11/09/23 14:12 Tetrachloroethene trans-1,2-Dichloroethene 1.0 U 11/09/23 14:12 1.0 0.51 ug/L Trichloroethene 1.0 U 1.0 0.44 ug/L 11/09/23 14:12 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/09/23 14:12

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137		11/09/23 14:12	1
4-Bromofluorobenzene (Surr)	91		56 - 136		11/09/23 14:12	1
Toluene-d8 (Surr)	94		78 - 122		11/09/23 14:12	1
Dibromofluoromethane (Surr)	100		73 - 120		11/09/23 14:12	1

Lab Sample ID: LCS 240-594032/5

Matrix: Water

Analysis Batch: 594032

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	эріке	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	19.7		ug/L		99	63 - 134	
cis-1,2-Dichloroethene	20.0	18.9		ug/L		94	77 - 123	
Tetrachloroethene	20.0	19.5		ug/L		97	76 - 123	
trans-1,2-Dichloroethene	20.0	19.0		ug/L		95	75 - 124	
Trichloroethene	20.0	18.1		ug/L		91	70 - 122	
Vinyl chloride	20.0	21.9		ug/L		110	60 - 144	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	95		56 ₋ 136
Toluene-d8 (Surr)	95		78 - 122
Dibromofluoromethane (Surr)	100		73 - 120

Lab Sample ID: 240-194858-C-5 MS

Matrix: Water

Analysis Batch: 594032

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	200	U	4000	3990		ug/L		100	56 - 135	
cis-1,2-Dichloroethene	2700		4000	6590		ug/L		97	66 - 128	
Tetrachloroethene	2000		4000	6000		ug/L		100	62 - 131	
trans-1,2-Dichloroethene	200	U	4000	3770		ug/L		94	56 - 136	
Trichloroethene	6200		4000	9820		ug/L		91	61 - 124	
Vinyl chloride	200	U	4000	4530		ug/L		113	43 - 157	

MS MS

Surrogate	%Recovery Qua	alifier Limits
1,2-Dichloroethane-d4 (Surr)	98	62 - 137
4-Bromofluorobenzene (Surr)	98	56 - 136
Toluene-d8 (Surr)	98	78 - 122

Eurofins Cleveland

Page 13 of 22

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Job ID: 240-194771-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-194858-C-5 MS

Lab Sample ID: 240-194858-C-5 MSD

Matrix: Water

Analysis Batch: 594032

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate

%Recovery Qualifier

Limits Dibromofluoromethane (Surr) 101 73 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594032

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
200	U	4000	4200		ug/L		105	56 - 135	5	26
2700		4000	6520		ug/L		96	66 - 128	1	14
2000		4000	6400		ug/L		110	62 - 131	6	20
200	U	4000	4050		ug/L		101	56 - 136	7	15
6200		4000	9810		ug/L		91	61 - 124	0	15
200	U	4000	4840		ug/L		121	43 - 157	6	24
	Result 200 2700 2000 2000 2000	2000 200 U	Result Qualifier Added 200 U 4000 2700 4000 2000 4000 200 U 4000 6200 4000	Result Qualifier Added Result 200 U 4000 4200 2700 4000 6520 2000 4000 6400 200 U 4000 4050 6200 4000 9810	Result Qualifier Added Result Qualifier 200 U 4000 4200 2700 4000 6520 2000 4000 6400 200 U 4000 4050 6200 4000 9810	Result Qualifier Added Result Qualifier Unit 200 U 4000 4200 ug/L 2700 4000 6520 ug/L 2000 4000 6400 ug/L 200 U 4000 4050 ug/L 6200 4000 9810 ug/L	Result Qualifier Added Result Qualifier Unit D 200 U 4000 4200 ug/L ug/L 2700 4000 6520 ug/L ug/L 2000 4000 6400 ug/L 200 U 4000 4050 ug/L 6200 4000 9810 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 200 U 4000 4200 ug/L 105 2700 4000 6520 ug/L 96 2000 4000 6400 ug/L 110 200 U 4000 4050 ug/L 101 6200 4000 9810 ug/L 91	Result Qualifier Added Result Qualifier Unit D %Rec Limits 200 U 4000 4200 ug/L 105 56 - 135 2700 4000 6520 ug/L 96 66 - 128 2000 4000 6400 ug/L 110 62 - 131 200 U 4000 4050 ug/L 101 56 - 136 6200 4000 9810 ug/L 91 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 200 U 4000 4200 ug/L 105 56 - 135 5 2700 4000 6520 ug/L 96 66 - 128 1 2000 4000 6400 ug/L 110 62 - 131 6 200 U 4000 4050 ug/L 101 56 - 136 7 6200 4000 9810 ug/L 91 61 - 124 0

MSD MSD

MR MR

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		62 - 137
4-Bromofluorobenzene (Surr)	94		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	99		73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-594018/6

Matrix: Water

Analysis Batch: 594018

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 11/09/23 11:33

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 93 66 - 120 11/09/23 11:33

Lab Sample ID: LCS 240-594018/4

Analyte

Lab Sample ID: LCS 240-594018/4			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 594018			
	Spike	LCS LCS	%Rec

Result Qualifier

Unit

ug/L

D

%Rec

108

Added

66 - 120

1,4-Dioxane 10.0 10.8 LCS LCS %Recovery Qualifier Limits Surrogate

82

Lab Sample ID: 240-194630-D-4 MS

Matrix: Water

Analysis Batch: 594018

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Matrix Spike	
Donner Towner To 4 of I/NI A	

Limits

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.7		ug/L		107	51 - 153	

Eurofins Cleveland

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Job ID: 240-194771-1

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		66 - 120

Lab Sample ID: 240-194630-D-4 MSD

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Matrix: Water

Surrogate

Analysis Batch: 594018

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,4-Dioxane	2.0	U	10.0	10.3		ug/L		103	51 - 153	4	16	
	Men	Med										

Limits

MSD MSD %Recovery Qualifier

1,2-Dichloroethane-d4 (Surr) 75 66 - 120

Lab Sample ID: MB 240-594170/6

Matrix: Water Analysis Batch: 594170

MB MB

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/10/23 10:32	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 120			_		11/10/23 10:32	1

Lab Sample ID: LCS 240-594170/4

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594170

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane		10.0	11.4		ug/L		114	80 - 122	
	LCS LCS								

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 101
 66 - 120

Lab Sample ID: 240-194709-B-1 MS

Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594170

•	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	35	F1 F2	10.0	40.2	F1	ug/L		48	51 - 153

MS MS

overv Qualifier Limits

Surrogate%RecoveryQualifierLimits1,2-Dichloroethane-d4 (Surr)8166 - 120

Lab Sample ID: 240-194709-B-1 MSD

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594170

7 , 6.6 2	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	35	F1 F2	10.0	67.3	F1 F2	ug/L		320	51 - 153	51	16

Eurofins Cleveland

5

6

۰ R

9

10

12

13

14

QC Sample Results

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-194709-B-1 MSD

Matrix: Water

Analysis Batch: 594170

MSD	MSD

Surrogate	%Recovery	Qualifier	Limits
1.2-Dichloroethane-d4 (Surr)	153	S1+	66 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

QC Association Summary

Client: ARCADIS US Inc Job ID: 240-194771-1 Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 594018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-194771-2	MW-187S_110123	Total/NA	Water	8260D SIM	
MB 240-594018/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-594018/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-194630-D-4 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-194630-D-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 594032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
240-194771-1	TRIP BLANK_8	Total/NA	Water	8260D	
240-194771-2	MW-187S_110123	Total/NA	Water	8260D	
240-194771-3	MW-187_110123	Total/NA	Water	8260D	
MB 240-594032/9	Method Blank	Total/NA	Water	8260D	
LCS 240-594032/5	Lab Control Sample	Total/NA	Water	8260D	
240-194858-C-5 MS	Matrix Spike	Total/NA	Water	8260D	
240-194858-C-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 594170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-194771-3	MW-187_110123	Total/NA	Water	8260D SIM	·
MB 240-594170/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-594170/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-194709-B-1 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-194709-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Lab Chronicle

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_8

Lab Sample ID: 240-194771-1 Date Collected: 11/01/23 00:00

Matrix: Water

Date Received: 11/03/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			594032	HMB	EET CLE	11/09/23 18:13

Client Sample ID: MW-187S_110123 Lab Sample ID: 240-194771-2

Date Collected: 11/01/23 10:28 Matrix: Water

Date Received: 11/03/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	594032	НМВ	EET CLE	11/09/23 19:50
Total/NA	Analysis	8260D SIM		1	594018	MRL	EET CLE	11/09/23 20:17

Lab Sample ID: 240-194771-3 Client Sample ID: MW-187_110123

Date Collected: 11/01/23 11:20 Matrix: Water

Date Received: 11/03/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	594032	НМВ	EET CLE	11/09/23 20:14
Total/NA	Analysis	8260D SIM		1	594170	CS	EET CLE	11/10/23 14:06

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Georgia	State	4062	02-27-24
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23 *
New Jersey	NELAP	OH001	07-01-24
New York	NELAP	10975	04-02-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	02-27-24
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-23

Eurofins Cleveland

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

MICHIGAIN	CHAIII TestAmerica Laboratory location: Brighton 10448 Citation	CII a III OI CUSCOCIQ RECOFCI 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763	229-2763	lestAmerico
Client Contact	-	NPDES RCRA Other		
Company Name: Arcadis	Client Project Manager: Kris Hinskey	Site Contact: Christina Weaver	Lab Contact: Mike DelMonico	TestAmerica Laboratories, Inc. COC No:
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240	Telephone: 248-994-2240	Telephone: 330-497-9396	
City/State/Zip: Novi, MI, 48377	Email: kristoffer.hinskev@arcadis.com	Analysis Turnaround Time	Analyses	for lab use only
Phone: 248-994-2240				To the last offing
Project Name: Ford L.TP Off-Site	Sampler Name GW	FAT if different from below 3 weeks 10 day 2 weeks		Walk-in client
Project Number: 30167538.402.04		I week		Sundant or
PO#30167538.402.04	Shipping/Tracking No:	/ A) ə	38260D	Job/SDG No:
	Matrix	_	D D D Lide	
Sample Identification	Sample Date Sample Time Air Aducous	HAO3 HAO3 HAO3 HOCL Composite Significated S	cis-1,2-DC cis-1,2-DC Trans-1,2- PCE 8260 Vinyl Chlo	Sample Specific Notes / Special Instructions:
J TRIP BLANK_S	1	7 2	× × × × ×	1 Trip Blank
J MW-1875_110123	11/23 1028 6	2	X	3 VOAs for 8260D
	2	2	> > ×	3 VOAS TOT 626UD SIM
Page)			
20 0				
f 22				
		246	240-194771 Chain of Custody	
Possible Hazard Identification Non-Hazard	Skin Irritant Poison B Unknown	Sample Disposal (A fee may be assessed if samples are retained longer than I month) Return to Client Disposal By Jah	amples are retained longer than I month)	
omments of to				
Relinquished by:	(Time:	210	Company	
1	Date/Time:	023 Received by:	Company	
Relinquished by Relinquished by	Date Time +	(1)23 Received in Laboratory by:	Company:	1-3-7
1 Q2008 Testimenta Labradore, Inc., Alrighis reserved. Sestimenta Labradores. Inc. 1 Sestimenta Labradores. Inc. 1 Sestimenta Labradores. Inc. 1 Sestimenta Labradores. Inc. 1 Sestimenta Labradores.	-	\mathbb{R}^{2}	2	
8/2023				

Eurofins – Cleveland Sample Receipt Form/Narrative Log Barberton Facility	in#: 194771
Client ArcadiS Site Name	Cooler unpacked by:
Cooler Received on 11-3-23 Opened on 11-3-23	Mr. Verd
FedEx: 1st Grd Exp UPS FAS Waypoint Client Drop Off Eurofins Courier	Other
Receipt After-hours: Drop-off Date/Thee Storage Location	
	on
Packing material used: Pathble Wap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt IR GUN #	Yes No
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # COUPER 17. Was a LL Hg or Me Hg trip blank present?	Yes N
Contacted PM Date by via Verbal	Voice Mail Other
Concerning	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples processed by:
19. SAMPLE CONDITION	
Sample(s) were received after the recommended ho	lding time had expired.
Sample(s) were receiv	
Sample(s) were received with bubble >6 mr	n in diameter. (Notify PM)
20. SAMPLE PRESERVATION	
Comple(a)	6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample(s) were some preserved: Preservative(s) added/Lot number(s):	further preserved in the laboratory.
rieservative(s) added/Lot fluinder(s):	

VOA Sample Preservation - Date/Time VOAs Frozen:

				Eurofins - Canto	n Sample Receipt M	ultiple Cooler Form	
Co	oler D	escrip	otion	IR Gun#	Observed	Corrected	Coolant
	(Ci	rcle)		(Circle)	Temp °C	Temp °C	(Circle)
(FC)	Client	Box	Other	IR GUN #: 2	(,.)	2.2	Wet ice Blue ice Dry ice Water None
(13)	Client	Box	Other	IR GUN #:	7.8	2.9	Wet ice Blue ice Dry ice
(19	Client	Box	Other	IR GUN #: 22	(7.7)	1.8	Wel ice Stue tce Dry ice
EC	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry Ice Water None
fC	Client	Box	Other	R GUN #:			Wet ice Blue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wet Ice Sive Ice Dry Ice Water None
EC	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice
EC	Client	Box	Other	IR GUN #:			Wellice Sive Ice Dry Ice Water None
EC	Client	Box	Other	R GUN #:			Wellice Blue Ice Dry Ice Water Mone
IC	Client	Box	Other	R GUN #:			Wellice Blue Ice Bry Ice Water Mone
Ю	Client	Box	Other	IR GUN #:			Wellice Sive Ice Dry Ice Water Mone
(C	Client	Box	Other	IR GUN #:			Wellice Stue Ice Dry Ice
8C	Client	Box	Other	IR GUN F:			Well to the ice by ice
- RC	Client	Box	Other	IR GUN #:			Wet ice Sive ice Dry ice Water Hone
EC	Client	Box	Other	R GUN #:	·		Wet ice Nive ice Dry ice Water Mone
- RC	Client	Box	Other	IR GUN #:			Wet ice Nive ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wet ice tive ice Dry ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wet ice Nue ice Dry ice Water Mone
EC	Client	Box	Other	IR GUN 6:			Wet ice Nue ice Dry ice Water None
€C	Client	Box	Other	IR GUN #:			Wet Ice the Ice Dry Ice Water None
EC	Client	Box	Other	IR GUN #:			Wefice Blue Ice Dry Ice Water None
EC	Client	Box	Other	IR GUN #:			Wellice Sive Ice Dry Ice Water None
€C	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Bry Ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wellice Nive Ice Dry Ice Water None
BC	Client	Box	Other	IR GUN #:			Wellice Sive Ice Dry Ice Water None
8C	Client	Box	Other	IR GUN #:			Wel ice Blue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wet ice Nue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water Mone
EC	Client	Box	Other	R GUN #:			Wellice Blue Ico Dry Ico Water Name
EC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water Hone
€C	Client	Box	Other	# GUN #:			Wet ice Blue ice Dry ice Water Hone
EC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water Hone
						See Temp	perature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

DATA VERIFICATION REPORT

November 17, 2023

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30167538.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 194771-1 Sample date: 2023-11-01

Report received by CADENA: 2023-11-17

Initial Data Verification completed by CADENA: 2023-11-17

Number of Samples:3 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC SIM sample -003 SURROGATE recovery was outlying biased high for 1 surrogate. Associated client sample results were non-detect so qualification was not required based on this high bias QC outlier.

GCMS VOC SIM QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 194771-1

		Sample Name:	TRIP BLA	ANK_8			MW-187	7S_1101	23		MW-187	7_11012	3	
		Lab Sample ID:	2401947	7711			2401947	7712			2401947	7713		
		Sample Date:	11/1/20	23			11/1/20	23			11/1/20	23		
				Report		Valid		Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC														
OSW-826	<u>50D</u>													
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
OSW-826	50DSIM													
	1,4-Dioxane	123-91-1					ND	2.0	ug/l		ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-194771-1

CADENA Verification Report: 2023-11-17

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 52115R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-194771-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Barant Sample	Ana	lysis
Sample ID	Labib	IVIALITIX	Collection Date	Parent Sample	VOC	VOC SIM
TRIP BLANK_8	240-194771-1	Water	11/01/2023		Х	
MW-187S_110123	240-194771-2	Water	11/01/2023		X	X
MW-187_110123	240-194771-3	Water	11/01/2023		Х	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		X		Х	
6. Sample collection date		Х		X	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		X		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BAShims

DATE: December 14, 2023

PEER REVIEW: Andrew Korycinski

DATE: December 15, 2023

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

MICHIGAN

Chain of Custody Record

Te	est/	/m	nei	ric	C
Tarre .	LADER O	4 5 5 11445	Dayler by		ELVIC

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: DW NPDES RCRA Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Christina Weaver Lab Contact: Mike DelMonico COC No: Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 COCs Analysis Turnaround Time Email: kristoffer.hinskey@arcadis.com Analyses For lab use only Phone: 248-994-2240 TAT if different from below Sampler Name: Walk-in client Project Name: Ford LTP Off-Site 3 weeks 2 weeks 10 day Lab sampling Project Number: 30167538.402.04 Method of Shipment/Carrier: 1 week 1.4-Dioxane 8260D SIM 2 days Vinyl Chloride 8260D PO # 30167538.402.04 Shipping/Tracking No: 1 day Job/SDG No: Matrix Containers & Preservatives Sample Specific Notes / H2S04 HN03 NaOH Special Instructions: Sample Identification Sample Date | Sample Time TRIP BLANK 1 NIGI X Х X X X X 1 Trip Blank MW-1875_110123 6 3 VOAs for 8260D 11/1/23 1028 6 N/61 3 VOAs for 8260D SIM 161 MW-187-110123 6 11/123 Page 421 of 423 6 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Disposal By Lab Archive For Months Special Instructions/QC Requirements & Comments: 12335 Stark Rd Submit all results through Cadena at jtomalia@cadenaco.com, Cadena #E203631 Level IV Reporting requested Relinquished by: 1515 Relinguished by: Date/l'ime Received in Laboratory by: 1023 223

Client: ARCADIS US Inc Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_8 Lab Sample ID: 240-194771-1

Date Collected: 11/01/23 00:00 Matrix: Water

Date Received: 11/03/23 08:00

Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 18:13	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 18:13	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 18:13	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 18:13	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 18:13	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137					11/09/23 18:13	1
4-Bromofluorobenzene (Surr)	95		56 - 136					11/09/23 18:13	1
Toluene-d8 (Surr)	97		78 - 122					11/09/23 18:13	1
Dibromofluoromethane (Surr)	101		73 - 120					11/09/23 18:13	1

Date Collected: 11/01/23 10:28

Date Received: 11/03/23 08:00

Method: SW846 8260D SIM	- Volatile Orga	anic Comp	ounds (GC/N	1S)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/23 20:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 120			•		11/09/23 20:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 19:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 19:50	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 19:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 19:50	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 19:50	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 19:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137		11/09/23 19:50	1
4-Bromofluorobenzene (Surr)	93		56 - 136		11/09/23 19:50	1
Toluene-d8 (Surr)	97		78 - 122		11/09/23 19:50	1
Dibromofluoromethane (Surr)	102		73 - 120		11/09/23 19:50	1

Client Sample ID: MW-187_110123 Lab Sample ID: 240-194771-3

Date Collected: 11/01/23 11:20 Date Received: 11/03/23 08:00

1,2-Dichloroethane-d4 (Surr)

Method: SW846 8260D SIM -	Volatile Orga	anic Comp	ounds (GC/N	IS)					
Analyte 1,4-Dioxane	Result 2.0	Qualifier U	RL 2.0	MDL 0.86	Unit ug/L	<u>D</u>	Prepared	Analyzed 11/10/23 14:06	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

66 - 120

144 S1+

Eurofins Cleveland

11/10/23 14:06

Matrix: Water

Matrix: Water

Client: ARCADIS US Inc

Job ID: 240-194771-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-187_110123 Lab Sample ID: 240-194771-3

Date Collected: 11/01/23 11:20 Matrix: Water Date Received: 11/03/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 20:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 20:14	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 20:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 20:14	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 20:14	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		62 - 137					11/09/23 20:14	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136					11/09/23 20:14	1
Toluene-d8 (Surr)	97		78 - 122					11/09/23 20:14	1
Dibromofluoromethane (Surr)	103		73 - 120					11/09/23 20:14	1