# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Kristoffer Hinskey ARCADIS US Inc 28550 Cabot Drive Suite 500 Novi, Michigan 48377

**JOB DESCRIPTION** 

Generated 11/16/2023 5:30:46 AM

Ford LTP - Off Site

**JOB NUMBER** 

240-194992-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203



# **Eurofins Cleveland**

## **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

# **Authorization**

Generated 11/16/2023 5:30:46 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-194992-1

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Method Summary         | 6  |
| Sample Summary         | 7  |
|                        | 8  |
| Client Sample Results  | 9  |
|                        | 11 |
|                        | 12 |
| QC Association Summary | 15 |
| Lab Chronicle          | 16 |
| Certification Summary  | 17 |
| Chain of Custody       |    |

---

4

0

9

10

12

13

## **Definitions/Glossary**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

## **Qualifiers**

## **GC/MS VOA**

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

## **Glossary**

| Appreviation | these commonly used appreviations may or may not be present in this report.                |
|--------------|--------------------------------------------------------------------------------------------|
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis |
| %R           | Percent Recovery                                                                           |
| CFL          | Contains Free Liquid                                                                       |
| CFU          | Colony Forming Unit                                                                        |
| CNF          | Contains No Free Liquid                                                                    |

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

**PRES** Presumptive **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Cleveland** 

#### **Case Narrative**

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194992-1

Job ID: 240-194992-1

**Laboratory: Eurofins Cleveland** 

Narrative

Job Narrative 240-194992-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 11/8/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.1°C

#### GC/MS VOA

Method 8260D: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): MW-164S 110323 (240-194992-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

6

7

0

1 N

13

# **Method Summary**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

| Method    | Method Description                  | Protocol | Laboratory |
|-----------|-------------------------------------|----------|------------|
| 8260D     | Volatile Organic Compounds by GC/MS | SW846    | EET CLE    |
| 8260D SIM | Volatile Organic Compounds (GC/MS)  | SW846    | EET CLE    |
| 5030C     | Purge and Trap                      | SW846    | EET CLE    |

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

5

3

4

5

O

0

9

11

# **Sample Summary**

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Job ID: 240-194992-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 240-194992-1  | TRIP BLANK_59    | Water  | 11/03/23 00:00 | 11/08/23 08:00 |
| 240-194992-2  | MW-164S_110323   | Water  | 11/03/23 11:50 | 11/08/23 08:00 |

e

1

6

Ω

9

11

12

13

# **Detection Summary**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK\_59 Lab Sample ID: 240-194992-1

No Detections.

No Detections.

3

4

5

8

9

4 4

# **Client Sample Results**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

Date Received: 11/08/23 08:00

Client Sample ID: TRIP BLANK\_59

Lab Sample ID: 240-194992-1 Date Collected: 11/03/23 00:00

Matrix: Water

| Analyte                      | Result    | Qualifier | RL                  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|---------------------|------|------|---|----------|----------------|---------|
| 1,1-Dichloroethene           | 1.0       | U         | 1.0                 | 0.49 | ug/L |   |          | 11/10/23 12:35 | 1       |
| cis-1,2-Dichloroethene       | 1.0       | U         | 1.0                 | 0.46 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Tetrachloroethene            | 1.0       | U         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 12:35 | 1       |
| trans-1,2-Dichloroethene     | 1.0       | U         | 1.0                 | 0.51 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Trichloroethene              | 1.0       | U         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Vinyl chloride               | 1.0       | U         | 1.0                 | 0.45 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits              |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       |           | 62 - 137            |      |      | - |          | 11/10/23 12:35 | 1       |
| 4-Bromofluorobenzene (Surr)  | 81        |           | 56 <sub>-</sub> 136 |      |      |   |          | 11/10/23 12:35 | 1       |
| Toluene-d8 (Surr)            | 93        |           | 78 - 122            |      |      |   |          | 11/10/23 12:35 | 1       |
| Dibromofluoromethane (Surr)  | 93        |           | 73 - 120            |      |      |   |          | 11/10/23 12:35 | 1       |

# **Client Sample Results**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

Date Received: 11/08/23 08:00

Client Sample ID: MW-164S\_110323

Lab Sample ID: 240-194992-2 Date Collected: 11/03/23 11:50

Matrix: Water

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| 1,4-Dioxane                  | 2.0       | U         | 2.0      | 0.86 | ug/L |   |          | 11/15/23 00:47 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1.2-Dichloroethane-d4 (Surr) | 105       |           | 66 - 120 |      |      | - |          | 11/15/23 00:47 |         |

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | DII Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| 1,1-Dichloroethene           | 1.0       | U         | 1.0      | 0.49 | ug/L |   |          | 11/10/23 16:20 | 1       |
| cis-1,2-Dichloroethene       | 1.0       | U         | 1.0      | 0.46 | ug/L |   |          | 11/10/23 16:20 | 1       |
| Tetrachloroethene            | 1.0       | U         | 1.0      | 0.44 | ug/L |   |          | 11/10/23 16:20 | 1       |
| trans-1,2-Dichloroethene     | 1.0       | U         | 1.0      | 0.51 | ug/L |   |          | 11/10/23 16:20 | 1       |
| Trichloroethene              | 1.0       | U         | 1.0      | 0.44 | ug/L |   |          | 11/10/23 16:20 | 1       |
| Vinyl chloride               | 1.0       | U         | 1.0      | 0.45 | ug/L |   |          | 11/10/23 16:20 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      | _ | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) |           |           | 62 - 137 |      |      |   |          | 11/10/23 16:20 | 1       |

| Surrogate                    | %Recovery | Qualifier | Limits   | Prej | pared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|-------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 111       |           | 62 - 137 |      |       | 11/10/23 16:20 | 1       |
| 4-Bromofluorobenzene (Surr)  | 81        |           | 56 - 136 |      |       | 11/10/23 16:20 | 1       |
| Toluene-d8 (Surr)            | 93        |           | 78 - 122 |      |       | 11/10/23 16:20 | 1       |
| Dibromofluoromethane (Surr)  | 96        |           | 73 - 120 |      |       | 11/10/23 16:20 | 1       |

# **Surrogate Summary**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

## Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

|                    |                        |          |          | Percent Sur | rrogate Reco |
|--------------------|------------------------|----------|----------|-------------|--------------|
|                    |                        | DCA      | BFB      | TOL         | DBFM         |
| Lab Sample ID      | Client Sample ID       | (62-137) | (56-136) | (78-122)    | (73-120)     |
| 240-194730-B-3 MS  | Matrix Spike           | 101      | 85       | 91          | 92           |
| 240-194730-B-3 MSD | Matrix Spike Duplicate | 103      | 84       | 89          | 98           |
| 240-194992-1       | TRIP BLANK_59          | 107      | 81       | 93          | 93           |
| 240-194992-2       | MW-164S_110323         | 111      | 81       | 93          | 96           |
| LCS 240-594169/5   | Lab Control Sample     | 100      | 82       | 89          | 93           |
| MB 240-594169/8    | Method Blank           | 118      | 88       | 101         | 103          |

## Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

# Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

|                    |                        |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|----------|------------------------------------------------|
|                    |                        | DCA      |                                                |
| Lab Sample ID      | Client Sample ID       | (66-120) |                                                |
| 240-194827-L-4 MS  | Matrix Spike           | 97       |                                                |
| 240-194827-R-4 MSD | Matrix Spike Duplicate | 97       |                                                |
| 240-194992-2       | MW-164S_110323         | 105      |                                                |
| LCS 240-594613/3   | Lab Control Sample     | 98       |                                                |
| MB 240-594613/5    | Method Blank           | 102      |                                                |
| Surrogate Legend   |                        |          |                                                |

DCA = 1,2-Dichloroethane-d4 (Surr)

**Eurofins Cleveland** 

2

5

7

9

10

12

13

Job ID: 240-194992-1

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site

## Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-594169/8

**Matrix: Water** 

Analysis Batch: 594169

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/10/23 11:20 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/10/23 11:20 1.0 U 1.0 0.44 ug/L 11/10/23 11:20 Tetrachloroethene trans-1,2-Dichloroethene 11/10/23 11:20 1.0 U 1.0 0.51 ug/L Trichloroethene 1.0 U 1.0 0.44 ug/L 11/10/23 11:20 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/10/23 11:20

MB MB

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 118       |           | 62 - 137 |          | 11/10/23 11:20 | 1       |
| 4-Bromofluorobenzene (Surr)  | 88        |           | 56 - 136 |          | 11/10/23 11:20 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 78 - 122 |          | 11/10/23 11:20 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 73 - 120 |          | 11/10/23 11:20 | 1       |

Lab Sample ID: LCS 240-594169/5

**Matrix: Water** 

Analysis Batch: 594169

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

| Spike | LCS                                 | LCS                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                   | %Rec                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Added | Result                              | Qualifier l                                                                                                                                                      | Jnit C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %Rec                                                                                                                                                                                                                                                                                                              | Limits                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.0  | 27.5                                |                                                                                                                                                                  | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                               | 63 - 134                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.0  | 25.1                                | ι                                                                                                                                                                | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                               | 77 - 123                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.0  | 25.6                                | ι                                                                                                                                                                | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                                                                                                                               | 76 - 123                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.0  | 25.9                                | ι                                                                                                                                                                | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104                                                                                                                                                                                                                                                                                                               | 75 - 124                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.0  | 25.1                                | ι                                                                                                                                                                | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                               | 70 - 122                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12.5  | 11.2                                | ι                                                                                                                                                                | ıg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89                                                                                                                                                                                                                                                                                                                | 60 - 144                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Added 25.0 25.0 25.0 25.0 25.0 25.0 | Added         Result           25.0         27.5           25.0         25.1           25.0         25.6           25.0         25.9           25.0         25.1 | Added         Result         Qualifier         Under the control of the cont | Added         Result         Qualifier         Unit         E           25.0         27.5         ug/L         ug/L           25.0         25.1         ug/L         ug/L           25.0         25.6         ug/L         ug/L           25.0         25.9         ug/L           25.0         25.1         ug/L | Added         Result         Qualifier         Unit         D         %Rec           25.0         27.5         ug/L         110           25.0         25.1         ug/L         101           25.0         25.6         ug/L         102           25.0         25.9         ug/L         104           25.0         25.1         ug/L         100 | Added         Result         Qualifier         Unit         D         %Rec         Limits           25.0         27.5         ug/L         110         63 - 134           25.0         25.1         ug/L         101         77 - 123           25.0         25.6         ug/L         102         76 - 123           25.0         25.9         ug/L         104         75 - 124           25.0         25.1         ug/L         100         70 - 122 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 62 - 137 |
| 4-Bromofluorobenzene (Surr)  | 82        |           | 56 - 136 |
| Toluene-d8 (Surr)            | 89        |           | 78 - 122 |
| Dibromofluoromethane (Surr)  | 9.3       |           | 73 - 120 |

Lab Sample ID: 240-194730-B-3 MS

**Matrix: Water** 

Analysis Batch: 594169

Client Sample ID: Matrix Spike Prep Type: Total/NA

|                          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |  |
|--------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,1-Dichloroethene       | 5.0    | U         | 125   | 134    |           | ug/L |   | 107  | 56 - 135 |  |
| cis-1,2-Dichloroethene   | 130    |           | 125   | 228    |           | ug/L |   | 80   | 66 - 128 |  |
| Tetrachloroethene        | 5.0    | U         | 125   | 114    |           | ug/L |   | 91   | 62 - 131 |  |
| trans-1,2-Dichloroethene | 5.0    | U         | 125   | 119    |           | ug/L |   | 95   | 56 - 136 |  |
| Trichloroethene          | 56     |           | 125   | 162    |           | ug/L |   | 84   | 61 - 124 |  |
| Vinyl chloride           | 5.0    | U         | 62.5  | 57.9   |           | ug/L |   | 93   | 43 - 157 |  |

MS MS

| Surrogate                    | %Recovery Qua | lifier Limits |
|------------------------------|---------------|---------------|
| 1,2-Dichloroethane-d4 (Surr) | 101           | 62 - 137      |
| 4-Bromofluorobenzene (Surr)  | 85            | 56 - 136      |
| Toluene-d8 (Surr)            | 91            | 78 - 122      |

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Job ID: 240-194992-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-194730-B-3 MS

**Matrix: Water** 

Analysis Batch: 594169

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Dibromofluoromethane (Surr) 92

Lab Sample ID: 240-194730-B-3 MSD

73 - 120

Limits

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 594169

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec     |     | RPD   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0    | U         | 125   | 141    |           | ug/L |   | 113  | 56 - 135 | 5   | 26    |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130    |           | 125   | 240    |           | ug/L |   | 90   | 66 - 128 | 5   | 14    |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0    | U         | 125   | 111    |           | ug/L |   | 89   | 62 - 131 | 3   | 20    |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0    | U         | 125   | 125    |           | ug/L |   | 100  | 56 - 136 | 5   | 15    |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56     |           | 125   | 177    |           | ug/L |   | 96   | 61 - 124 | 9   | 15    |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0    | U         | 62.5  | 60.8   |           | ug/L |   | 97   | 43 - 157 | 5   | 24    |
| The state of the s |        |           |       |        |           |      |   |      |          |     |       |

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 103 62 - 137 4-Bromofluorobenzene (Surr) 84 56 - 136 Toluene-d8 (Surr) 89 78 - 122 Dibromofluoromethane (Surr) 98 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 240-594613/5

**Matrix: Water** 

Analysis Batch: 594613

| Client Sample ID: Method Blan | k |
|-------------------------------|---|
| Prep Type: Total/N            | A |

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 11/14/23 20:49 MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 102 66 - 120 11/14/23 20:49

Lab Sample ID: LCS 240-594613/3

| Matrix: Water          |       |         | Prep Type: Total/NA |
|------------------------|-------|---------|---------------------|
| Analysis Batch: 594613 |       |         |                     |
|                        | Spike | LCS LCS | %Rec                |

Analyte Added Result Qualifier Unit D %Rec Limits 1,4-Dioxane 10.0 10.6 ug/L 106 80 - 122

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 98

Lab Sample ID: 240-194827-L-4 MS

**Matrix: Water** 

| Analysis Batch: 594613 |        |           |       |        |           |      |   |      |          |   |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|---|
|                        | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |   |
| 1,4-Dioxane            | 2.0    | U         | 10.0  | 10.5   |           | ug/L |   | 105  | 51 - 153 | _ |

**Eurofins Cleveland** 

Prep Type: Total/NA

# **QC Sample Results**

Spike

MSD MSD Result Qualifier

10.8

Unit

ug/L

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

|                              | MS I        | иs        |          |
|------------------------------|-------------|-----------|----------|
| Surrogate                    | %Recovery ( | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 97          |           | 66 - 120 |

| Lah Sample | ID: 040 4040 | 07 D 4 MOD |  |
|------------|--------------|------------|--|
| _          |              |            |  |

Matrix: Water

| <b>Analysis</b> | Batch: | 594613 |
|-----------------|--------|--------|
|-----------------|--------|--------|

| Analyte                      | Result    | Qualifier | Added    |
|------------------------------|-----------|-----------|----------|
| 1,4-Dioxane                  | 2.0       | U         | 10.0     |
|                              | MSD       | MSD       |          |
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 66 - 120 |

Sample Sample

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

%Rec RPD Limit RPD Limit

 D
 %Rec
 Limits
 RPD
 Limits

 108
 51 - 153
 3
 10

10

11

13

# **QC Association Summary**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

## **GC/MS VOA**

## Analysis Batch: 594169

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 240-194992-1       | TRIP BLANK_59          | Total/NA  | Water  | 8260D  | _          |
| 240-194992-2       | MW-164S_110323         | Total/NA  | Water  | 8260D  |            |
| MB 240-594169/8    | Method Blank           | Total/NA  | Water  | 8260D  |            |
| LCS 240-594169/5   | Lab Control Sample     | Total/NA  | Water  | 8260D  |            |
| 240-194730-B-3 MS  | Matrix Spike           | Total/NA  | Water  | 8260D  |            |
| 240-194730-B-3 MSD | Matrix Spike Duplicate | Total/NA  | Water  | 8260D  |            |

## Analysis Batch: 594613

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method    | Prep Batch |
|--------------------|------------------------|-----------|--------|-----------|------------|
| 240-194992-2       | MW-164S_110323         | Total/NA  | Water  | 8260D SIM |            |
| MB 240-594613/5    | Method Blank           | Total/NA  | Water  | 8260D SIM |            |
| LCS 240-594613/3   | Lab Control Sample     | Total/NA  | Water  | 8260D SIM |            |
| 240-194827-L-4 MS  | Matrix Spike           | Total/NA  | Water  | 8260D SIM |            |
| 240-194827-R-4 MSD | Matrix Spike Duplicate | Total/NA  | Water  | 8260D SIM |            |

4

6

0

Q

10

11

12

## **Lab Chronicle**

Client: ARCADIS US Inc Job ID: 240-194992-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK\_59

Lab Sample ID: 240-194992-1 Date Collected: 11/03/23 00:00

Matrix: Water

Date Received: 11/08/23 08:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260D  |     | 1        | 594169 | TJL2    | EET CLE | 11/10/23 12:35 |

Client Sample ID: MW-164S\_110323 Lab Sample ID: 240-194992-2

Date Collected: 11/03/23 11:50 Matrix: Water

Date Received: 11/08/23 08:00

|           | Batch    | Batch     |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|-----------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method    | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260D     |     | 1        | 594169 | TJL2    | EET CLE | 11/10/23 16:20 |
| Total/NA  | Analysis | 8260D SIM |     | 1        | 594613 | CS      | EET CLE | 11/15/23 00:47 |

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

# **Accreditation/Certification Summary**

Client: ARCADIS US Inc Job ID: 240-194992-1 Project/Site: Ford LTP - Off Site

## **Laboratory: Eurofins Cleveland**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority             | Program | Identification Number | Expiration Date |
|-----------------------|---------|-----------------------|-----------------|
| California            | State   | 2927                  | 02-27-24        |
| Georgia               | State   | 4062                  | 02-27-24        |
| Illinois              | NELAP   | 200004                | 07-31-24        |
| lowa                  | State   | 421                   | 06-01-25        |
| Kentucky (UST)        | State   | 112225                | 02-28-24        |
| Kentucky (WW)         | State   | KY98016               | 12-31-23        |
| Michigan              | State   | 9135                  | 02-27-24        |
| Minnesota             | NELAP   | 039-999-348           | 12-31-23        |
| Minnesota (Petrofund) | State   | 3506                  | 08-01-23 *      |
| New Jersey            | NELAP   | OH001                 | 07-01-24        |
| New York              | NELAP   | 10975                 | 04-02-24        |
| Ohio                  | State   | 8303                  | 02-27-24        |
| Ohio VAP              | State   | ORELAP 4062           | 02-27-24        |
| Oregon                | NELAP   | 4062                  | 02-27-24        |
| Pennsylvania          | NELAP   | 68-00340              | 08-31-24        |
| Texas                 | NELAP   | T104704517-22-19      | 08-31-24        |
| Virginia              | NELAP   | 460175                | 09-14-24        |
| West Virginia DEP     | State   | 210                   | 12-31-23        |

 $<sup>^{\</sup>star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$ 

**Eurofins Cleveland** 

MICHIGAN 190

**TestAmerica** 

Chain of Custody Record

2.0(31

MICHIGAN 190

Client Contact

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

RCRA

NPDES

D.W.

Regulatory program:

TestAmerica Laboratories, Inc COC No: 3 VOAs for 8260D 3 VOAs for 8260D SIM 1350 11/03/23 15/00 COCs Sample Specific Notes/ Special Instructions: 1 Trip Blank 11/23 or lab use only Walk-in client ab sampling 1 of Job/SDG No 240-194992 Chain of Custody Arcacus PET ILC Sample Dispusal ( A fee may be assessed if samples are retained longer than I month) × 4-Dioxane 8260D SIM Lab Contact: Mike DelMonico × Vinyl Chloride 8260D Telephone: 330-497-9396 ×  $\times$ × CE 8500D × Archals cold storage × rans-1,2-DCE 8260D  $\times$ X 12-1,2-DCE 8260D  $\times$ 1-DCE 8500D Disposal By Lab () **2** G Z Filtered Sample (Y / N) Site Contact: Christina Weaver Other: Redeived in Labo Analysis Turnaround Ilme 227qnU Telephone: 248-994-2240 week 2 days Received HOsy HOSN 0 500 HCI 11/123 135U 10 day EONH POSTH 2005 \$2/\$D/\\ Other: Date/Time: pilos Matrix Sampler Name:
| Sampler Name: OHero |
| Method of Shipment/Carrier: 0 Email: kristoffer.hinskey@arcadis.com snoonby Unknown Client Project Manager: Kris Hinskey 1i.A Sample Time Pradus Telephone: 248-994-2240 11/03/15 1150 Special Instructions/QC Requirements & Comments:
Sample Address: 34637 RACON
Submit all results through Cadena at jtdmalia@cadenaco.com. Cadena #E203631 Shipping/Tracking No: Arcodis Poison B Sample Date SPAR S Skin Irritant MW-1645\_110373 Possible Hazard Identification

Non-Hazard Flammable Sample Identification SMME Address: 28550 Cabut Drive, Suite 500 Deutun TRIP BLANK 50 Project Number: 30167538,402.04 Project Name: Ford LTP Off-Site Level IV Reporting requested. City/State/Zip: Novi, MI, 48377 ompany Name: Arcadis PO#30167538.402.04 hone: 248-994-2240 Relinquished by: Refinguished by Relinquished by

Page 18 of 19

1 1/16/2023 (Backlings of Backlings of Backl

| Eurofins - Cleveland Sample Receipt Form/Narrative Login # : 9499                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barberton Facility  Site Name  Cooler unpacked by:                                                                                                                               |
| nom Fit Coccition                                                                                                                                                                |
| cooler Received on 11-8 23 Opened on 11-8 23 KAChelle HA, det                                                                                                                    |
| FedEx: 1st Grd Exp UPS FAS Waypoint Client Drop Off Eurofins Courier Other                                                                                                       |
| Receipt After-hours: Drop-off Date/Time Storage Location                                                                                                                         |
| Eurofins Cooler # Foam Box Client Cooler Box Other                                                                                                                               |
| Packing material used Bubble Wrap Foam Plastic Bag None Other                                                                                                                    |
| COOLANT: Wet Ice Blue Ice Dry Ice Water None  Cooler temperature upon receipt   See Multiple Cooler Form                                                                         |
|                                                                                                                                                                                  |
| IR GUN # (CF + 1, 1 °C) Observed Cooler Temp. 2.0 °C Corrected Cooler Temp 3.1 °C                                                                                                |
| . Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No                                                                                              |
| -Were the seals on the outside of the cooler(s) signed & dated?                                                                                                                  |
| -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?  Yes No Receiving:                                                                                       |
| -Were tamper/custody seals intact and uncompromised?                                                                                                                             |
| Shippers' packing slip attached to the cooler(s)?  Yes No                                                                                                                        |
| Did custody papers accompany the sample(s)?  Oil and Grease TOC                                                                                                                  |
| . Were the custody papers relinquished & signed in the appropriate place? Yes No                                                                                                 |
| . Was/were the person(s) who collected the samples clearly identified on the COC? Ves No                                                                                         |
| 7. Did all bottles arrive in good condition (Unbroken)?                                                                                                                          |
| 3. Could all bottle labels (ID/Date/Time) be reconciled with the COC?  See No. 1. Could all bottle labels (ID/Date/Time) be reconciled with the COC?                             |
| O. For each sample, does the COC specify preservatives (YN), # of containers (NN), and sample type of grab/comp (YN)?  O. Were correct bottle(s) used for the test(s) indicated? |
|                                                                                                                                                                                  |
| 2. Are these work share samples and all listed on the COC?  Yes No                                                                                                               |
| If yes, Questions 13-17 have been checked at the originating laboratory.                                                                                                         |
| 3. Were all preserved sample(s) at the correct pH upon receipt?  Yes No NA pH Strip Lot# HC316719                                                                                |
| 4. Were VOAs on the COC?                                                                                                                                                         |
| 5. Were air bubbles >6 mm in any VOA vials? Larger than this. Yes No NA                                                                                                          |
| 6. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Ves No                                                                                                        |
| 7. Was a LL Hg or Me Hg trip blank present?Yes No                                                                                                                                |
| Contacted PM Date by via Verbal Voice Mail Other                                                                                                                                 |
| Concerning                                                                                                                                                                       |
|                                                                                                                                                                                  |
| 8. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES  additional next page  Samples processed by:                                                                                          |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 9. SAMPLE CONDITION                                                                                                                                                              |
| ample(s) were received after the recommended holding time had expired.                                                                                                           |
| ample(s) were received in a broken container.                                                                                                                                    |
| ample(s) were received with bubble >6 mm in diameter. (Notify PM)                                                                                                                |
| 0. SAMPLE PRESERVATION                                                                                                                                                           |
| ample(s) were further preserved in the laboratory.                                                                                                                               |
| ample(s) were further preserved in the laboratory.  Time preserved: Preservative(s) added/Lot number(s):                                                                         |
| OA Sample Preservation - Date/Time VOAs Frozen:                                                                                                                                  |
|                                                                                                                                                                                  |

# DATA VERIFICATION REPORT



November 16, 2023

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30167538.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 194992-1 Sample date: 2023-11-03

Report received by CADENA: 2023-11-16

Initial Data Verification completed by CADENA: 2023-11-16

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

SRN - Sample Receipt Non-conformance(headspace) - Sample -002 results for GCMS VOC should be considered to be estimated and qualified with UJ flags if non-detect due to sample receipt non-conformance that affects the integrity of the sample. See laboratory submittal sample receipt forms for details.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <a href="http://clms.cadenaco.com/index.cfm">http://clms.cadenaco.com/index.cfm</a>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

# Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

# **CADENA Valid Qualifiers**

| Valid<br>Qualifiers | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <                   | Less than the reported concentration.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| >                   | Greater than the reported concentration.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| В                   | The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration. |
| Е                   | The analyte / Compound reported exceeds the calibration range and is considered estimated.                                                                                                                                                                                                                                                                                                                                                                 |
| EMPC                | Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.                                                                                                                                                                                                                                                                                                                                                                                    |
| J                   | Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.                     |
| J-                  | The result is an estimated quantity, but the result may be biased low.                                                                                                                                                                                                                                                                                                                                                                                     |
| JB                  | NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED                                                                                                                                                                                                                                                                                                                                                                                                     |
| JH                  | The sample result is considered estimated and is potentially biased high.                                                                                                                                                                                                                                                                                                                                                                                  |
| JL                  | The sample result is considered estimated and is potentially biased low.                                                                                                                                                                                                                                                                                                                                                                                   |
| JUB                 | NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED                                                                                                                                                                                                                                                                                                                                                                                                            |
| NJ                  | Tentatively identified compound with approximated concentration.                                                                                                                                                                                                                                                                                                                                                                                           |
| R                   | Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)                                                                                                                                                                                                                                                                                                                                                |
| TNTC                | Too Numerous to Count - Asbestos and Microbiological Results.                                                                                                                                                                                                                                                                                                                                                                                              |
| U                   | Indicates that the analyte / compound was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                  |
| UB                  | The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.                                             |
| UJ                  | The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.                                                                                                                              |

# **Qualified Results Summary**

**CADENA Project ID:** E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 194992-1

**Sample Name:** MW-164S\_110323 **Lab Sample ID:** 2401949922 **Sample Date:** 11/3/2023

Report Valid **Analyte** Cas No. Result Limit Units Qualifier **GC/MS VOC** OSW-8260D 1,1-Dichloroethene 75-35-4 ND 1.0 ug/l UJ cis-1,2-Dichloroethene 156-59-2 ND 1.0 ug/l UJ Tetrachloroethene 127-18-4 ND 1.0 ug/l UJ trans-1,2-Dichloroethene 156-60-5 ND 1.0 ug/l UJ Trichloroethene 79-01-6 ND 1.0 ug/l UJ Vinyl chloride 75-01-4 ND 1.0 ug/l UJ

# **Analytical Results Summary**

**CADENA Project ID:** E203631

**Laboratory:** Eurofins Environment Testing LLC - Cleveland

**Laboratory Submittal:** 194992-1

|           |                          | Sample Name:   | TRIP BLA | TRIP BLANK_59 |       |           |            | MW-164S_110323 |       |           |  |
|-----------|--------------------------|----------------|----------|---------------|-------|-----------|------------|----------------|-------|-----------|--|
|           |                          | Lab Sample ID: | 2401949  | 2401949921    |       |           | 2401949922 |                |       |           |  |
|           |                          | Sample Date:   | 11/3/20  | 23            |       |           | 11/3/20    | 23             |       |           |  |
|           |                          |                |          | Report        |       | Valid     |            | Report         |       | Valid     |  |
|           | Analyte                  | Cas No.        | Result   | Limit         | Units | Qualifier | Result     | Limit          | Units | Qualifier |  |
| GC/MS VOC |                          |                |          |               |       |           |            |                |       |           |  |
| OSW-826   | <u>OD</u>                |                |          |               |       |           |            |                |       |           |  |
|           | 1,1-Dichloroethene       | 75-35-4        | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
|           | cis-1,2-Dichloroethene   | 156-59-2       | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
|           | Tetrachloroethene        | 127-18-4       | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
|           | trans-1,2-Dichloroethene | 156-60-5       | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
|           | Trichloroethene          | 79-01-6        | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
|           | Vinyl chloride           | 75-01-4        | ND       | 1.0           | ug/l  |           | ND         | 1.0            | ug/l  | UJ        |  |
| OSW-826   | <u>ODSIM</u>             |                |          |               |       |           |            |                |       |           |  |
|           | 1,4-Dioxane              | 123-91-1       |          |               |       |           | ND         | 2.0            | ug/l  |           |  |



# Ford Motor Company – Livonia Transmission Project

# **Data Review**

# Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-194992-1

CADENA Verification Report: 2023-11-16

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 52103R Review Level: Tier III Project: 30167538.402.02

# **SUMMARY**

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-194992-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

| Sample ID      | Lab ID       | Matrix   | Sample                        | Parent Sample | Ana | lysis   |
|----------------|--------------|----------|-------------------------------|---------------|-----|---------|
| Sample 10      | Labib        | IVIALITA | Collection Date Parent Sample |               | VOC | VOC SIM |
| TRIP BLANK_59  | 240-194992-1 | Water    | 11/03/2023                    |               | Х   |         |
| MW-164S_110323 | 240-194992-2 | Water    | 11/03/2023                    |               | Х   | X       |

## **ANALYTICAL DATA PACKAGE DOCUMENTATION**

The table below is the evaluation of the data package completeness.

| Items Reviewed                                                     | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| Sample receipt condition                                           |          | Х   |                           | Х   |          |
| Requested analyses and sample results                              |          | X   |                           | Х   |          |
| Master tracking list                                               |          | X   |                           | Х   |          |
| 4. Methods of analysis                                             |          | X   |                           | Х   |          |
| 5. Reporting limits                                                |          | X   |                           | Х   |          |
| 6. Sample collection date                                          |          | Х   |                           | Х   |          |
| 7. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 8. Sample preservation verification (as applicable)                |          | Х   |                           | Х   |          |
| Sample preparation/extraction/analysis dates                       |          | Х   |                           | Х   |          |
| 10. Fully executed Chain-of-Custody (COC) form                     |          | Х   |                           | Х   |          |
| Narrative summary of Quality Assurance or sample problems provided |          | Х   |                           | Х   |          |
| 12. Data Package Completeness and Compliance                       |          | Х   |                           | Х   |          |

#### ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
  - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
  - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

## **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                 | Matrix | Holding Time                        | Preservation                    |
|------------------------|--------|-------------------------------------|---------------------------------|
| SW-846 8260D/8260D-SIM | Water  | 14 days from collection to analysis | Cool to < 6 °C; pH < 2 with HCl |

All samples were analyzed within the specified holding time criteria.

## 2. Sample Receipt Condition

The laboratory received VOC vials with significant headspace for sample MW-164S\_110323 (240-194992-2). In case of any deviation, the sample results are qualified as documented in the table below.

| Control Limit                    | Sample Result | Qualification |
|----------------------------------|---------------|---------------|
| Bubbles in VOC vials > 6 mm      | Non-detect    | UJ            |
| Dubbles III VOC Vials > 0 IIIIII |               | J             |

## 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

## 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

## 5. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

## 6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

## 7. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

## 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## **DATA VALIDATION CHECKLIST FOR VOCs**

| VOCs: 8260D/8260D-SIM                                       | Reported |     |    | rmance<br>ptable | Not<br>Required |  |
|-------------------------------------------------------------|----------|-----|----|------------------|-----------------|--|
|                                                             |          | Yes | No | Yes              | Required        |  |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G                     | C/MS)    |     |    |                  |                 |  |
| Tier II Validation                                          |          |     |    |                  |                 |  |
| Holding times/Preservation                                  |          | Х   | Х  |                  |                 |  |
| Tier III Validation                                         |          |     |    |                  | '               |  |
| System performance and column resolution                    |          | X   |    | Х                |                 |  |
| Initial calibration %RSDs                                   |          | Х   |    | Х                |                 |  |
| Continuing calibration RRFs                                 |          | Х   |    | Х                |                 |  |
| Continuing calibration %Ds                                  |          | Х   |    | Х                |                 |  |
| Instrument tune and performance check                       |          | Х   |    | Х                |                 |  |
| Ion abundance criteria for each instrument used             |          | Х   |    | Х                |                 |  |
| Field Duplicate RPD                                         | X        |     |    |                  | Х               |  |
| Internal standard                                           |          | Х   |    | Х                |                 |  |
| Compound identification and quantitation                    |          |     |    |                  |                 |  |
| A. Reconstructed ion chromatograms                          |          | Х   |    | Х                |                 |  |
| B. Quantitation Reports                                     |          | Х   |    | Х                |                 |  |
| C. RT of sample compounds within the established RT windows |          | Х   |    | Х                |                 |  |
| D. Transcription/calculation errors present                 |          | Х   |    | Х                |                 |  |
| E. Reporting limits adjusted to reflect sample dilutions    |          | Х   |    | Х                |                 |  |

## Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BAShims

DATE: December 13, 2023

PEER REVIEW: Andrew Korycinski

DATE: December 13, 2023

# CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

# MICHIGAN 190

2-0(31

# **Chain of Custody Record**

MICHIGAN 190

TestAmerica

| 190 To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | estAmerica Labora | tory location:      | Brig   | hton     | 10448 | 3 Citatio | on Driv  | e, S          | uite 2    | 00 /   | Brigh          | nton, MI         | 48116        | / 810   | )-229-        | 2763              |                     |           |         |                |           |               |         |         | THE LEADS | A IN ENVIRO                | NENTA  | L. TESTING |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|--------|----------|-------|-----------|----------|---------------|-----------|--------|----------------|------------------|--------------|---------|---------------|-------------------|---------------------|-----------|---------|----------------|-----------|---------------|---------|---------|-----------|----------------------------|--------|------------|
| Client Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Regulat           | ory program:        |        | - 1      | DW    |           | T.       | NPD           | ES        |        | <b>F</b> 1     | RCRA             | T            | Oth     | er            |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| Company Name: Arcadis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Climat Bassiant 3 | Annana Valo         | I I    |          |       |           | 1011     |               |           | 21 1   |                | ***              |              |         |               | To                |                     |           |         |                |           |               |         |         |           | merica La                  | orator | ries, Inc  |
| Address: 28550 Cabot Drive, Suite 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Client Project N  | nanager: Kris       | THESE  | tey      |       |           | Site     | Cont          | act: C    | hris   | stina          | Weaver           |              |         |               | Lab C             | Contac              | et: Mil   | te Del  | Monic          | 0         |               |         |         | COC       | No:                        |        |            |
| O. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Telephone: 248    | -994-2240           |        |          |       |           | Tele     | phon          | e: 248    | 8-99   | 4-224          | 0                |              |         |               | Telep             | nhone:              | 330-4     | 97-93   | 96             |           |               |         |         |           |                            |        |            |
| City/State/Zip: Novi, MI, 48377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email: kristoff   | er hinskev@ar       | cadis  | com      | -     |           | -        | Analy         | vsis T    | urns   | aroun          | d Time           |              |         |               |                   |                     |           | A       | nalys          | PE        |               |         |         |           | 1 of 1                     | CO     | Cs         |
| Phone: 248-994-2240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Linuan: Ariston   | er annoske y (a) ar | · auis |          |       |           |          |               |           |        | 30             |                  |              |         |               |                   |                     |           |         | ,              |           |               |         |         | ror iac   | use only                   | -      |            |
| Project Name: Ford LTP Off-Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampler Name      | 000                 | Lea    | $\sim$   |       |           |          |               | erent fro | 1 .    | 3 wee          |                  | -            |         |               |                   |                     |           |         |                |           |               |         |         | Walk-i    | n client                   |        |            |
| Project Number: 30167538.402.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method of Ship    | ment/Carrier:       |        | 19       |       |           | 1 "      | 0 day         | у         |        | 2 wee<br>1 wee |                  |              | (3)     |               |                   |                     |           |         |                | 5         |               |         |         | Lab sa    | mpling                     |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               |           |        | 2 days         | 6                | uple (Y / N) | Grab=G  |               |                   | 900                 |           |         | 8              | SIM       |               |         |         |           |                            |        |            |
| PO # 30167538.402.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shipping/Track    | ing No:             |        |          |       |           | 1        |               |           |        | l day          |                  | 5            | Gra     |               | 3097              | 82                  |           |         | 8260D          | 8260D     |               |         |         | Job/SE    | G No:                      |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        | M        | atrix |           |          | Cont          | tainers   | 8 & P  | reser          | vatives          | 1            | Y       | 260           | m<br>8            | 20                  |           |         | ge             | e 83      |               | - 1     |         | -         |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        | , ,      |       |           | П        |               |           | $\Box$ | Т              |                  | d S.         | seite   | m<br>eo       | 2                 | 1.2-                | 560       | 8260D   | 욛              | xan       |               |         |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     | _      | Aqueous  | Solid | Other:    | H2S04    | HN03          | п         | NaOH   | ZnAc           | Unpres<br>Other: | ler e        | Composi | 1,1-DCE 8260D | cis-1,2-DCE 8260D | Trans-1,2-DCE 8260D | PCE 8260D | Щ<br>80 | Vinyl Chloride | 4-Dioxane |               |         |         | 1         | iample Spec<br>Special Ins |        |            |
| Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date       | Sample Time         | Air    | A Se     | S.    | 5         | 呈        | 主             | HG        | 2      | 5 2            | 5   ŏ            | Tile I       | ŏ       | -,            | CIS               | 1                   | 8         | TCE     | >              | 1.4       |               |         |         |           |                            |        |            |
| TRIP BLANK_ 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                     |        | 1        |       |           |          |               | 1         |        |                |                  | N            | G       | Х             | X                 | X                   | X         | Х       | Х              |           |               |         |         | 1         | rip Blar                   | k      |            |
| MW-1645_110323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/03/13          | 1150                |        | 6        |       |           |          |               | 6         |        |                |                  | N            | G       | X             | X                 | X                   | X         | X       | X              | X         |               |         |         |           | OAs for 8                  |        |            |
| NG STATE OF THE ST | 120/02            |                     |        |          |       |           | 1        | $\dashv$      |           | +      | $\dashv$       | _                | +            | -       |               |                   | -                   | -         |         | -              | -         | $\rightarrow$ | -       | -       | 31        | OAs for 8                  | 260D   | SIM        |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| Page 358 of 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         | _         |                            |        |            |
| Ψ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |        |          |       |           |          |               |           |        |                |                  | $\perp$      |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| <u>of</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |        | $\vdash$ |       | -         | +        | $\rightarrow$ | -         | -      | -              | -                | -            |         |               |                   | _                   | _         |         |                |           |               |         |         |           |                            |        |            |
| ယ<br>ပာ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                     | Н      |          |       |           | ш        |               |           |        |                |                  |              |         |               |                   | ' 1                 | 11111111  |         | 11111111       |           | MILLE         | ALLIU V | BR HITT |           |                            |        |            |
| Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     | Н      |          |       |           |          | _             | -         | +      | +              | _                | +-           |         | -             |                   |                     |           |         | Ш              |           | MUN           | AUNU    |         |           | _                          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               |           |        |                |                  | 1            |         |               |                   |                     |           |         |                |           | AHAN          |         |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               | $\neg$    |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           | $\sqcup$ |               |           |        |                |                  |              |         |               |                   |                     | 240-1     | 949     | 92 CI          | nain c    | of Cus        | stody   |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   | -                   |           |         |                |           |               |         |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     | -      | -        | +     | -         | $\vdash$ | -             | -         | +      | -              | -                | $\perp$      | -       | _             | -                 |                     | -         |         | -              |           | $\vdash$      |         |         |           |                            |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         | 1         |                            |        |            |
| Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                     |        |          |       |           | Sa       | mple          | e Disp    | oosal  | (Af            | ee may b         | e asses      | sed if  | samp          | les are           | retai               | ned lo    | nger t  | han 1          | month     |               |         |         |           |                            |        |            |
| Non-Hazard Flammable Skin Iri Special Instructions/QC Requirements & Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ritant Poiso      | n B                 | Unk    | nown     |       |           |          | 1             | Return    | ı to € | Client         | V                | Dispo        | sal By  | Lab           |                   | F A                 | rchive    | For [   |                | Mo        | onths         |         |         |           |                            |        |            |
| Sample Address: 34637 Beacor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                 |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| Submit all results through Cadena at jtomalia@cadena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | co.com. Cadena #  | E203631             |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| Level IV Reporting requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                     |        |          |       |           |          |               |           |        |                |                  |              |         |               |                   |                     |           |         |                |           |               |         |         |           |                            |        |            |
| Retinguished by Cleville VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arca              |                     |        | Date/Ti  | Q2    | 123       | 15       | ōα            | ן כ       | A      | rved h         | žais             | cc           | 200     | SH            | or                | 05                  | r.        | Com     | )<br>317       | ac        | en            |         |         | Date/T    | 3/23                       | 150    | 20         |
| Relinquished by: Jonnes Suy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Company:          | des                 |        | Date/fr  | 1/2   | 3         | 13       | 57            | ا ر       | Recei  | No.            | 11               | 1            |         |               |                   |                     |           | Com     | NO I           | A         |               |         |         | Date/T    |                            | 138    |            |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company:          |                     |        | Date/Ti  | me:   |           |          |               | 1         | Rede   | ived i         | n Laboy          | tory b       | TFY     | _             |                   |                     |           | Com     | pany:          |           |               |         |         | Date/     | inte:                      |        |            |
| - CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MA                |                     |        | 11/7     | 23    | 14        | 100      |               | 7         | 区      | (ho            | MI               | ll           | K       | لينا          | ul                | 10                  | <u> </u>  | الحال   | 6              |           | 40            |         |         | 1118      | ine: 23                    | 8      | 00         |

# **Client Sample Results**

Client: ARCADIS US Inc Job ID: 240-194992-1 Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK\_59

Lab Sample ID: 240-194992-1 Date Collected: 11/03/23 00:00 **Matrix: Water** 

Date Received: 11/08/23 08:00

| Analyte                      | Result    | Qualifier | RL                  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|---------------------|------|------|---|----------|----------------|---------|
| 1,1-Dichloroethene           | 1.0       | U         | 1.0                 | 0.49 | ug/L |   |          | 11/10/23 12:35 | 1       |
| cis-1,2-Dichloroethene       | 1.0       | U         | 1.0                 | 0.46 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Tetrachloroethene            | 1.0       | U         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 12:35 | 1       |
| trans-1,2-Dichloroethene     | 1.0       | U         | 1.0                 | 0.51 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Trichloroethene              | 1.0       | U         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Vinyl chloride               | 1.0       | U         | 1.0                 | 0.45 | ug/L |   |          | 11/10/23 12:35 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits              |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       |           | 62 - 137            |      |      |   |          | 11/10/23 12:35 | 1       |
| 4-Bromofluorobenzene (Surr)  | 81        |           | 56 <sub>-</sub> 136 |      |      |   |          | 11/10/23 12:35 | 1       |
| Toluene-d8 (Surr)            | 93        |           | 78 - 122            |      |      |   |          | 11/10/23 12:35 | 1       |
| Dibromofluoromethane (Surr)  | 93        |           | 73 - 120            |      |      |   |          | 11/10/23 12:35 | 1       |

Client Sample ID: MW-164S\_110323

Date Collected: 11/03/23 11:50 **Matrix: Water** 

| Date Received: 11/08/23 08:0 | 00             |           |                     |      |      |   |          |                |        |
|------------------------------|----------------|-----------|---------------------|------|------|---|----------|----------------|--------|
| Method: SW846 8260D SIM      |                | anic Comp | ounds (GC/N         | IS)  |      |   |          |                |        |
| Analyte                      | •              | Qualifier | RL                  | •    | Unit | D | Prepared | Analyzed       | Dil Fa |
| 1,4-Dioxane                  | 2.0            | U         | 2.0                 | 0.86 | ug/L |   | -        | 11/15/23 00:47 | -      |
| Surrogate                    | %Recovery      | Qualifier | Limits              |      |      |   | Prepared | Analyzed       | Dil Fa |
| 1,2-Dichloroethane-d4 (Surr) | 105            |           | 66 - 120            |      |      |   |          | 11/15/23 00:47 |        |
| Mothod: \$10046 8260D 1/a    | Jetile Organie | Compoun   | de by CC/MC         |      |      |   |          |                |        |
| Method: SW846 8260D - Vo     | •              | Qualifier | RL                  |      | Unit | D | Prepared | Analyzed       | Dil Fa |
| 1,1-Dichloroethene           | 1.0            | h M       | 1.0                 | 0.49 | ug/L |   | •        | 11/10/23 16:20 | -      |
| cis-1,2-Dichloroethene       | 1.0            | U         | 1.0                 | 0.46 | ug/L |   |          | 11/10/23 16:20 |        |
| Tetrachloroethene            | 1.0            | Ψ         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 16:20 |        |
| trans-1,2-Dichloroethene     | 1.0            | Ψ         | 1.0                 | 0.51 | ug/L |   |          | 11/10/23 16:20 |        |
| Trichloroethene              | 1.0            | ų         | 1.0                 | 0.44 | ug/L |   |          | 11/10/23 16:20 |        |
| Vinyl chloride               | 1.0            | վ ↓       | 1.0                 | 0.45 | ug/L |   |          | 11/10/23 16:20 |        |
| Surrogate                    | %Recovery      | Qualifier | Limits              |      |      |   | Prepared | Analyzed       | Dil Fa |
| 1,2-Dichloroethane-d4 (Surr) | 111            |           | 62 - 137            |      |      |   |          | 11/10/23 16:20 |        |
| 4-Bromofluorobenzene (Surr)  | 81             |           | 56 <sub>-</sub> 136 |      |      |   |          | 11/10/23 16:20 |        |
| Toluene-d8 (Surr)            | 93             |           | 78 - 122            |      |      |   |          | 11/10/23 16:20 |        |
| Dibromofluoromethane (Surr)  | 96             |           | 73 - 120            |      |      |   |          | 11/10/23 16:20 |        |

Lab Sample ID: 240-194992-2