13

Generated 11/13/2023 4:48:51 AM

JOB DESCRIPTION

Novi, Michigan 48377

PREPARED FOR

Attn: Kristoffer Hinskey

ARCADIS US Inc 28550 Cabot Drive

Suite 500

ANALYTICAL REPORT

Ford LTP - Off Site

JOB NUMBER

240-194770-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/13/2023 4:48:51 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-194770-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

4

6

8

9

11

12

Definitions/Glossary

Client: ARCADIS US Inc Job ID: 240-194770-1

Project/Site: Ford LTP - Off Site

Qualifiers

	VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Glossary

MPN

MQL

NC

ND NEG

POS

PQL

QC RER

RL

RPD

TEF

TEQ

TNTC

PRES

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

Eurofins Cleveland

Case Narrative

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194770-1

Job ID: 240-194770-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-194770-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/3/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 1.8°C, 2.2°C and 2.9°C

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) analyzed in batch 594008 was outside the method criteria for the following analyte(s): Vinyl chloride. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D_SIM: Surrogate recovery for the following sample was outside the upper control limit: MW-112S_103023 (240-194770-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

7

0

10

11

13

114

Method Summary

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194770-1

Method **Method Description** Protocol Laboratory SW846 EET CLE 8260D Volatile Organic Compounds by GC/MS 8260D SIM Volatile Organic Compounds (GC/MS) SW846 EET CLE 5030C SW846 EET CLE Purge and Trap

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

3

4

5

7

8

10

11

13

14

Sample Summary

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site

Job ID: 240-194770-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-194770-1	TRIP BLANK_11	Water	10/30/23 00:00	11/03/23 08:00
240-194770-2	MW-112S_103023	Water	10/30/23 14:35	11/03/23 08:00

Detection Summary

Client: ARCADIS US Inc Job ID: 240-194770-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_11 Lab Sample ID: 240-194770-1

No Detections.

Client Sample ID: MW-112S_103023 Lab Sample ID: 240-194770-2

No Detections.

Client Sample Results

Client: ARCADIS US Inc Job ID: 240-194770-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_11

Lab Sample ID: 240-194770-1 Date Collected: 10/30/23 00:00

Matrix: Water

Date Received: 11/03/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 17:11	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 17:11	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:11	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 17:11	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:11	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		62 - 137			_		11/09/23 17:11	1
4-Bromofluorobenzene (Surr)	98		56 ₋ 136					11/09/23 17:11	1
Toluene-d8 (Surr)	95		78 - 122					11/09/23 17:11	1
Dibromofluoromethane (Surr)	97		73 - 120					11/09/23 17:11	1

Eurofins Cleveland

Client Sample Results

Client: ARCADIS US Inc Job ID: 240-194770-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-112S_103023

Lab Sample ID: 240-194770-2 Date Collected: 10/30/23 14:35

Matrix: Water

Date Received: 11/03/23 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/23 19:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	137	S1+	66 - 120			-		11/09/23 19:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 17:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 17:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 17:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:34	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/09/23 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137					11/09/23 17:34	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137		11/09/23 17:34	1
4-Bromofluorobenzene (Surr)	98		56 - 136		11/09/23 17:34	1
Toluene-d8 (Surr)	111		78 - 122		11/09/23 17:34	1
Dibromofluoromethane (Surr)	94		73 - 120		11/09/23 17:34	1

Surrogate Summary

Client: ARCADIS US Inc

Project/Site: Ford LTP - Off Site

Job ID: 240-194770-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_				Percent Sur	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-194602-C-2 MS	Matrix Spike	98	98	96	93
240-194602-C-2 MSD	Matrix Spike Duplicate	108	103	105	98
240-194770-1	TRIP BLANK_11	106	98	95	97
240-194770-2	MW-112S_103023	105	98	111	94
LCS 240-594008/4	Lab Control Sample	99	92	101	95
MB 240-594008/7	Method Blank	111	95	99	100
0					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)
	DCA	
Client Sample ID	(66-120)	
Matrix Spike	84	
Matrix Spike Duplicate	75	
MW-112S_103023	137 S1+	
Lab Control Sample	82	
Method Blank	93	
	Matrix Spike Matrix Spike Duplicate MW-112S_103023 Lab Control Sample	Client Sample ID (66-120) Matrix Spike 84 Matrix Spike Duplicate 75 MW-112S_103023 137 S1+ Lab Control Sample 82

Job ID: 240-194770-1

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-594008/7

Matrix: Water

Analysis Batch: 594008

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/09/23 11:21 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/09/23 11:21 1.0 U 1.0 0.44 ug/L 11/09/23 11:21 Tetrachloroethene trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 11/09/23 11:21 Trichloroethene 1.0 U 1.0 0.44 ug/L 11/09/23 11:21 Vinyl chloride 1.0 U 1.0 0.45 ug/L 11/09/23 11:21

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	111		62 - 137		11/09/23 11:21	1
	4-Bromofluorobenzene (Surr)	95		56 - 136		11/09/23 11:21	1
	Toluene-d8 (Surr)	99		78 - 122		11/09/23 11:21	1
١	Dibromofluoromethane (Surr)	100		73 - 120		11/09/23 11:21	1

Lab Sample ID: LCS 240-594008/4

Matrix: Water

Analysis Batch: 594008

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS			%Rec	
Added	Result	Qualifier	Unit I	D %Rec	Limits	
25.0	27.3	·	ug/L	109	63 - 134	
25.0	26.1		ug/L	104	77 - 123	
25.0	25.5		ug/L	102	76 - 123	
25.0	28.2		ug/L	113	75 - 124	
25.0	26.9		ug/L	108	70 - 122	
12.5	9.99		ug/L	80	60 - 144	
	Added 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 27.3 25.0 26.1 25.0 25.5 25.0 28.2 25.0 26.9	Added Result Qualifier 25.0 27.3 25.0 26.1 25.0 25.5 25.0 28.2 25.0 26.9	Added Result Qualifier Unit I 25.0 27.3 ug/L 25.0 26.1 ug/L 25.0 25.5 ug/L 25.0 28.2 ug/L 25.0 26.9 ug/L	Added Result Qualifier Unit D %Rec 25.0 27.3 ug/L 109 25.0 26.1 ug/L 104 25.0 25.5 ug/L 102 25.0 28.2 ug/L 113 25.0 26.9 ug/L 108	Added Result Qualifier Unit D %Rec Limits 25.0 27.3 ug/L 109 63 - 134 25.0 26.1 ug/L 104 77 - 123 25.0 25.5 ug/L 102 76 - 123 25.0 28.2 ug/L 113 75 - 124 25.0 26.9 ug/L 108 70 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		62 - 137
4-Bromofluorobenzene (Surr)	92		56 ₋ 136
Toluene-d8 (Surr)	101		78 - 122
Dibromofluoromethane (Surr)	95		73 - 120

Lab Sample ID: 240-194602-C-2 MS

Matrix: Water

Analysis Batch: 594008

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	27		500	514		ug/L		97	56 - 135	
cis-1,2-Dichloroethene	10	J	500	460		ug/L		90	66 - 128	
Tetrachloroethene	20	U	500	477		ug/L		95	62 - 131	
trans-1,2-Dichloroethene	20	U	500	443		ug/L		89	56 - 136	
Trichloroethene	600	F1	500	849	F1	ug/L		49	61 - 124	
Vinyl chloride	20	U	250	196		ug/L		79	43 - 157	

MS MS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98	62 - 137
4-Bromofluorobenzene (Surr)	98	56 - 136
Toluene-d8 (Surr)	96	78 - 122

Eurofins Cleveland

Page 12 of 20

Client: ARCADIS US Inc Project/Site: Ford LTP - Off Site Job ID: 240-194770-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-194602-C-2 MS

Lab Sample ID: 240-194602-C-2 MSD

Matrix: Water

Analysis Batch: 594008

Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate

%Recovery Qualifier 93

MR MR

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594008

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
27		500	535		ug/L		102	56 - 135	4	26
10	J	500	509		ug/L		100	66 - 128	10	14
20	U	500	470		ug/L		94	62 - 131	2	20
20	U	500	463		ug/L		93	56 - 136	5	15
600	F1	500	865	F1	ug/L		52	61 - 124	2	15
20	U	250	217		ug/L		87	43 - 157	10	24
	Result 27 10 20 20 600	Sample Sample Result Qualifier 27 10 20 U 20 U 600 F1 20 U	Result Qualifier Added 27 500 10 J 500 20 U 500 20 U 500 600 F1 500	Result Qualifier Added Result 27 500 535 10 J 500 509 20 U 500 470 20 U 500 463 600 F1 500 865	Result Qualifier Added Result Qualifier 27 500 535 10 J 500 509 20 U 500 470 20 U 500 463 600 F1 500 865 F1	Result Qualifier Added Result Qualifier Unit 27 500 535 ug/L 10 J 500 509 ug/L 20 U 500 470 ug/L 20 U 500 463 ug/L 600 F1 500 865 F1 ug/L	Result Qualifier Added Result Qualifier Unit D 27 500 535 ug/L 10 J 500 509 ug/L 20 U 500 470 ug/L 20 U 500 463 ug/L 600 F1 500 865 F1 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 27 500 535 ug/L 102 10 J 500 509 ug/L 100 20 U 500 470 ug/L 94 20 U 500 463 ug/L 93 600 F1 500 865 F1 ug/L 52	Result Qualifier Added Result Qualifier Unit D %Rec Limits 27 500 535 ug/L 102 56 - 135 10 J 500 509 ug/L 100 66 - 128 20 U 500 470 ug/L 94 62 - 131 20 U 500 463 ug/L 93 56 - 136 600 F1 500 865 F1 ug/L 52 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 27 500 535 ug/L 102 56 - 135 4 10 J 500 509 ug/L 100 66 - 128 10 20 U 500 470 ug/L 94 62 - 131 2 20 U 500 463 ug/L 93 56 - 136 5 600 F1 500 865 F1 ug/L 52 61 - 124 2

Limits

73 - 120

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 108 62 - 137 103 4-Bromofluorobenzene (Surr) 56 - 136 Toluene-d8 (Surr) 105 78 - 122 Dibromofluoromethane (Surr) 98 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-594018/6

Matrix: Water

Analysis Batch: 594018

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

80 - 122

108

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 11/09/23 11:33 MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 93 66 - 120 11/09/23 11:33

Lab Sample ID: LCS 240-594018/4

Matrix: Water

1,4-Dioxane

Matrix: Water				Prep Type: Total/NA
Analysis Batch: 594018				
	Spike	LCS LCS	9	%Rec
Analyto	Addad	Posult Qualifier Unit	D % Poc I	imite

10.0

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 66 - 120 82

Lab Sample I

Matrix: Water

Analysis Batch: 594018

ID: 240-194630-D-4 MS	Client Sample ID: Matrix Spike
er	Prep Type: Total/NA

10.8

ug/L

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	10.7		ug/L		107	51 - 153	

Eurofins Cleveland

QC Sample Results

66 - 120

Client: ARCADIS US Inc Job ID: 240-194770-1

MSD MSD

Result Qualifier

Project/Site: Ford LTP - Off Site Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		66 - 120

	l ab Camala	ID: 24	0.4046	20 D 4 I	MCD	
_						
_	*	,	,			

Lab Sample ID: 240-194630-D-4 MSD

Matrix: Water

Analysis Batch: 594018

1,2-Dichloroethane-d4 (Surr)

	Sample	Sample	Spike
Analyte	Result	Qualifier	Added
1,4-Dioxane	2.0	U	10.0
	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits

75

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

RPD Limits RPD Limit Unit D %Rec

10.3 103 51 - 153 ug/L 4

QC Association Summary

Client: ARCADIS US Inc
Project/Site: Ford LTP - Off Site

Job ID: 240-194770-1

GC/MS VOA

Analysis Batch: 594008

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
240-194770-1	TRIP BLANK_11	Total/NA	Water	8260D	
240-194770-2	MW-112S_103023	Total/NA	Water	8260D	
MB 240-594008/7	Method Blank	Total/NA	Water	8260D	
LCS 240-594008/4	Lab Control Sample	Total/NA	Water	8260D	
240-194602-C-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-194602-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 594018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-194770-2	MW-112S_103023	Total/NA	Water	8260D SIM	
MB 240-594018/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-594018/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-194630-D-4 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-194630-D-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

6

8

9

11

12

13

1

Lab Chronicle

Client: ARCADIS US Inc Job ID: 240-194770-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_11

Lab Sample ID: 240-194770-1 Date Collected: 10/30/23 00:00

Matrix: Water

Date Received: 11/03/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	594008	LEE	EET CLE	11/09/23 17:11

Client Sample ID: MW-112S_103023 Lab Sample ID: 240-194770-2

Date Collected: 10/30/23 14:35 Matrix: Water

Date Received: 11/03/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	594008	LEE	EET CLE	11/09/23 17:34
Total/NA	Analysis	8260D SIM		1	594018	MRL	EET CLE	11/09/23 19:53

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: ARCADIS US Inc Job ID: 240-194770-1 Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-27-24	
Georgia	State	4062	02-27-24	
Illinois	NELAP	200004	07-31-24	
lowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-28-24	
Kentucky (WW)	State	KY98016	12-31-23	
Michigan	State	9135	02-27-24	
Minnesota	NELAP	039-999-348	12-31-23	
Minnesota (Petrofund)	State	3506	08-01-23 *	
New Jersey	NELAP	OH001	07-01-24	
New York	NELAP	10975	04-02-24	
Ohio	State	8303	02-27-24	
Ohio VAP	State	ORELAP 4062	02-27-24	
Oregon	NELAP	4062	02-27-24	
Pennsylvania	NELAP	68-00340	08-31-24	
Texas	NELAP	T104704517-22-19	08-31-24	
Virginia	NELAP	460175	09-14-24	
West Virginia DEP	State	210	12-31-23	

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Page 18 of 20

11/13/2023

Contacted PM ______ Date _____ by _____ via Verbal Voice Mail Other Concerning 18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page 19. SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired. Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 20. SAMPLE PRESERVATION were further preserved in the laboratory. Sample(s) Time preserved: Preservative(s) added/Lot number(s): VOA Sample Preservation - Date/Time VOAs Frozen:

Login	#	1	

					n Sample Receipt I	Multiple Cooler I	
Co	ooler D (Ci	escrip	otion	IR Gun # (Circle)	Observed Temp °C	Correc Temp	
(FC)	Client	Box	Other	IR GUN #:	(:)	2.2	Wet ice Blue ice Dry ice Water Hone
Eg	Client	Box	Other	IR GUN #:	1.8	2.9	Wet ice Blue ice Dry ice
(19	Client	Box	Other	IR GUN #: 22	(7.7		Wet ice Sive ice Dry ice
EC	Cflent	Box	Other	IR GUN #:			Wet ice Blue ice Dry Ice Water None
£C	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water None
EC	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
ŧC	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC	Client	Box	Other	IR GUN #:			Wat ice Nue ice Dry ice Water Name
EC	Client	Box	Other	IR GUN #:			Wat ice Blue ice Dry ice Water Mone
IC.	Client	Box	Other	IR GUN #:			Wat ice Nue ice Dry ice Water Mone
1C	Client	Box	Other	IR GUN #:			Wet ice Blue ice Dry ice Water Mone
BC.	Client	Box	Other	IR GUN 0:			Wellice Sive Ice Dry Ice Water Hone
- BC	Client	Box	Other	IR GUN #:			Wet ice the ice Dry ice Water Hone
₿C	Client	Box	Other	IR GUN #:			Wellice Dive Ice Dry Ice Water Hone
. EC	Client	Box	Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water Hone
EC	Client	Box	Other	IR GUN #:			Wet ice Blue Ice Dry ice Water Hone
EC	Client	Dox	Other	IR GUN #:			Wellice Blue Ice . Dry Ice Water Name
BC	Client	Box	Other	IR GUN #:			Wellice Stue Ice Dry Ice Water Mane
EC	Client	Box	Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
80	Client	Sex	Other	IR GUN #:			Wet ice the ice bry ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wel ice Nue Ice Dry ice Water Name
BC	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wel Ice Nue Ice Dry Ice Water None
BC	Client	Sex	Other	IR GUN #:			Wel Ice Blue Ice Dry Ice Water Hone
EC	Client	Box	Other	ir Gun ø:			Wellice Nee Ice Dry Ice Water Hone
EC	Client	Box	Other	IR GUN 6:			Wellice Blue Ice Dry Ice Water Mone
EC	Client	Box	Other	IR GUN #:			Wellice Nee Ice Dry Ice Water Mone
EC	Client	Box	Other	IR GUN 0:			Wet ice Nue ice Dry ice Water Mone
₽C.	Client	Box	Other	IR GUN #:			Wet ice Stue Ice Dry Ice Water Hone
€C	Client	Box	Other	IR GUN #:			Wellice Blue Ice Dry Ice Water Name
EC	Client	Box	Other	IR GUN #:			Wet ice Sive ice Dry ice Water Hone
EC	Client	Box	Other	R GUN #:			Wel ice Bive ice Dry ice Water Name
EC	Client	Box	Other	IR GUN #:			Wel ice Sive ice Dry ice Water None
						□ S	ee Temperature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

O

DATA VERIFICATION REPORT

November 17, 2023

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30167538.402.04 off-site

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 194770-1 Sample date: 2023-10-30

Report received by CADENA: 2023-11-17

Initial Data Verification completed by CADENA: 2023-11-17

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC SIM sample -002 SURROGATE recovery was outlying biased high for 1 surrogate. Associated client sample results were non-detect so qualification was not required based on this high bias QC outlier.

GCMS VOC QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

GCMS VOC QC batch CCV response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 194770-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLANK_11 2401947701 10/30/2023				MW-112S_103023 2401947702 10/30/2023			
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC OSW-8260	nn									
0377-0200	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-194770-1

CADENA Verification Report: 2023-11-17

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 52112R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-194770-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample		Analysis	
Sample ID	Labib	IVIALITIX	Collection Date	Parent Sample	VOC	VOC SIM	
TRIP BLANK_11	240-194770-1	Water	10/30/2023		Х		
MW-112S_103023	240-194770-2	Water	10/30/2023		X	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		X		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial / Continuing	Compound	Criteria
TRIP BLANK_11 MW-112S_103023	Continuous Calibration Verification %D	Vinyl chloride	+20.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification		
Initial and Continuing Calibration	RRF <0.05	Non-detect R Detect J			
	RRF <0.05				
	RRF <0.01 ¹	Non-detect	R		
	RRF <0.01	Detect	J		
	DDE - 0.05 or DDE - 0.041	Non-detect	No Action		
	RRF >0.05 or RRF >0.01 ¹	Detect			

Initial/Continuing	Criteria	Sample Result	Qualification		
Initial Calibration	%RSD > 20% or a correlation coefficient <0.99	Non-detect	UJ		
	%RSD > 20% of a correlation coefficient <0.99	Detect	J		
	0/ DCD - 000/	Non-detect	R		
	%RSD > 90%	Detect	J		
	0/D 200/ (increase in consistivity)	Non-detect	UJ		
	%D >20% (increase in sensitivity)	Detect J			
Continuin a Colibration	0/D 200/ (decrease in consistivity)	Non-detect	UJ		
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J		
	0/D = 000/ (ingresses /degreess in consistivity)	Non-detect	R		
	%D > 90% (increase/decrease in sensitivity)	Detect	J		

Note:

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

¹RRF of 0.01 only applies to compounds which are typically poor responding compounds

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted	Perfo Acce	Not Required	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		X		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		X	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		X		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BAShims

DATE: December 13, 2023

PEER REVIEW: Andrew Korycinski

DATE: December 13, 2023

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

MICHIGAN

Chain of Custody Record

- A A	•
TestAm	nerica

TestAmerica Laboratory location: Brighton - 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 **Client Contact** Regulatory program: DW NPDES **RCRA** Other Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Site Contact: Christina Weaver Lab Contact: Mike DelMonico COC No: Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9396 City/State/Zip: Novi, MI, 48377 1 of 1 COCs Analysis Turnsround Tim Email: kristoffer.hinskey@arcadis.com Analyses For lab use only Phone: 248-994-2240 Sampler Name: FAT if different from below Walk-in client Project Name: Ford LTP Off-Site 3 weeks 2 weeks 10 day Lab sampling Project Number: 30167538.402.04 Method of Shipment/Carrier: 1 week 1,4-Dioxane 8260D SIM (N/N) 2 days /inyl Chloride 8260D C/Grab PO # 30167538.402.04 Shipping/Tracking No: 1 day Job/SDG No: PCE 8260D CE 8260D H2S04 Sample Specific Notes / HNO3 NaOH VaOII HCI Special Instructions: Sample Identification Sample Date Sample Time TRIP BLANK 1 NIG X X X X X X 1 Trip Blank 3 VOAs for 8260D MW-1125-103023 λ 3 VOAs for 8260D SIM Page 394 of 396 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Non-Hazard Flammable Skin Irritant Poison B Unknown Return to Client Disposal By Lab Archive For Special Instructions/QC Requirements & Comments Wadsworth Sample Address: 34935 Submit all results through Cadena at la neco.com. Cadena #E203631 Level IV Reporting requested Relinquished by: Relinquished by Company Date/Time: Relinquished by Company: FFTA 1023 14/13/2023 108, TestAmence Laboratories, Inc. All rights reserved.

Client Sample Results

Client: ARCADIS US Inc Job ID: 240-194770-1

Client Sample ID: TRIP BLANK_11

Lab Sample ID: 240-194770-1 Date Collected: 10/30/23 00:00 **Matrix: Water**

Date Received: 11/03/23 08:00

Project/Site: Ford LTP - Off Site

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 17:11	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 17:11	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:11	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 17:11	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:11	1
Vinyl chloride	1.0	A N	1.0	0.45	ug/L			11/09/23 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		62 - 137					11/09/23 17:11	1
4-Bromofluorobenzene (Surr)	98		56 - 136					11/09/23 17:11	1
Toluene-d8 (Surr)	95		78 - 122					11/09/23 17:11	1
Dibromofluoromethane (Surr)	97		73 - 120					11/09/23 17:11	1

Client Sample ID: MW-112S_103023

Date Collected: 10/30/23 14:35

Date Received: 11/03/23 08:00

Method: SW846 8260D SIM -	Volatile Orga	anic Comp	ounds (GC/N	IS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/09/23 19:53	1
Surrogate	%Recovery	Qualifier S1+	Limits 66 - 120			-	Prepared	Analyzed 11/09/23 19:53	Dil Fac
1,2-Dichloroethane-d4 (Surr)	137	31+	66 - 120					11/09/23 19.53	1

Surrogate	76Recovery	Qualifier	LIIIIIS				Frepareu	Allalyzeu	DII Fac
1,2-Dichloroethane-d4 (Surr)	137	S1+	66 - 120					11/09/23 19:53	1
 Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/09/23 17:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/09/23 17:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/09/23 17:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/09/23 17:34	1
Vinyl chloride	1.0	pr nn	1.0	0.45	ug/L			11/09/23 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137					11/09/23 17:34	1
4-Bromofluorobenzene (Surr)	98		56 ₋ 136					11/09/23 17:34	1
Toluene-d8 (Surr)	111		78 - 122					11/09/23 17:34	1
Dibromofluoromethane (Surr)	94		73 - 120					11/09/23 17:34	1

Lab Sample ID: 240-194770-2

Matrix: Water