14

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 3/12/2024 11:43:36 PM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-200374-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 3/12/2024 11:43:36 PM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site Laboratory Job ID: 240-200374-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

<u>၁</u>

8

46

11

12

1/

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Qualifiers

_					$\overline{}$	
G	u	IV	ı	v	U	А

Qualifier

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Qualifier Description

Glossary

Ciossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCI

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 20

Case Narrative

Client: Arcadis U.S., Inc. Project: Ford LTP - Off Site

Job ID: 240-200374-1 Eurofins Cleveland

Job Narrative 240-200374-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/2/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.4°C and 3.8°C.

GC/MS VOA

Method 8260D: The MSD for batch 240-605521 was analyzed outside of the tune time, due to an instrument fault. This is a batch QC sample; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Job ID: 240-200374-1

Page 5 of 20 3/12/2024

Method Summary

Client: Arcadis U.S., Inc.

Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

А

4

_

7

8

4.6

11

13

Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP - Off Site

Job ID: 240-200374-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-200374-1	TRIP BLANK_32	Water	02/29/24 00:00	03/02/24 08:00
240-200374-2	MW-148S_022924	Water	02/29/24 11:05	03/02/24 08:00

3

4

5

6

8

9

10

13

Detection Summary

Client: Arcadis U.S., Inc.

Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_32 Lab Sample ID: 240-200374-1

No Detections.

Analyte	Result	Qualifier	RL	MDL U	nit	Dil Fac	D	Method	Prep Type
Vinvl chloride	0.56	J	1.0	0.45 u	a/L	1		8260D	Total/NA

4

5

7

8

9

11

12

13

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_32

Lab Sample ID: 240-200374-1 Date Collected: 02/29/24 00:00

Matrix: Water

Date Received: 03/02/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/08/24 22:24	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/08/24 22:24	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 22:24	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/08/24 22:24	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 22:24	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/08/24 22:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			_		03/08/24 22:24	1
4-Bromofluorobenzene (Surr)	82		56 ₋ 136					03/08/24 22:24	1
Toluene-d8 (Surr)	101		78 - 122					03/08/24 22:24	1
Dibromofluoromethane (Surr)	98		73 - 120					03/08/24 22:24	1

Client Sample Results

Client: Arcadis U.S., Inc.

Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Client Sample ID: MW-148S_022924

Date Collected: 02/29/24 11:05 Date Received: 03/02/24 08:00

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 240-200374-2

03/09/24 03:24

03/09/24 03:24

03/09/24 03:24

03/09/24 03:24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/08/24 13:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 127			-		03/08/24 13:45	1
- Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/09/24 03:24	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/09/24 03:24	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/09/24 03:24	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/09/24 03:24	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/09/24 03:24	1
Vinyl chloride	0.56	J	1.0	0.45	ug/L			03/09/24 03:24	1

62 - 137

56 - 136

78 - 122

73 - 120

105

83

101

98

3/12/2024

Surrogate Summary

Client: Arcadis U.S., Inc.

Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-200374-1	TRIP BLANK_32	104	82	101	98
240-200374-2	MW-148S_022924	105	83	101	98
240-200378-C-2 MS	Matrix Spike	98	103	103	97
240-200378-C-2 MSD	Matrix Spike Duplicate	96	101	104	95
LCS 240-605521/4	Lab Control Sample	98	103	105	97
MB 240-605521/31	Method Blank	106	92	103	99
0					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-200374-2	MW-148S_022924	105	
240-200378-B-2 MS	Matrix Spike	112	
240-200378-B-2 MSD	Matrix Spike Duplicate	123	
LCS 240-605411/5	Lab Control Sample	110	
MB 240-605411/7	Method Blank	111	

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

2

Λ

0

Q

9

11

40

Ш

Job ID: 240-200374-1

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

MR MR

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-605521/31

Matrix: Water

Analysis Batch: 605521

Client	Sample	ID:	Method	Blank
	D.	an 1	Denoi To	to I/NI A

Prep Type: Total/NA

	IND	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/08/24 19:44	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/08/24 19:44	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 19:44	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/08/24 19:44	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 19:44	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/08/24 19:44	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		62 - 137		03/08/24 19:44	1
4-Bromofluorobenzene (Surr)	92		56 - 136		03/08/24 19:44	1
Toluene-d8 (Surr)	103		78 - 122		03/08/24 19:44	1
Dibromofluoromethane (Surr)	99		73 - 120		03/08/24 19:44	1

Lab Sample ID: LCS 240-605521/4

Matrix: Water

Analysis Batch: 605521

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	23.7		ug/L		95	63 - 134	
cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	77 - 123	
Tetrachloroethene	25.0	25.3		ug/L		101	76 - 123	
trans-1,2-Dichloroethene	25.0	25.8		ug/L		103	75 - 124	
Trichloroethene	25.0	23.8		ug/L		95	70 - 122	
Vinyl chloride	12.5	11.9		ug/L		95	60 - 144	

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	98		62 - 137	
4-Bromofluorobenzene (Surr)	103		56 - 136	
Toluene-d8 (Surr)	105		78 - 122	
Dibromofluoromethane (Surr)	97		73 - 120	

Matrix: Water

Analysis Batch: 605521

Lab Sample ID: 240-200378-C-2 MS Client Sample ID: Matrix Spike **Prep Type: Total/NA**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	25.0	25.7		ug/L		103	56 - 135	
cis-1,2-Dichloroethene	1.0	U	25.0	25.7		ug/L		103	66 - 128	
Tetrachloroethene	1.0	U	25.0	23.5		ug/L		94	62 - 131	
trans-1,2-Dichloroethene	1.0	U	25.0	25.8		ug/L		103	56 - 136	
Trichloroethene	1.0	U	25.0	23.0		ug/L		92	61 - 124	
Vinyl chloride	1.0	U	12.5	9.22		ug/L		74	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		62 - 137
4-Bromofluorobenzene (Surr)	103		56 - 136
Toluene-d8 (Surr)	103		78 - 122

Eurofins Cleveland

Client: Arcadis U.S., Inc.

Job ID: 240-200374-1 Project/Site: Ford LTP - Off Site

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-200378-C-2 MS

Matrix: Water

Analysis Batch: 605521

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 97 73 - 120

Lab Sample ID: 240-200378-C-2 MSD

Matrix: Water

Analysis Batch: 605521

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.0	U	25.0	23.6		ug/L		95	56 - 135	8	26
1.0	U	25.0	24.7		ug/L		99	66 - 128	4	14
1.0	U	25.0	24.0		ug/L		96	62 - 131	2	20
1.0	U	25.0	24.8		ug/L		99	56 - 136	4	15
1.0	U	25.0	23.1		ug/L		92	61 - 124	0	15
1.0	U	12.5	10.8		ug/L		86	43 - 157	16	24
	Result 1.0 1.0 1.0 1.0 1.0 1.0	Sample Result Qualifier	Result Qualifier Added 1.0 U 25.0 1.0 U 25.0	Result Qualifier Added Result 1.0 U 25.0 23.6 1.0 U 25.0 24.7 1.0 U 25.0 24.0 1.0 U 25.0 24.8 1.0 U 25.0 23.1	Result Qualifier Added Result Qualifier 1.0 U 25.0 23.6 1.0 U 25.0 24.7 1.0 U 25.0 24.0 1.0 U 25.0 24.8 1.0 U 25.0 23.1	Result Qualifier Added Result Qualifier Unit 1.0 U 25.0 23.6 ug/L 1.0 U 25.0 24.7 ug/L 1.0 U 25.0 24.0 ug/L 1.0 U 25.0 24.8 ug/L 1.0 U 25.0 23.1 ug/L	Result Qualifier Added Result Qualifier Unit D 1.0 U 25.0 23.6 ug/L ug/L 1.0 U 25.0 24.7 ug/L 1.0 U 25.0 24.0 ug/L 1.0 U 25.0 24.8 ug/L 1.0 U 25.0 23.1 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1.0 U 25.0 23.6 ug/L 95 1.0 U 25.0 24.7 ug/L 99 1.0 U 25.0 24.0 ug/L 96 1.0 U 25.0 24.8 ug/L 99 1.0 U 25.0 23.1 ug/L 92	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.0 U 25.0 23.6 ug/L 95 56 ـ 135 1.0 U 25.0 24.7 ug/L 99 66 ـ 128 1.0 U 25.0 24.0 ug/L 96 62 ـ 131 1.0 U 25.0 24.8 ug/L 99 56 ـ 136 1.0 U 25.0 23.1 ug/L 92 61 ـ 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1.0 U 25.0 23.6 ug/L 95 56 - 135 8 1.0 U 25.0 24.7 ug/L 99 66 - 128 4 1.0 U 25.0 24.0 ug/L 96 62 - 131 2 1.0 U 25.0 24.8 ug/L 99 56 - 136 4 1.0 U 25.0 23.1 ug/L 92 61 - 124 0

MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 96 62 - 137 101 4-Bromofluorobenzene (Surr) 56 - 136 Toluene-d8 (Surr) 104 78 - 122 Dibromofluoromethane (Surr) 95 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 240-605411/7

Matrix: Water

Analysis Batch: 605411

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/08/24 11:22	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		68 - 127			_		03/08/24 11:22	1

Lab Sample ID: LCS 240-605411/5

Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 605411 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 10.0 8.45 ug/L 75 - 121 LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 68 - 127 110

Lab Sample ID: 240-200378-B-2 MS

Matrix: Water

Analysis Batch: 605411

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	8.46		ug/L		85	20 - 180	

Eurofins Cleveland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

QC Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Method:	8260D	SIM -	Volatile	Organic	Compounds	(GC/MS)	(Continued)	

%Recovery Qualifier

123

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		68 - 127

_		
Lab Sample	ID: 240-2003	78-B-2 MSD

Matrix: Water

1,2-Dichloroethane-d4 (Surr)

Surrogate

Analysis	Batch:	605411	

	Sample	Sample	Spike	MSD	MSD				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD
1,4-Dioxane	2.0	U	10.0	9.54		ug/L		95	20 - 180	12
	MSD	MSD								

Limits

68 - 127

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

RPD

Limit

QC Association Summary

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

GC/MS VOA

Analysis Batch: 605411

Lab Sample ID 240-200374-2	Client Sample ID MW-148S_022924	Prep Type Total/NA	Matrix Water	Method 8260D SIM	Prep Batch
MB 240-605411/7	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-605411/5	Lab Control Sample	Total/NA	Water	8260D SIM	
240-200378-B-2 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-200378-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 605521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-200374-1	TRIP BLANK_32	Total/NA	Water	8260D	
240-200374-2	MW-148S_022924	Total/NA	Water	8260D	
MB 240-605521/31	Method Blank	Total/NA	Water	8260D	
LCS 240-605521/4	Lab Control Sample	Total/NA	Water	8260D	
240-200378-C-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-200378-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

3

4

6

9

10

11

10

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_32

Lab Sample ID: 240-200374-1 Date Collected: 02/29/24 00:00

Matrix: Water

Dilution Batch Batch Batch Prepared Method Prep Type Туре Run Factor **Number Analyst** Lab or Analyzed Total/NA 8260D 605521 CDG EET CLE 03/08/24 22:24 Analysis

Client Sample ID: MW-148S_022924 Lab Sample ID: 240-200374-2

Date Collected: 02/29/24 11:05 **Matrix: Water**

Date Received: 03/02/24 08:00

Date Received: 03/02/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	605521	CDG	EET CLE	03/09/24 03:24
Total/NA	Analysis	8260D SIM		1	605411	MDH	EET CLE	03/08/24 13:45

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis U.S., Inc. Job ID: 240-200374-1 Project/Site: Ford LTP - Off Site

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24 *
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	06-30-24
New York	NELAP	10975	04-01-24
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

Eurofins Cleveland

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

MICHIGAN 190

Chain of Custody Record

TestAm	
10017 1111	

Tact A maries I aboratory location	. Prighton	. 10448 Citation Orive	Suite 200 / Brighton	MI 48116 1810-229-2763	

Cilent Project Manager: Kris Hinskey Site Contact: Christina Weaver Lab Contact: Mike DelMonko COC Noc Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9390 1 of 1 Em all: kristoffer.hinskey@arcadis.com Analysis Turnaround Time Analyses For lab use only Froject Name: Ford LTP Off-Site Lab tarapling	boratories, Inc.
Address: 28550 Cabot Drive, Saite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 248-994-2240 Em all: kristoffer hinskey@arcadis.com Analysis Turnaround Time Analyses For lab use only Thores: 300-497-9390 Tolephone: 330-497-9390 1 of 1 For lab use only Walk-in chent The fidiferon from below 3 weeks 10 day 2 weeks 10 day 3 weeks 10 day 3 weeks 10 day 4 weeks 10 day 5 weeks 10 day 6 weeks 10 day 6 weeks 10 day 7 wee	aron atomics, THC.
City/State/Zip: Novi, M1, 48377 Em all: kristoffer.hinskey@arcadis.com Analysis Turnaround Time Analysis Surnaround Time Analysis Surnaround Time Analysis For lab use only Walk-in chent Left Idraged TAT if different from below 3 weeks 10 day 2 weeks 10 day 2 weeks 2 days 1 day Total day	
Phone: 248-994-2240 Sampler Name: TAT if different from below 3 weeks 10 day 2 weeks 10 day 2 weeks 2 days 1 day Project Number: 30167538.402.04 Shipping/Trackling No: Matrix Containers 4 Preservatives Sample I dealtification Sample Date Sample Date Sample Date Sample Date Sample Time TAT if different from below 3 weeks 10 day 2 weeks 10 day 2 weeks 2 days 1 day TAT if different from below 3 weeks 2 days 1 day TAT if different from below 4 weeks 2 days 4	000
Sampler Name: Complete Number: 30167538.402.04 Shipping/Trackling No: TAT if different from below 3 weeks 10 day 2 weeks 10 day 2 weeks 10 day 2 days 1 day 1	
Sample dentification Sample Date Sample Time V V V V V V V V V	
2 days 1 day 1 day 2 days 1 day 2 days 1 day 2 days 1 day 2 days 1 day 3 days 1 day 3 days 1 day 4 data 4 data 4 data 5 days 1 day 4 data 6 days 1 day 4 data 6 days 1 day	
Description Sample Date Sample Time	
MW-1485-072924 2/29/24 1265 6 16 NGX × X X X X X X X X X X X X X X X X X X	nk
1170 1-18 2-20 CC 12-1 01 09 0 0 10 10 10 10 10 10 10 10 10 10 10 10	
	3200D 31141
240-200374 p	
240-200374 Chain of Custody	
Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Rammable Skim Irritant Poison B Unknown Return to Chient Disposal By Lab Archive For Months	
Special Instructions/QC Requirements & Comments:	
Special Instructions/QC Requirements & Comments: Sample Address: 12088 Brewstev St. 55 Submit all results through Cadona of promiting Godenaco com. Cadona #E20551	
Level IV Reporting requested.	,
Retinquished by Company Date/Time. Received by: / Cold Storage PArcadis 2/29/24 1532 NOV: Cold Storage PArcadis 2/29/	24 1530
Relinquished by: Rehaquished by: Rehaquished by: Rehaquished by: Received by: Rec	1500
Reinquishearby Company: Company: Date/Time: 3/0 Received in Laboratory by: Company: Date/Time:	4 7em

CC005, Testimenta Laboratories, Inc. All rights reposed.

Eurofins - Cleveland Sample Receipt Form/Narrative Login #
Site Name
UPS FAS Waypoint Client Drop Off E
Foam Box Client Cooler Box Oth
COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt: (Cooler temperature upon receipt: (Coole
IR GUN # / (CFT) "C) Observed Cooler Temp "C Corrected Cooler Temp "C Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No NA Tests that are not Tests th
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? Character of the control of t
5 Shippers' packing slip attached to the coolet(s)? 4 Did custody papers accompany the sample(s)? 5 Were the custody papers relinquished & symed in the appropriate place? TOC TOC
Was/were the person(s) who collected the samples clearly identified on the COC?
), # of containers (194), a
12 Are these work share samples and all listed on the COC? If yes, Ouestions 13 17 have been checked at the originating laboratory
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18 CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
19 SAMPLE CONDITION Were received after the recommended holding time had expired Sample(s) Were received after the recommended holding time had expired were received in/a broken container
Sample(s)were received with bubble > 6 mm in diameter (Notify PM) ,
20 SAMPLE PRESERVATION
Sample(s)were further preserved in the laboratory Time preservedPreservative(s) added/Lot number(s)were further preserved in the laboratory
VOA Sample Preservation Date/Tupe VOAs Frozen.

	Tombo			iox Oner	3	ਨ
State House			NGW F	1	1	
Harry News Orrice			MON4:	Box Other	CE ST	ಕ
Writer the let Price			M Cana.	Pox Other	CI	ጽ
Harito Sheeks Dyte				or or	1	ਨ
Welke Blueke Byks			P CIM 6:	Dex Other	1	ភ
Welles sho ke bytes			B GAM 4:	Pox Ower	3	ਨ
Merico sees on Miles			* 0** *:	ł	Ţ	
West State			# GON #:	tox Other	ı	ਨ
Water House			IR CON F:	Hox Officer	1	ភ
A1/10 600 601 FEB.			# C2# 2:	Box Other	2	ក
Helico Marico Dy Da			X Gen s:	OF CHAP	City	ក
Helica Base Ca Divisi			37 G-47 CT	Tox Other	CT POS	ጽ
White she ice by to			E CALL S.	ox other	Q1	ក
Welke Marke Byte			7097	Fox OHEY	2	8
Merico sue se drice			# C+x *:	Pox O##	CLAN	ಕ
Weeker Sheeker Dyles		·	₩ GAN #:	Sex Other	CHAN	ਲ
Weller Busice Brits			A CONT.	Box Other	CONT	ਨ
Welco shorter by to			7 C47 T:	Fox Other	Clerk	ក
Welke Melos Byke			* C\$# ?	Box Other	C .	ក
Weites Steel Con Dries			* C2×*:	lox Other	C	ਲ
Walte Hee Pop Dills			K CAN 4:	Bex Offer	£	ਨ
Water Monte			# CEN #:	lox Other	Clea	ਨ
Marie Marie Strice			# C4X 4:	lex Offer	Clean	ಹ
Marine Marine Marine			# GWH #:	lox Other	City	ಕ
Walks No De Piles			# C4H #:	Box Offier	Cign	ನ
Wellow Whelica Miles			* G4% 9:	lox O#H	Clert a	ĸ
Welke See to Mits			東の芸士	Pox Other	Clest T	ಸ
Works House to Mike			R GAN #:	ex Other	Clear +	ጽ
Walter Shrence Wite			M GAN 4:	Box Other	Clant 1	ក
West to Make			M GUN F:	lox Other	Chris s	2
Worke She has Brike			R GUN #:	Box Offier	CEAN!	ጽ
Helico Dive top Dyke			X GON 9:	Sox Other	CHAM	ጽ
Welke She ice Fike			IX GUN 4:	tox Other	Chemi e	ਨ
Marke She to Mice	2.5	7 4	IN GUNT	lox Other	Clent to	$\langle \bar{c} \rangle$
Welke Sive Ice Price	74.7) -2	IR GUN 6,	»x Offier	Clent lox	
Welke Bueke Mike	Temp °C	Temp °C	(Circle)	ription)	Codler Description (Circle)	Co
000	Corrected	IR Gun # Observed Corrected	IR Gun #			

DATA VERIFICATION REPORT

March 13, 2024

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631

Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater

Project number: 30167538.402.04

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 200374-1 Sample date: 2024-02-29

Report received by CADENA: 2024-03-12

Initial Data Verification completed by CADENA: 2024-03-13

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 200374-1

		Lab Sample ID:		TRIP BLANK_32 2402003741 2/29/2024				MW-148S_022924 2402003742 2/29/2024		
				Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-8260	<u>D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		0.56	1.0	ug/l	J
OSW-8260	DSIM									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-200374-1

CADENA Verification Report: 2024-03-13

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 53328R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-200374-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Analysis		
Sample 10	Labib	Watita	Collection Date	Farent Sample	VOC	VOC SIM	
TRIP BLANK_32	240-200374-1	Water	02/29/2024		X		
MW-148S_022924	240-200374-2	Water	02/29/2024		Х	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		X		Х	
6. Sample collection date		X		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	oorted		rmance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation						
System performance and column resolution		X		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	X				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		X		X		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BAShims

DATE: March 22, 2024

PEER REVIEW: Andrew Korycinski

DATE: April 3, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 2007 Brighton, MI 48116 / 810-229-2763

	-																
Client Contact	Regulat	ory program:		DW	NP	DES	RCRA	O	ther							_	
Company Name: Arcadis	Client Project N	lanager: Kris i	Itaskey		Site Co	ntact: (Christina Weaver	_		Lab C	ontac	: Mik	DelM	onico			estAmerica Laboratories, Inc OC No.
Address: 28550 Cabot Drive, Suite 500	Telephone: 248-994-2240			Totach	Telephone: 243-994-2240			-	Telephone: 330-497-9396					 			
Dity/State/Zip: Novi, MI, 48377								1 etep						1 of 1 COCs			
Phone: 24 8-994- 2240	Em all: kristoffer.hinskey@arcadis.com				An	ilysis T	arearonad ilme	TT			Analyses				F	er lab use only	
	Sampler Name				TATifd	l Cront l'	vm below	1								V	allem chent
Project Name: Ford LTP Off-Site	1	ent 1	In se		10 d	hase	3 weeks ✓ 2 weeks										ab sampling
Project Number: 301 67538.402.04	Method of Ship	ment/Carrier:	resper		7 "	ay	1 week	5 0							N N		ab sarqning,
PO # 30167538.402.04	Shipping/Track	ing No:			-		2 days I day	8 8		8	82 60D			2800	8	Jo	th/SDG No
			64	aria .	 		& Presenathes	출	8260D	8280D				88	826		
Sample I dealification	Sample Date	Sample Time	e too sa		H2SON HRO3	П	NaOH Vion Unpies	Filtered Sample (Y/N)	1,1-DCE 82	08-1,2-DOE	Trans-1,2-DCE	PCE 8280D	TCE 82600	Vinyl Chloride 82600	1,4-Diox an 8 82600		Sample Specific Notes / Special Instructions:
			1			1		NC						X			1 Trip Blank
TRIP BLANK_ 32				++-	++-	1		+ +	-	1			-			+	3 VOAs for 8260D
MW-1485-022924	2/29/24	1105	6			6		NG	<u>م</u> د	٨	X	K	X	٨	ć		3 VOAs for \$260D SIM
								240)-2003	374 Cr	ain o	f Cus	itody				
												1	-	1			
Possible Hazard Identification → Non-Hazard Hammable Skin Irritan	nt Poiso	- P	Unknown	-LL	Sam		posal (A fee may be	assessed Disposal				red lar		20 1 00	onth) Months		
Special Instructions/QC Requirements & Comments: Sample Address: 12088 BYE						Ketur	i to Cient	Disposal	ву Сал			carve	u		Mouns		
Relinquished by:	Company		Date/Ti	me: /			Received by: /						Compa	nv: a		lo	ale/Tame:
That Three	1 .	adis	2/	29/2	24 1	32	Received by: Received by:	' /	20/1	13	10.10	(1)		14	caclis	[-	2/29/24 153
Rehnquished by:	Company	elis	Dank Ti	1 24	150		Received by:	2	_			15	Compa	Fa	-	0	3/1/24)500
Retinquished by	Company:		3/12	ine /	530		Received in Labora	tory by:					Сотра	iny:		D	SO DE ROY

CD005, TestAmerica Laberstortes, Inc. All rights retox ed. YestAmerica & Design ^{and} protoxidaments of TestAmerica Laberstortes, Inc.

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-200374-1

Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_32 Lab Sample ID: 240-200374-1

Date Collected: 02/29/24 00:00 **Matrix: Water** Date Received: 03/02/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/08/24 22:24	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/08/24 22:24	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 22:24	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/08/24 22:24	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/08/24 22:24	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/08/24 22:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137					03/08/24 22:24	1
4-Bromofluorobenzene (Surr)	82		56 ₋ 136					03/08/24 22:24	1
Toluene-d8 (Surr)	101		78 - 122					03/08/24 22:24	1
Dibromofluoromethane (Surr)	98		73 - 120					03/08/24 22:24	1

Client Sample ID: MW-148S_022924 Lab Sample ID: 240-200374-2

Date Collected: 02/29/24 11:05 Date Received: 03/02/24 08:00

Mathod: SW846 8260D SIM - Volatile Organic Compounds (CC/MS)

Method: 5W846 8260D SIM - Volatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/08/24 13:45	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
1,2-Dichloroethane-d4 (Surr)	105		68 - 127					03/08/24 13:45			

	Method: SW846 8260D - \	Volatile Organic Compounds by	GC/MS
ı	Analyto	Popult Qualifier	DI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/09/24 03:24	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/09/24 03:24	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/09/24 03:24	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/09/24 03:24	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/09/24 03:24	1
Vinyl chloride	0.56	J	1.0	0.45	ug/L			03/09/24 03:24	1

Surrogate	%Recovery Qualifier	Limits	Prepared An	alyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	62 - 137	03/09	9/24 03:24	1
4-Bromofluorobenzene (Surr)	83	56 - 136	03/09	9/24 03:24	1
Toluene-d8 (Surr)	101	78 - 122	03/09	9/24 03:24	1
Dibromofluoromethane (Surr)	98	73 - 120	03/09	9/24 03:24	1

Matrix: Water