

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 3/15/2024 7:07:56 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-200734-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

lowo

Generated 3/15/2024 7:07:56 AM 1

5 6 7

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

-		
Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
	Listed under the "D" column to designate that the result is reported on a dry weight basis	
~ %R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	8
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
888		

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 240-200734-1

Eurofins Cleveland

Job Narrative 240-200734-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/8/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.3°C and 3.3°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

3 4

5

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-200734-1	TRIP BLANK_3	Water	03/05/24 00:00	03/08/24 08:00
240-200734-2	MW-89S_030524	Water	03/05/24 11:30	03/08/24 08:00

Detection Summary

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

Client Sample ID: TRIP BLANK_3

Job ID: 240-200734-1

Lab Sample ID: 240-200734-1

No Detections.

Client Sample ID: MW-89S_030524 Lab Sample ID: 240-200734-2 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 2.5 1.0 0.46 ug/L 1 8260D Total/NA

Client Sample ID: TRIP BLANK_3

Date Collected: 03/05/24 00:00 Date Received: 03/08/24 08:00

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/13/24 20:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/13/24 20:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/13/24 20:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/13/24 20:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/13/24 20:34	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/13/24 20:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		62 - 137			-		03/13/24 20:34	1
4-Bromofluorobenzene (Surr)	90		56 - 136					03/13/24 20:34	1
Toluene-d8 (Surr)	98		78 - 122					03/13/24 20:34	1
Dibromofluoromethane (Surr)	97		73 - 120					03/13/24 20:34	1

Job ID: 240-200734-1

Eurofins Cleveland

Lab Sample ID: 240-200734-1 Matrix: Water

Client Sample ID: MW-89S_030524

Date Collected: 03/05/24 11:30 Date Received: 03/08/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/12/24 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		68 - 127			-		03/12/24 17:19	1
Method: SW846 8260D - Volati	ile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/14/24 02:23	1
cis-1,2-Dichloroethene	2.5		1.0	0.46	ug/L			03/14/24 02:23	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/14/24 02:23	1
rans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/14/24 02:23	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/14/24 02:23	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/14/24 02:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			-		03/14/24 02:23	1
4-Bromofluorobenzene (Surr)	93		56 - 136					03/14/24 02:23	1
Toluene-d8 (Surr)	97		78 - 122					03/14/24 02:23	1
Dibromofluoromethane (Surr)	99		73 - 120					03/14/24 02:23	1

3/15/2024

Lab Sample ID: 240-200734-2 Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Water

Percent Surrogate Recovery (Acceptance Limits) DCA BFB TOL DBFM **Client Sample ID** (62-137) (56-136) (78-122) (73-120) Lab Sample ID TRIP BLANK_3 240-200734-1 103 90 98 97 240-200734-2 MW-89S_030524 104 93 97 99 240-200747-C-2 MS Matrix Spike 100 108 102 97 240-200747-C-2 MSD Matrix Spike Duplicate 99 106 100 96 LCS 240-606002/5 Lab Control Sample 96 106 102 97 MB 240-606002/7 Method Blank 101 92 98 95 Surrogate Legend DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr) TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water

			Percent Surrogate Recovery (Acceptance Limits)	
		DCA		
Lab Sample ID	Client Sample ID	(68-127)		
240-200645-A-2 MS	Matrix Spike	102		
240-200645-E-2 MSD	Matrix Spike Duplicate	111		
240-200734-2	MW-89S_030524	107		
LCS 240-605738/4	Lab Control Sample	107		
MB 240-605738/6	Method Blank	106		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Analysis Batch: 606002

МВ	МВ							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.49	ug/L			03/13/24 20:09	1
1.0	U	1.0	0.46	ug/L			03/13/24 20:09	1
1.0	U	1.0	0.44	ug/L			03/13/24 20:09	1
1.0	U	1.0	0.51	ug/L			03/13/24 20:09	1
1.0	U	1.0	0.44	ug/L			03/13/24 20:09	1
1.0	U	1.0	0.45	ug/L			03/13/24 20:09	1
	Result 1.0 1.0 1.0 1.0 1.0	MB MB Result Qualifier 1.0 U 1.0 U	Result Qualifier RL 1.0 U 1.0 1.0 U 1.0	Result Qualifier RL MDL 1.0 U 1.0 0.49 1.0 U 1.0 0.46 1.0 U 1.0 0.44 1.0 U 1.0 0.51 1.0 U 1.0 0.44	Result Qualifier RL MDL Unit 1.0 U 1.0 0.49 ug/L 1.0 U 1.0 0.46 ug/L 1.0 U 1.0 0.44 ug/L	Result Qualifier RL MDL Unit D 1.0 U 1.0 0.49 ug/L - 1.0 U 1.0 0.46 ug/L - 1.0 U 1.0 0.44 ug/L - 1.0 U 1.0 0.51 ug/L - 1.0 U 1.0 0.44 ug/L -	Result Qualifier RL MDL Unit D Prepared 1.0 U 1.0 0.49 ug/L 0	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.49 ug/L 03/13/24 20:09 03/13/24 20:09 1.0 U 1.0 0.46 ug/L 03/13/24 20:09 1.0 U 1.0 0.44 ug/L 03/13/24 20:09 1.0 U 1.0 0.44 ug/L 03/13/24 20:09 1.0 U 1.0 0.51 ug/L 03/13/24 20:09 1.0 U 1.0 0.44 ug/L 03/13/24 20:09 1.0 U 1.0 0.44 ug/L 03/13/24 20:09

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		62 - 137		03/13/24 20:09	1
4-Bromofluorobenzene (Surr)	92		56 - 136		03/13/24 20:09	1
Toluene-d8 (Surr)	98		78 - 122		03/13/24 20:09	1
Dibromofluoromethane (Surr)	95		73 - 120		03/13/24 20:09	1

Lab Sample ID: LCS 240-606002/5 Matrix: Water Analysis Batch: 606002

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	21.4		ug/L		85	63 - 134	
cis-1,2-Dichloroethene	25.0	24.6		ug/L		99	77 - 123	
Tetrachloroethene	25.0	23.5		ug/L		94	76 - 123	
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	75 - 124	
Trichloroethene	25.0	23.8		ug/L		95	70 - 122	
Vinyl chloride	12.5	13.8		ug/L		110	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		62 - 137
4-Bromofluorobenzene (Surr)	106		56 - 136
Toluene-d8 (Surr)	102		78 - 122
Dibromofluoromethane (Surr)	97		73 - 120

108

102

Lab Sample ID: 240-200747-C-2 MS Matrix: Water

Analysis Batch: 606002

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	25.0	22.9		ug/L		92	56 - 135
cis-1,2-Dichloroethene	1.0	U	25.0	24.4		ug/L		98	66 - 128
Tetrachloroethene	1.0	U	25.0	23.9		ug/L		95	62 _ 131
trans-1,2-Dichloroethene	1.0	U	25.0	24.1		ug/L		96	56 - 136
Trichloroethene	1.0	U	25.0	23.4		ug/L		94	61 - 124
Vinyl chloride	1.0	U	12.5	11.9		ug/L		95	43 - 157
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	100		62 - 137						

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Page 12 of 20

56 - 136

78 - 122

QC Sample Results

Prep Type: Total/NA

5

10

12 13

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued) Lab Sample ID: 240-200747-C-2 MS

Client Sample ID: Matrix Spike

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	97		73 - 120

Lab Sample ID: 240-200747-C-2 MSD Matrix: Water

Client Sample ID: Matrix Spil	ke Duplicate
Prep Ty	pe: Total/NA

Analy	ysis	Batch:	606002

Analysis Batch: 606002

Matrix: Water

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	25.0	23.0		ug/L		92	56 - 135	0	26
cis-1,2-Dichloroethene	1.0	U	25.0	24.6		ug/L		99	66 - 128	1	14
Tetrachloroethene	1.0	U	25.0	23.5		ug/L		94	62 - 131	2	20
trans-1,2-Dichloroethene	1.0	U	25.0	24.6		ug/L		98	56 - 136	2	15
Trichloroethene	1.0	U	25.0	23.6		ug/L		94	61 - 124	1	15
Vinyl chloride	1.0	U	12.5	13.6		ug/L		109	43 - 157	13	24
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	99		62 - 137								
4-Bromofluorobenzene (Surr)	106		56 - 136								
Toluene-d8 (Surr)	100		78 - 122								
Dibromofluoromethane (Surr)	96		73 - 120								

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-605738/	0											Client S	Sample ID: Metho	
Matrix: Water													Prep Type: 7	otal/NA
Analysis Batch: 605738		мв	MD											
Analyte	D		Qualifier		RL		MDL	Unit		D	р,	repared	Analyzed	Dil Fac
1,4-Dioxane	K	2.0			2.0		0.86			· – –	FI	epareu		
1,4-Dioxane		2.0	0		2.0		0.00	uy/L					03/12/24 10.30	1
		MB	МВ											
Surrogate	%Reco	overy	Qualifier	Limits							PI	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		106		68 - 12	7					_			03/12/24 10:58	1
- Lab Sample ID: LCS 240-605738	3/4									Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water											•	Campio	Prep Type:	
Analysis Batch: 605738														
				Spike		LCS	LCS						%Rec	
Analyte				Added	Re	sult	Quali	fier	Unit		D	%Rec	Limits	
1,4-Dioxane				10.0		7.85			ug/L		_	79	75 - 121	
	LCS	LCS												
Surrogate	%Recovery	Quali	fier	Limits										
1.2 Diablaraathana d1 (Surry)	107			68 - 127										
1,2-Dichloroethane-d4 (Surr)												Client	Sample ID: Matr	ix Spike
	MS													
Lab Sample ID: 240-200645-A-2 Matrix: Water	MS												Prep Type: 7	Total/NA
Lab Sample ID: 240-200645-A-2 Matrix: Water	MS												Prep Type: 7	Total/NA
_ Lab Sample ID: 240-200645-A-2	MS Sample	Samp	ble	Spike		MS	MS						Prep Type: ⁻ %Rec	Fotal/NA
Lab Sample ID: 240-200645-A-2 Matrix: Water				Spike Added	Re		MS Quali	fier	Unit		D	%Rec		Fotal/NA

Eurofins Cleveland

10

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	102		68 - 127								
Lab Sample ID: 240-200645-	E-2 MSD					C	lient Sa	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Water									Prep 1	Type: To	tal/NA
Analysis Batch: 605738											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	8.48		ug/L		85	20 - 180	9	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)			68 - 127								

8260D

8260D

Water

Water

GC/MS VOA

240-200747-C-2 MS

240-200747-C-2 MSD

Matrix Spike

Matrix Spike Duplicate

Analysis Batch: 605738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-200734-2	MW-89S_030524	Total/NA	Water	8260D SIM	
MB 240-605738/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-605738/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-200645-A-2 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-200645-E-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	
nalysis Batch: 606002	2				Prep Batch
nalysis Batch: 606002 Lab Sample ID		Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
nalysis Batch: 606002 Lab Sample ID 240-200734-1	2 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	2 Client Sample ID TRIP BLANK_3	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch

Total/NA

Total/NA

Matrix: Water

Client Sample ID: TRIP BLANK_3

Lab Sample	ID:	240-200734-1
		Matrix: Water

Date Collected: 03/05/24 00:00 Date Received: 03/08/24 08:00

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analvsis	8260D			606002	CDG	EET CLE	03/13/24 20:34

Client Sample ID: MW-89S_030524 Date Collected: 03/05/24 11:30

Date Received: 03/08/24 08:00

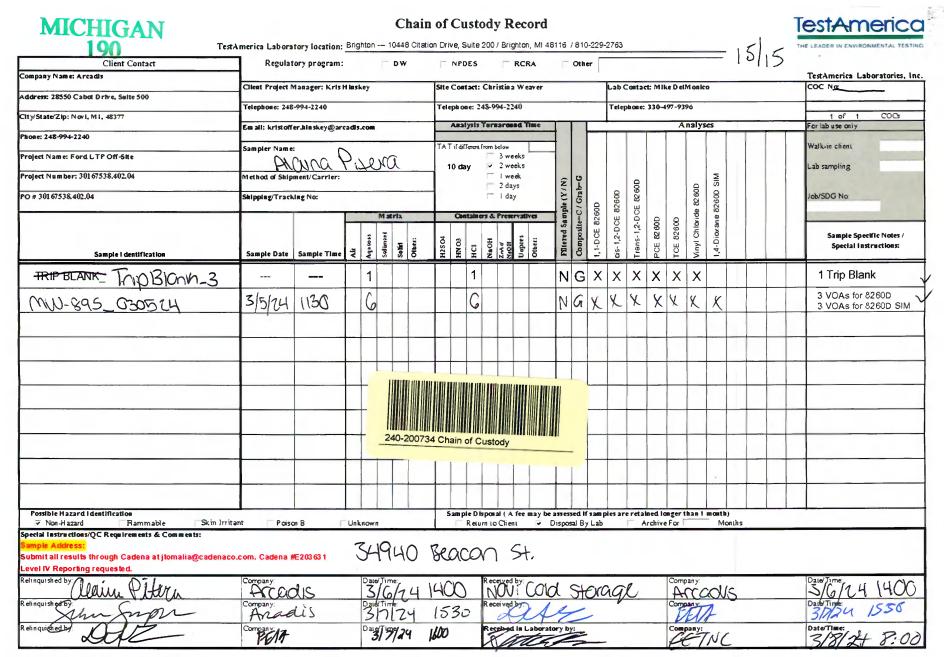
	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	606002	CDG	EET CLE	03/14/24 02:23
Total/NA	Analysis	8260D SIM		1	605738	MDH	EET CLE	03/12/24 17:19

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site


13

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24 *
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	06-30-24
New York	NELAP	10975	04-01-24
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

C2000, Testamerica Laboratories, Inc. All rights resolved, Testamerica & Design ¹⁰ are trademarks of Testamerica Laboratories, Inc.

	5
	8
	9
	3
1	4

The residence of the second se

vg.....v

#1.NC.039 Coola Autops Form Page 2 - Multiple Codes

DATA VERIFICATION REPORT

March 15, 2024

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30167538.402.04 Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory submittal: 200734-1 Sample date: 2024-03-05 Report received by CADENA: 2024-03-15 Initial Data Verification completed by CADENA: 2024-03-15 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 200734-1

	Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2402007 3/5/2024			MW-895 2402007 3/5/2024	342			
Anglista		Report		11	Valid	Desult	Report	11	Valid
Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC									
<u>OSW-8260D</u>									
1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		2.5	1.0	ug/l	
Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-8260DSIM									
1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-200734-1 CADENA Verification Report: 2024-03-15

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 53385R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-200734-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parant Sampla	Analysis				
Sample ID		Matrix	Collection Date	Parent Sample	VOC	VOC SIM			
TRIP BLANK_3	240-200734-1	Water	03/05/2024		Х				
MW-89S_030524	240-200734-2	Water	03/05/2024		Х	Х			

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed		Rep	orted		mance otable	Not Required
		No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		X	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		X	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCI

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

DATA REVIEW

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

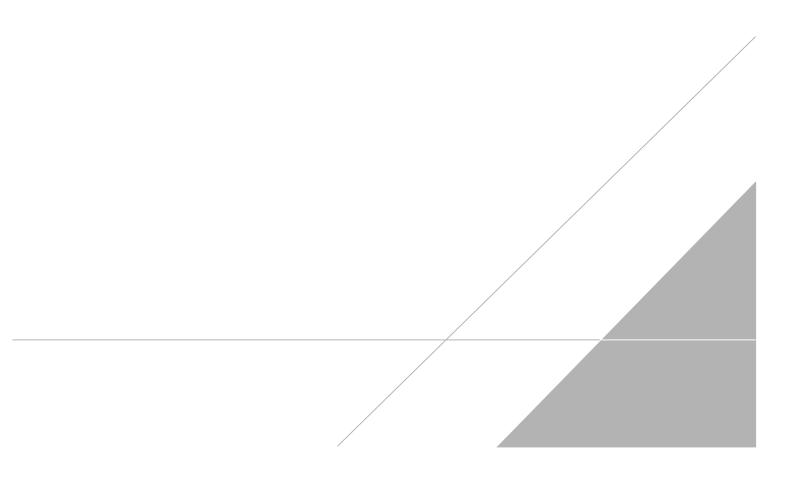
VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation				1	1
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference


%D Percent difference

VALIDATION PERFORMED BY:	Bindu Sree M B
SIGNATURE:	BASHMB
DATE:	March 25, 2024

PEER REVIEW: Andrew Korycinski

DATE: April 3, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

51-

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	tory program	:	1-	DW	Г	NP	DES		RC	RA	1	Oth	er 🗌							101	12					
Company Name: Arcadis	Client Project Manager: Kris Hinskey Telephone: 248-994-2240			Sit	Site Contact: Christina Weaver La							Lab Contact: Mike DelMonico									TestAmerica Laboratories, In						
Address: 28550 Cabot Drive, Suite 500																			\rightarrow								
City/State/Zip: Novi, Mi, 48377		Em all: kristoffer.hinskey@arcadis.com					_							reiep	phone: 330-497-9396								1 of 1 CO				
Phone: 248-994-2240	Em all: kristoff					Ana	IYSIS	Turnai	round	lime	+			-				nalys	es	For	lab use only	1	_				
Project Name: Ford LTP Off-Site	Sampler Name	1	>		_	TA	Tildi	Terent l'	rom bela	weeks		7											Wal	k-in chient	-		
	PI	Cuna	4:7	en	<u>J</u>		10 da	ıy		weeks														Lab	sampling		
Project Number: 30167538.402.04	Method of Ship	ment/Carrier:								week days		Î	D=G			QQ			0	SIM							
PO # 30167538,402.04	Shipping/Traci	dag No:										le (Y)	/ Gral	0	2600	E & 60D			82 600	82600			Job	SDG Na	-		
				Ma	rix		Cor	tainer	rs & Pr	eserva	lives	1 un	C==C	8260	CE 8	-DCI	Q	8	oride	ane 8			_				
Sample I dentification	Sample Date	Sample Time	3	Aquicous Sediment	Selid Other:	H2SOI	HN 03	HCI	NaOH	Vepres	Other:	Filtered Sample (Y/N)	Composite=C / Grah=G	1,1-DCE 8260D	dis-1,2-DCE 82600	Trans-1,2-DCE	PCE 82 60D	TCE 8260D	Vinyl Chloride	1,4-Dioxane				Sample Sp Special II	ecific Notes estructions:		
TRIPBLANK TAPBION-3				1				1					G	Х	X	Х	X	X	X		1		-	1 Trip Bla	ank		
	Thelast			^			+				-					-		-	u	11			-	3 VOAs for	8260D		
MW-895_030524	3/5/24	1130		6		+	_	C	_	-		N	G	X	X	X	X	X	X	X		+		3 VOAs for		IM V	
														1													
						Т																	T				
			+			+	+	$\left \right $		+		+	+						-				-+-				
				- 1			ALC: NO				a dette avan											+					
				- 2	40-2007	734 C	hain	of C	ustod							_			-			+					
													-							_							
										1	1	1	1														
						+	-					+											-				
Possible Hazard Identification							Samo	le D b	i la soci	A fee	may be	23365	sed if	3269 (2	es are	retak	ted lo	rer t	bas 1	month)							
Non-Hazard Flammable Skin Irrit	ant Poise	on B	Unkr	nwo					n lo C			Dispo					rchive			Mon	ths						
Special instructions/QC Requirements & Comments: Sample Address:			7	10	110	Ro		~	\sim	C	1																
Submit all results through Cadena at jtomalia@cadenaco Level IV Reporting requested.	o.com. Cadena i	E203631	5	54-1	40	R	A	EN	(1)	>	۲.																
	Company:	A	1	Date/Tin	ne:	1734	\sim		Receiv	ed by:	Co	_	~		-	0		Comp	an y:	• •			Dat	Time:	: \$157	V.	
Relinguished by	Arca	XIS		3/6		141			N	Ni	COL	2	St	SVC	iq)	0		A	X	i ali			2	16/24	1 140	\mathcal{N}	
the mor	Company: Anat	lis		DaleTin 3D	[24	15	530	>			LA	Z	-	-				U	ET.	7			3	Mau	1550	5	
Relinquiched by	Company			Dalo Tig	124	j60t)		Receb	od in	Laborat	tory b	y:					Comp	pany:	NC			Dat	e'Time:	+ 8:	00	

C2008, Testamerica Laboratories, Inc. All rights reserved. Testamerica & Design ¹⁴⁴ are trademarks of Testamerica Laboratories, Inc.

Client Sample ID: TRIP BLANK_3

Date Collected: 03/05/24 00:00

Lab Sample ID: 240-200734-1 Matrix: Water

Matheads OWO 40 0000D Malatile On	wanta Oanna ann da hu	
Method: SW846 8260D - Volatile Or	ganic Compounds by	GC/INS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/13/24 20:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			03/13/24 20:34	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/13/24 20:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/13/24 20:34	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/13/24 20:34	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/13/24 20:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	103		62 137			-		03/13/24 20:34	1

1,2-Dichloroethane-d4 (Surr)	103	62 - 137	03/13/24 20:34	1
4-Bromofluorobenzene (Surr)	90	56 - 136	03/13/24 20:34	1
Toluene-d8 (Surr)	98	78 - 122	03/13/24 20:34	1
Dibromofluoromethane (Surr)	97	73 - 120	03/13/24 20:34	1

Client Sample ID: MW-89S_030524 Date Collected: 03/05/24 11:30 Date Received: 03/08/24 08:00

Dibromofluoromethane (Surr)

Lab Sample ID: 240-200734-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			03/12/24 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		68 - 127					03/12/24 17:19	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			03/14/24 02:23	1
cis-1,2-Dichloroethene	2.5		1.0	0.46	ug/L			03/14/24 02:23	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			03/14/24 02:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			03/14/24 02:23	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			03/14/24 02:23	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			03/14/24 02:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			-		03/14/24 02:23	1
4-Bromofluorobenzene (Surr)	93		56 <u>-</u> 136					03/14/24 02:23	1
Toluene-d8 (Surr)	97		78 - 122					03/14/24 02:23	1

73 - 120

03/14/24 02:23