

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 2/29/2024 7:46:58 AM

JOB DESCRIPTION

Ford LTP - Off Site

JOB NUMBER

240-199807-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Mouro

Generated 2/29/2024 7:46:58 AM

1

5 6 7

> 12 13

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

Page 2 of 22

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Chain of Custody	20

Qualifiers		3
GC/MS VOA		
Qualifier U	Qualifier Description	
0	Indicates the analyte was analyzed for but not detected.	E
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	9
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 240-199807-1

Eurofins Cleveland

Job Narrative 240-199807-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/22/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.8°C and 1.9°C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 240-604131 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: TRIP BLANK_132 (240-199807-1) and MW-87_021924 (240-199807-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-199807-1	TRIP BLANK_132	Water	02/19/24 00:00	02/22/24 08:00
240-199807-2	MW-87_021924	Water	02/19/24 11:40	02/22/24 08:00
240-199807-3	MW-87S_021924	Water	02/19/24 14:20	02/22/24 08:00

Detection Summary		1
Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site	Job ID: 240-199807-1	2
Client Sample ID: TRIP BLANK_132	Lab Sample ID: 240-199807-1	
No Detections.		
Client Sample ID: MW-87_021924	Lab Sample ID: 240-199807-2	4
No Detections.		5
Client Sample ID: MW-87S_021924	Lab Sample ID: 240-199807-3	6
No Detections.		7
		8
		9
		1

Client Sample ID: TRIP BLANK_132

Date Collected: 02/19/24 00:00 Date Received: 02/22/24 08:00

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/26/24 13:19	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/26/24 13:19	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 13:19	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/26/24 13:19	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 13:19	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/26/24 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137			-		02/26/24 13:19	1
4-Bromofluorobenzene (Surr)	77		56 - 136					02/26/24 13:19	1
Toluene-d8 (Surr)	94		78 - 122					02/26/24 13:19	1
Dibromofluoromethane (Surr)	114		73 - 120					02/26/24 13:19	1

Lab Sample ID: 240-199807-1 Matrix: Water

Matrix: Water

5

8 9

Eurofins Cleveland

Client Sample ID: MW-87_021924

Date Collected: 02/19/24 11:40 Date Received: 02/22/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/27/24 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 127			-		02/27/24 17:35	1
Method: SW846 8260D - Volati	ile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/26/24 18:22	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/26/24 18:22	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 18:22	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/26/24 18:22	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 18:22	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/26/24 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137			-		02/26/24 18:22	1
4-Bromofluorobenzene (Surr)	84		56 - 136					02/26/24 18:22	1
Toluene-d8 (Surr)	97		78 - 122					02/26/24 18:22	1
Dibromofluoromethane (Surr)	115		73 - 120					02/26/24 18:22	1

2/29/2024

Job ID: 240-199807-1

Lab Sample ID: 240-199807-2 Matrix: Water

14

Client Sample ID: MW-87S_021924

Date Collected: 02/19/24 14:20 Date Received: 02/22/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/27/24 19:10	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	109		68 - 127			-		02/27/24 19:10	1	
Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	C/MS							÷
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/23/24 20:11	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/23/24 20:11	1	
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 20:11	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/23/24 20:11	1	
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 20:11	1	
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/23/24 20:11	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	114		62 - 137			-		02/23/24 20:11	1	
4-Bromofluorobenzene (Surr)	102		56 - 136					02/23/24 20:11	1	
Toluene-d8 (Surr)	95		78 - 122					02/23/24 20:11	1	
Dibromofluoromethane (Surr)	99		73 - 120					02/23/24 20:11	1	

2/29/2024

Job ID: 240-199807-1

Matrix: Water

Lab Sample ID: 240-199807-3

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Water

					rogate Recovery (Acc	eptance Limits)	
		DCA	BFB	TOL	DBFM		
ab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)		
40-199661-B-2 MS	Matrix Spike	107	104	109	99		
40-199661-B-2 MSD	Matrix Spike Duplicate	112	103	96	104		
40-199807-1	TRIP BLANK_132	105	77	94	114		
40-199807-2	MW-87_021924	104	84	97	115		
40-199807-2 MS	MW-87-MS_021924	95	89	99	107		
40-199807-2 MSD	MW-87-MSD_021924	91	90	97	103		
0-199807-3	MW-87S_021924	114	102	95	99		
CS 240-604060/5	Lab Control Sample	114	103	98	102		
CS 240-604131/5	Lab Control Sample	95	97	100	106		
3 240-604060/9	Method Blank	110	99	98	99		
B 240-604131/9	Method Blank	104	88	100	113		
Surrogate Legend							
DCA = 1,2-Dichloroetha	ne-d4 (Surr)						
BFB = 4-Bromofluorobe	nzene (Surr)						
TOL = Toluene-d8 (Surr)						
DBFM = Dibromofluoror	nethane (Surr)						

Matrix: Water

		DCA
Lab Sample ID	Client Sample ID	(68-127)
240-199807-2	MW-87_021924	105
240-199807-2 MS	MW-87-MS_021924	109
240-199807-2 MSD	MW-87-MSD_021924	107
240-199807-3	MW-87S_021924	109
LCS 240-604308/4	Lab Control Sample	105
MB 240-604308/6	Method Blank	108

DCA = 1,2-Dichloroethane-d4 (Surr)

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS

-	
Lab Sample ID: MB	240-604060/9

Matrix: Water Analysis Batch: 604060

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/23/24 14:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/23/24 14:15	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 14:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/23/24 14:15	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 14:15	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/23/24 14:15	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		62 - 137		02/23/24 14:15	1
4-Bromofluorobenzene (Surr)	99		56 - 136		02/23/24 14:15	1
Toluene-d8 (Surr)	98		78 - 122		02/23/24 14:15	1
Dibromofluoromethane (Surr)	99		73 - 120		02/23/24 14:15	1

Lab Sample ID: LCS 240-604060/5 Matrix: Water Analysis Batch: 604060

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	24.8		ug/L		124	63 - 134	
cis-1,2-Dichloroethene	20.0	21.2		ug/L		106	77 - 123	
Tetrachloroethene	20.0	21.6		ug/L		108	76 - 123	
trans-1,2-Dichloroethene	20.0	22.0		ug/L		110	75 - 124	
Trichloroethene	20.0	22.8		ug/L		114	70 - 122	
Vinyl chloride	20.0	18.9		ug/L		94	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			62 - 137
4-Bromofluorobenzene (Surr)	103		56 - 136
Toluene-d8 (Surr)	98		78 - 122
Dibromofluoromethane (Surr)	102		73 - 120

Lab Sample ID: 240-199661-B-2 MS Matrix: Water

Analysis Batch: 604060

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20	U	400	471		ug/L		118	56 - 135	
cis-1,2-Dichloroethene	20	U	400	416		ug/L		104	66 - 128	
Tetrachloroethene	20	U	400	449		ug/L		112	62 _ 131	
trans-1,2-Dichloroethene	20	U	400	430		ug/L		108	56 - 136	
Trichloroethene	20	U	400	424		ug/L		106	61 - 124	
Vinyl chloride	20	U	400	349		ug/L		87	43 - 157	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	107		62 - 137							
4-Bromofluorobenzene (Surr)	104		56 - 136							
Toluene-d8 (Surr)	109		78 - 122							

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Cleveland

MR MR

113

Matrix: Water

Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	99		73 - 120

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-199661-B-2 MSD Matrix: Water Analysis Batch: 604060

Lab Sample ID: 240-199661-B-2 MS

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20	U	400	469		ug/L		117	56 - 135	0	26
cis-1,2-Dichloroethene	20	U	400	412		ug/L		103	66 - 128	1	14
Tetrachloroethene	20	U	400	404		ug/L		101	62 - 131	11	20
trans-1,2-Dichloroethene	20	U	400	417		ug/L		104	56 - 136	3	15
Trichloroethene	20	U	400	412		ug/L		103	61 - 124	3	15
Vinyl chloride	20	U	400	412		ug/L		103	43 _ 157	16	24
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	112		62 _ 137								
4-Bromofluorobenzene (Surr)	103		56 - 136								
Toluene-d8 (Surr)	96		78 - 122								
Dibromofluoromethane (Surr)	104		73 - 120								

Lab Sample ID: MB 240-604131/9 Matrix: Water Analysis Batch: 604131

IVID								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.49	ug/L			02/26/24 10:27	1
1.0	U	1.0	0.46	ug/L			02/26/24 10:27	1
1.0	U	1.0	0.44	ug/L			02/26/24 10:27	1
1.0	U	1.0	0.51	ug/L			02/26/24 10:27	1
1.0	U	1.0	0.44	ug/L			02/26/24 10:27	1
1.0	U	1.0	0.45	ug/L			02/26/24 10:27	1
МВ	МВ							
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
104		62 - 137			_		02/26/24 10:27	1
88		56 - 136					02/26/24 10:27	1
100		78 - 122					02/26/24 10:27	1
	Result 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 MB %Recovery 104 88	%RecoveryQualifier10488	Result Qualifier RL 1.0 U 1.0 1.0 0 1.0 1.0 0 1.0 1.0 0 1.0 1.0 0 1.0 1.0 0 1.0 1.0 0 1.0 1.0	Result Qualifier RL MDL 1.0 U 1.0 0.49 1.0 U 1.0 0.49 1.0 U 1.0 0.46 1.0 U 1.0 0.44 1.0 U 1.0 0.44 1.0 U 1.0 0.51 1.0 U 1.0 0.44 1.0 U 1.0 0.44 1.0 U 1.0 0.44 1.0 U 1.0 0.45 MB MB MB Emits 104 62 - 137 62 - 136	$\begin{tabular}{ c c c c c c c } \hline Result & Qualifier & RL & MDL & Unit \\ \hline 1.0 & U & 1.0 & 0.49 & ug/L \\ \hline 1.0 & U & 1.0 & 0.46 & ug/L \\ \hline 1.0 & U & 1.0 & 0.44 & ug/L \\ \hline 1.0 & U & 1.0 & 0.51 & ug/L \\ \hline 1.0 & U & 1.0 & 0.44 & ug/L \\ \hline 1.0 & U & 1.0 & 0.45 & ug/L \\ \hline 1.0 & U & 1.0 & 0.45 & ug/L \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline Result & Qualifier & RL & MDL & Unit & D & Prepared \\ \hline 1.0 & U & 1.0 & 0.49 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.46 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.44 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.51 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.44 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.45 & ug/L & \\ \hline 1.0 & U & 1.0 & 0.45 & ug/L & \\ \hline \hline MB & MB & & & \\ \hline \hline & & & & & & & \\ \hline & & & & &$	$ \begin{array}{ c c c c c c c } \hline Result \\ \hline Result \\ \hline 0 \\ \hline 0 \\ \hline 1.0 \\ \hline 0 \\ \hline 0 \\ \hline 1.0 \\ \hline 0 \\ \hline 0 \\ \hline 1.0 \\ \hline 0 \\ \hline 1.0 \\ \hline 0 \\ \hline 1.0 \\ \hline $

73 - 120

Lab Sample ID: LCS 240-604131/5 Matrix: Water Α

Dibromofluoromethane (Surr)

	Spike	LCS	LCS			
Analyte	Added	Result	Qualifier	Unit	D	%Rec
1,1-Dichloroethene	20.0	23.8		ug/L		119
cis-1,2-Dichloroethene	20.0	22.2		ug/L		111
Tetrachloroethene	20.0	21.5		ug/L		107
trans-1,2-Dichloroethene	20.0	21.4		ug/L		107
Trichloroethene	20.0	21.0		ug/L		105

Eurofins Cleveland

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample Prep Type: Total/NA

> %Rec Limits

63 - 134

77 - 123

76 - 123

75 - 124

70 - 122

02/26/24 10:27

1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-604 Matrix: Water Analysis Batch: 604131	131/5						Client	Sample	ID: Lab Control Sample Prep Type: Total/NA
-			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl chloride			20.0	17.2		ug/L		86	60 - 144
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	95		62 - 137						
4-Bromofluorobenzene (Surr)	97		56 - 136						
Toluene-d8 (Surr)	100		78 - 122						
Dibromofluoromethane (Surr)	106		73 _ 120						

Lab Sample ID: 240-199807-2 MS Matrix: Water

Analysis Batch: 604131

Analyte		Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	20.0	23.6		ug/L		118	56 - 135
cis-1,2-Dichloroethene	1.0	U	20.0	21.5		ug/L		107	66 - 128
Tetrachloroethene	1.0	U	20.0	20.8		ug/L		104	62 - 131
trans-1,2-Dichloroethene	1.0	U	20.0	20.5		ug/L		103	56 - 136
Trichloroethene	1.0	U	20.0	19.9		ug/L		99	61 - 124
Vinyl chloride	1.0	U	20.0	15.9		ug/L		80	43 - 157

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		62 - 137
4-Bromofluorobenzene (Surr)	89		56 - 136
Toluene-d8 (Surr)	99		78 - 122
Dibromofluoromethane (Surr)	107		73 - 120

Lab Sample ID: 240-199807-2 MSD Matrix: Water

Analysis Batch: 604131

Analysis Batom 004101												
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1-Dichloroethene	1.0	U	20.0	22.3		ug/L		111	56 - 135	6	26	
cis-1,2-Dichloroethene	1.0	U	20.0	20.3		ug/L		101	66 - 128	6	14	
Tetrachloroethene	1.0	U	20.0	19.7		ug/L		98	62 - 131	5	20	
trans-1,2-Dichloroethene	1.0	U	20.0	19.8		ug/L		99	56 - 136	4	15	
Trichloroethene	1.0	U	20.0	18.8		ug/L		94	61 - 124	5	15	
Vinyl chloride	1.0	U	20.0	15.2		ug/L		76	43 - 157	5	24	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		62 _ 137
4-Bromofluorobenzene (Surr)	90		56 _ 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	103		73 - 120

Client Sample ID: MW-87-MSD_021924 Prep Type: Total/NA

Client Sample ID: MW-87-MS_021924

Prep Type: Total/NA

12 13

Job ID: 240-199807-1

10

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

- Lak Camala ID: MD 040 C04	200/0											and ID.		Diami
Lab Sample ID: MB 240-604	-308/6										Client S	ample ID:		
Matrix: Water												Prep	Туре: То)tal/N/
Analysis Batch: 604308														
	_	MB							_	_				
Analyte	Re		Qualifier			MDL			_ <u>D</u>	Pr	repared	Analyz		Dil Fa
1,4-Dioxane		2.0	U	2.0		0.86	ug/L					02/27/24	12:25	
		ΜВ	МВ											
Surrogate	%Reco	verv	Qualifier	Limits						Pı	repared	Analyz	zed	Dil Fa
1,2-Dichloroethane-d4 (Surr)		108		68 - 127							-	02/27/24		
Lab Sample ID: LCS 240-60	4308/4								Clie	ent	Sample	ID: Lab C		
Matrix: Water												Prep 1	Туре: То	otal/N/
Analysis Batch: 604308														
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
1,4-Dioxane				10.0	11.7			ug/L			117	75 - 121		
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
1,2-Dichloroethane-d4 (Surr)	105			68 - 127										
Lab Sample ID: 240-199807	-2 MS								CI	ien	t Sampl	le ID: MW-8		
Matrix: Water												Prep	Туре: То)tal/N/
Analysis Batch: 604308														
	Sample			Spike	MS	MS						%Rec		
Analyte	Result		lifier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
1,4-Dioxane	2.0	U		10.0	11.2			ug/L			112	20 - 180		
	MS	мs												
Surrogate	%Recovery	Qua	lifier	Limits										
1,2-Dichloroethane-d4 (Surr)	109			68 - 127										
Lab Sample ID: 240-199807	-2 MSD								Clie	nt	Sample	ID: MW-87		
Matrix: Water												Prep	Туре: То	otal/NA
Analysis Batch: 604308														
	Sample			Spike		MSD						%Rec		RPI
Analyte	Result		lifier	Added	Result	Qual	ifier	Unit		D.	%Rec	Limits	RPD	Limi
1,4-Dioxane	2.0	U		10.0	10.2			ug/L			102	20 - 180	9	20
	MSD	MSD)											
Surrogate	%Recovery			Limits										
······														

 1,2-Dichloroethane-d4 (Surr)
 107
 68 - 127

Eurofins Cleveland

GC/MS VOA

Analysis Batch: 604060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-199807-3	MW-87S_021924	Total/NA	Water	8260D	
MB 240-604060/9	Method Blank	Total/NA	Water	8260D	
_CS 240-604060/5	Lab Control Sample	Total/NA	Water	8260D	
240-199661-B-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-199661-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	
nalysis Batch: 60413	1 Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-199807-1	TRIP BLANK 132	Total/NA	Water	8260D	
40-199807-2	 MW-87_021924	Total/NA	Water	8260D	
IB 240-604131/9	Method Blank	Total/NA	Water	8260D	
CS 240-604131/5	Lab Control Sample	Total/NA	Water	8260D	
40-199807-2 MS	MW-87-MS_021924	Total/NA	Water	8260D	
240-199807-2 MSD	MW-87-MSD_021924	Total/NA	Water	8260D	
nalysis Batch: 60430	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-199807-2	MW-87 021924	Total/NA	Water	8260D SIM	

Client Samp	le ID: TRIP B	LANK_132						Lab Sample ID	: 240-199807-1
Date Collected	: 02/19/24 00:00) _							Matrix: Wate
Date Received	: 02/22/24 08:00)							
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor		Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	604131		EET CLE	02/26/24 13:19	
Client Samp	le ID: MW-87	_021924						Lab Sample ID	: 240-199807-2
Date Collected	: 02/19/24 11:40)						-	Matrix: Wate
Date Received	: 02/22/24 08:00)							
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	604131	AJS	EET CLE	02/26/24 18:22	
Total/NA	Analysis	8260D SIM		1	604308	MDH	EET CLE	02/27/24 17:35	
Client Samp	le ID: MW-87	S_021924						Lab Sample ID	: 240-199807-3
Date Collected	: 02/19/24 14:20)						-	Matrix: Water
)							
Date Received	: 02/22/24 08:00	·							
Date Received				Dilution	Batch			Prepared	
Date Received	: 02/22/24 08:00 Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed	

1

604308 MDH

EET CLE

02/27/24 19:10

Laboratory References:

Analysis

Total/NA

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

8260D SIM

Eurofins Cleveland

Accreditation/Certification Summary

Client: Arcadis U.S., Inc. Project/Site: Ford LTP - Off Site

13

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Georgia	State	4062	02-27-24
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-30-24
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	07-01-24
New York	NELAP	10975	04-01-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	02-27-24
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	-	ory program:			DW			PDES	,		CRA		Oth	cr									Те	stAmerica Laboratories,
Company Name: Arcadis	Client Project N	lanager: Krisł	linske	y	-		Site C	ontact	: Ch	ristina	Weaver				Lab (Contac	t: Mik	e D el l	1 onlo)			 	DC Na
Address: 28550 Cabot Dirlve, Sulte 500	Telephone: 248	-994-2240					Telepi	hone:	248-9	994-224	0				Telep	ohone:	330-4	97-939	Þó					
City/State/Zip: Novi, MI, 48377		er.hinskey@arc	o dir o							rnaroun							-	A	nalys	es		_	 Fo	1 of 1 COCs r lab use only
Phone: 248-994-2240				UIII								=												alk-in client
Project Name: Ford LTP Off-Site	Sampler Name Majkim	in Hai	nan	ù.				f differer	ſ	3 wee														
Project Number: 30167538.402.04	Method of Ship			-0			10	day	>	2 wee 1 wee			0							SIM			La	b sampling
°O # 30167538.402.04	Shipping/Track	Ing No:								2 days I day		N/N	Grab=G		8	82 60D			82 60D	8			Jot	SDG Na
				M	atrix			Contain		S. Preser	atives	Sample (Y / N)	-C/ 6	60D	E 8260D				e S	e 826				
				Aqueous Sediment		:::			_			Filtered Sa	Composite=C /	1,1-DCE 8260D	as-1,2-DCE	frans-1,2-DCE	E 8260D	E 8260D	Vinyl Chloride	1,4-Dioxane 62600				Sample Specific Notes / Special Instructions:
Sample I dentification	Sample Date	Sample Time	Ż	Aqu	Se la	ð	Ĥ	HC1 HC1	S.	ZAA d NAOH	Uepre	2	8	÷	cis	Trê	PCE	TCE	ž	1,4			 _	
TRIP BLANK_ 132				1				1				N	I G	Х	X	Х	Х	Х	Х					1 Trip Blank
MW-87_021924	2/19/24	1140		6				6	,			N	G	X	X	X	χ	X	X	$\boldsymbol{\chi}$				3 VOAs for 8260D 3 VOAs for 8260D SIM
MW-87-MS_021924	2/19/24	1140		6				6	7			2	G	X	X	X	X	$\boldsymbol{\mathcal{X}}$	Х	\times				Run MS/MSD
MW-87-MSD_021924	2/19/24	1140		6				4	0			Ν	G	\prec	\times	X	\times	\checkmark	\times	\varkappa				Run MS/MSE
MW-875_021924	2/19/24	1420		6				6	>			2	G	χ	X	×	×	×	×	×				V
					1111																			
																						M	H	I'GAN
					240-	19980	7 Cha	ain of	Cu	stody	RIN Ko nin												1	90
					_																			
Possible Hazard identification							Sai			sal (A 1					les ar				han 1				 _	
✓ Non-Hazard Flammable Skin Irrita Special Instructions/QC Requirements & Comments:	ant Poiso	n B	Unkn	own				Ret	lurn l	lo Chien l	~	Dispo	osal By	y Lab		A	rchive	For		Mor	iths	_	 	
Sample Address: Standish ROW Submit all results through Cadena at itomalia@cadenaco	.com. Cadena #	E203631																						
Level IV Reporting requested.																					_		 - D-	
Relinquished by: Maryam Hanany	Company: AVCO			2/1	9/22	+ 1	619	5		NOV	10	old	870	in	ge				cac	<u>lis</u>			2	19/24 1615
Relinquished by:	Company: Avcac	des	-	$\frac{2}{2}$	1/2	Y	102	0		eceived b	T	K	lt	20	\wedge	\geq		Comp	E	Ħ	A		17	11e/Time: 2/21/24 1011
Relinquished by:	Company:	A		Dale/Ti	inie: 21/2	42	073	\sim	Re	ecelled	n Labor	atory I	oy:		L	0	2	Comp	ANY:	Tr.		-	Da	2-22-24 800

N

	۲/ FT-NC 099	
·	20 SAMPLE PRESERVATION Sample(s)	
سا <u>حسب</u>	SAMPLE mple(s) mple(s) mple(s)	1
L	18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES [] additional next page Samples processed by	· · · · · · · · · · · · · · · · · · ·
Ι,		
2	Contacted PM Date by via Verbal Voice Mail Other	
3		
	tng laboratory ۱pt?	
	Yes	
	Could all bottle labels (ID/Date/Time) be reconciled with the COC? (Ves) For each sample, does the COC specify preservatives (V/N), # of containers (V/N), and sam	
	Were the custody papers relinquished & signed in the appropriate place? (Yet No Was/were the person(s) who collected the samples clearly identified on the COC? (Yet No Did all bottles arrive in good condition (Unbroken)?	
	2 Were tamper/custody seals on the outside of the cooler(s) is interest (annuy cover) (in the cooler of the coo	
	IR GUN # 22 (CF +0.0 °C) Observed Cooler Temp °C Co	
	Blue Ice Dry Ice Water None	
L.	Eurofins Cooler # C Foam Box Client Cooler Box Other Packing material used Bubble Wraw Foam Plastic Bag None Other	
	uppened on dra	
	adi S Site Name 1 11	
l	Eurofins - Cleveland Sample Receipt Form/Narrative Login #	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	

٨

HINCON Coole Antip Form Page I - Muhiph Cuim

	ž	SC CHAIL BAX OWNER IN GAM IT	PC Clerk low Other RGWN ?:	SC Clear Sex Other MOSHE	PC Clevel Sex Officer Microsoft Fr	EC Class bar phier monthle	BC Client Bear Other ROWLES	C Clerk Sex Other MORANT	SC Clast Sax Diaw Weikt	SC Clind has Diese ROWAR	IC Clair See Offer WOWAT	NC Chief Ben Office Might	SC CIAN Fox Office WOWLS	2C Class Los Diner WOWLT	27 Cited Las Other Workt	C Civil Ver Other WOWN?	IC Clark Sex Obser REGART	PC Clent Box Other WGRX1:	PC Clent Ben Other Restrict	SC Clean Bax Official Microsoft	PC Clean Ben Other # GIN ?:	EC Clerk Bax Opper McBAyes	IC Clark Fax Offer MORTE	PC Clevel 3w Other Refit	RC Clent Jex Offer RGRR :	IC Clerr Fox Offer WEYH 1:	to client bear Other RGIN to	IC Client Box Other WGRN F:	IC Clent lox Other RGINE	C Clerk Lox Offer REVENES	IC Clent lox Other mount,	FC Cleff Jox Other Income.	(C) Clent lox Other In course of the	tc) clem tox other IRGUNE; d.	
D 844 Femperature Exercision		Hele Motos Bryts	4-21 4-14 4-21 1-14	Welling Western Dry Er	Wetter Newtor Dryte	WHITE THE PART OF THE	HITE COLONI CONTRACTOR	We tes the tes by th	Weiter Moles Byth	We los and the second s	railed and any argine	ASI ANG ASI MAK	and and sailed	Rafia col terra cal JAM	4-31 4-66 4-31 HML	Welto Moles	Weite Shake and the	est and ast the	and the set of the set		talin estere climit	est and stifts	Net to her to	actions Catha	col and called	cal ave an I-MA	63 840 53 14%	est evel estimate	the set of the set	And the part of the second sec	White the ter	Witte the tes		1 C WHERE HAVE KE	(Circle) Temp °C ising V (Weik) sive ke

٢

Login # '

13 14

DATA VERIFICATION REPORT

March 04, 2024

Kris Hinskey Arcadis Inc 10559 Citation Ave Suite 100 Brighton, MI 48116

CADENA project ID: E203631 Project: Ford Livonia Transmission Project - OFF-SITE - Soil Gas and Groundwater Project number: 30167538.402.04 Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory submittal: 199807-1 Sample date: 2024-02-19 Report received by CADENA: 2024-03-04 Initial Data Verification completed by CADENA: 2024-03-04 Number of Samples:3 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch CCV response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than $5x$ (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203631

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 199807-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2401998 2/19/202	- 8071 24			MW-87_ 2401998 2/19/202	3072 24			MW-87S 2401998 2/19/202	8073		
	Analyte	Cas No.	Result	Report Limit	Units	Valid Qualifier	Result	Report Limit	Units	Valid Qualifier	Result	Report Limit	Units	Valid Qualifier
	Anatyte	ous no.	nesuti	Linin	Units	Quanner	Nesuti	Linit	Units	Quanner	nesuti	Linit	Units	Quatinei
GC/MS VOC														
<u>OSW-8260</u>	<u>ID</u>													
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-8260</u>	DSIM													
	1,4-Dioxane	123-91-1					ND	2.0	ug/l		ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-199807-1 CADENA Verification Report: 2024-03-04

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 53237R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-199807-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Ana	lysis
Sample ID		INIALITA	Collection Date		VOC	VOC SIM
TRIP BLANK_132	240-199807-1	Water	02/19/2024		Х	
MW-87_021924	240-199807-2	Water	02/19/2024		Х	Х
MW-87S_021924	240-199807-3	Water	02/19/2024		Х	Х

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Items Reviewed		orted		mance otable	Not Required
		No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		X	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		X	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial / Continuing	Compounds	Criteria
TRIP BLANK_132 MW-87_021924	Continuing Calibration Verification %D	Vinyl chloride	+21.2%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
		Detect	NU ACIION

DATA REVIEW

Initial/Continuing	Criteria	Sample Result	Qualification
	% DCD 20% as a correlation coofficient	Non-detect	UJ
Initial Calibratian	%RSD > 20% or a correlation coefficient <0.99	Detect	J
Initial Calibration	1/ DOD 00%	Non-detect	R
	%RSD > 90%	Detect	J
		Non-detect	UJ
	%D >20% (increase in sensitivity)	Detect	J
		Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
		Non-detect	R
	%D > 90% (increase/decrease in sensitivity)	Detect	J

Note:

¹RRF of 0.01 only applies to compounds which are typically poor responding compounds

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

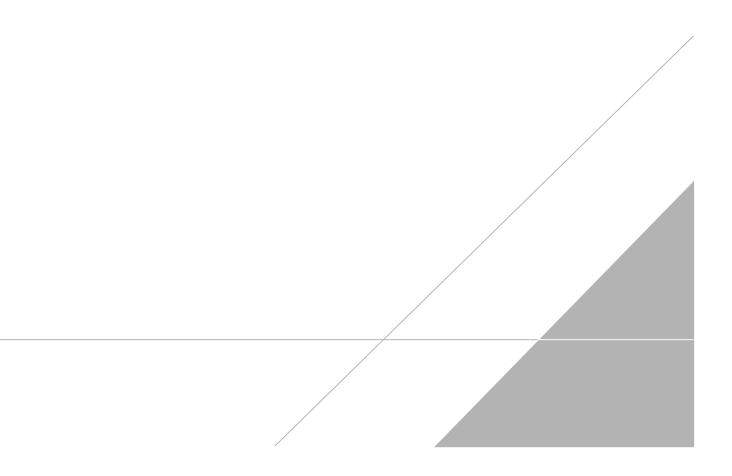
DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation		1			
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	
Notes:					

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference


%D Percent difference

VALIDATION PERFORMED BY:	Dilip Kumar
SIGNATURE:	Pertmit
DATE:	March 20, 2024

PEER REVIEW: Andrew Korycinski

DATE: April 1, 2024

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	ory program:			DW	E NI	PDES		RC	RA		Othe	r										TestAmerica Laboratories, I
Company Name: Arcadis	Client Project Manager: Kris Hinskey					Site Co	ntact: (Christ	in a W	eav er			ŀ	Lab Co	mtaci	: MIk	e D ell	Мопіс					COC Na
Address: 28550 Cabot D rive, Suite 500	Telephone: 248	-994-2240				Teleph one: 248-994-2240						Telephone: 330-497-9396					-						
City/State/Zip: Novi, MI, 48377						Analysis Turnaround Time						Analyses						1 of 1 COCs For lab use only					
Phone: 248-994-2240	Em all: kristoff	er.hinskey@arc	adis.c	om		-					1												
Project Name: Ford LTP Off-Site	Sampler Name	m Hav		;		TATit	different fr		w weeks														Walk-in client
Project Number: 30167538.402.04	Method of Ship		ran	i		10	day		weeks week										5				Lab sampling
· · · · · · · · · · · · · · · · · · ·						1		- 2	days		(N/)	4			82 60D			82 60D	O SIM				
PO # 30167538.402.04	Shipping/Track	ing No:									ple ()	C. C.	9	8260					8260				Job/SDG Na
				Ma	trix	C	ontainer:	s & Pr	eservat	lves	Sam	ite=C	8260D	OCE	2-DC	£2 60D	8260D	lorid	ane				
				Aqueous Sediment		5 8	3	H N	E 2	÷	Filtered Sample (Y/N)	Composite=C / Grab=G	1,1-DCE	ais-1,2-DCE 82600	Irans-1,2-DCE		326	Vinyl Chloride	1,4-Dioxane 82600				Sample Specific Notes / Special Instructions:
Sample I dentification	Sample Date	Sample Time	Ϋ́Γ	Agu Sedi	Solid Other:	H2SO4	HCI	NaOH	U opres	Other:	File	ŝ	÷	cis-	Tra	PCE	TCE	Zin Zin	1,4-				opecial fusit actions.
TRIP BLANK_ 132				1			1				Ζ	G	Х	Х	Х	Х	Х	х					1 Trip Blank
MW-87_021924	2/19/24	1140	(0			6				N	G	Ϋ́	X	X	χ	Х	X	\mathbf{x}				3 VOAs for 8260D 3 VOAs for 8260D SIM
MW-87-MS_021924	2/19/24	1140	(6			6				2	G	X	X	X	X	Х	X	\times				Run MS/MSD
MW-87-MSD_021924	2/19/24	1140		6			6				N	G	\checkmark	\mathbf{x}	Х	Х	\checkmark	X	×		1		V Run MS/MSD
MW-875_021924	2/19/24	1420 11470m		6			6					G	X	X	×	×	×	×	×		-		\checkmark
				1											_							1	
	_			-													_	-	_		_		
																					M	C	HIGAN
				-																			90
					240-19980	J/ Cha	in of C	usto	dy												-		
				1						 may be	1							hanl					
Possible Hazard I dentification Non-Hazard Flammable Skin Irr	itant Poise	n B 🗆	Unkn	own		Sam	Retur				assess Dispos			es are (chive			Mont	hs			
Special Instructions QC Requirements & Comments: Sample Address: Standish RDW																							
Submit all results through Cadena at jtomalia@cadena	co.com. Cadena #	E203631																					
Level IV Reporting requested.	G							D					_	_			Com						Date/Time:
Relinquished by: Maryam Hanan	> Company: Arca	dis		$\frac{2}{l}$	124	1019	5	Receiv		Col	d	Sto	ng	R			A	COV	L is				2/19/24 1615
Relinquished by:	Company: Arcac					102	0	Receiv	ed by	h	1	0D	0	$\overline{\sim}$	>		Comp		ZI	£			Dale/Time: 2/2/124 10:15
Relinquished by:	Company:			ale/Tir		072		Recei	edyn		ory by	y:	1	4	28		Com	pany:	Two	2			2-22-24 800
oucout	5-6-6	11		100	· Jary L	012	-	_	14	~		\rightarrow			ΨZ	~	-		10				

.

Client Sample ID: TRIP BLANK_132 Date Collected: 02/19/24 00:00

Date Received: 02/22/24 08:00

Mathady SW046 9260D Vala	tile Organie Compounds by CC/MS
Welliou. 30040 0200D - Vold	atile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/26/24 13:19	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/26/24 13:19	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 13:19	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/26/24 13:19	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 13:19	1
Vinyl chloride	1.0	A NN	1.0	0.45	ug/L			02/26/24 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137			-		02/26/24 13:19	1

1,2-Dichloroethane-d4 (Surr)	105	62 - 137	02/26/24 13:1
4-Bromofluorobenzene (Surr)	77	56 - 136	02/26/24 13:1
Toluene-d8 (Surr)	94	78 - 122	02/26/24 13:1
Dibromofluoromethane (Surr)	114	73 - 120	02/26/24 13:1

Client Sample ID: MW-87_021924 Date Collected: 02/19/24 11:40 Date Received: 02/22/24 08:00

Analyte	Result	Qualifier	RL	NS) MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/27/24 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 127			-		02/27/24 17:35	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/26/24 18:22	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/26/24 18:22	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 18:22	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/26/24 18:22	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/26/24 18:22	1
Vinyl chloride	1.0	+ UJ	1.0	0.45	ug/L			02/26/24 18:22	1
		-			0				1 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		62 - 137		02/26/24 18:22	1
4-Bromofluorobenzene (Surr)	84		56 - 136		02/26/24 18:22	1
Toluene-d8 (Surr)	97		78 - 122		02/26/24 18:22	1
Dibromofluoromethane (Surr)	115		73 - 120		02/26/24 18:22	1

Client Sample ID: MW-87S 021924 Date Collected: 02/19/24 14:20 Date Received: 02/22/24 08:00

Method: SW846 8260D SIM - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/27/24 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	109		68 - 127					02/27/24 19:10	1

Lab Sample ID: 240-199807-1 Matrix: Water

Prepared	Analyzed	Dil Fac			
	02/26/24 13:19	1			
	02/26/24 13:19	1			
	02/26/24 13:19	1			
	02/26/24 13:19	1			

Matrix: Water

Lab Sample ID: 240-199807-2

Lab Sample ID: 240-199807-3

Matrix: Water

Client Sample ID: MW-87S_021924

Date Collected: 02/19/24 14:20 Date Received: 02/22/24 08:00

Lab Sample ID: 240-199807-3 Matrix: Water

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/23/24 20:11	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/23/24 20:11	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 20:11	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/23/24 20:11	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/23/24 20:11	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/23/24 20:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		62 - 137					02/23/24 20:11	1
4-Bromofluorobenzene (Surr)	102		56 - 136					02/23/24 20:11	1
Toluene-d8 (Surr)	95		78 - 122					02/23/24 20:11	1
Dibromofluoromethane (Surr)	99		73 - 120					02/23/24 20:11	1