

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 5/29/2024 8:17:02 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-204299-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Mouro

Generated 5/29/2024 8:17:02 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

5/29/2024

Page 2 of 21

1
2
3

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Chain of Custody	19

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
U	Indicates the analyte was analyzed for but not detected.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	7
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	

Glossary

0.0000	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-204299-1

Eurofins Cleveland

Job Narrative 240-204299-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/11/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.6°C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 240-613533 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: TRIP BLANK_14 (240-204299-1).

Method 8260D: Reanalysis of the following sample was performed outside of the analytical holding time due to achieving better reporting limits: MW-95S_050924 (240-204299-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

3 4

5

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-204299-1	TRIP BLANK_14	Water	05/09/24 00:00	05/11/24 08:00
240-204299-2	MW-95S_050924	Water	05/09/24 09:20	05/11/24 08:00

Page	8	of	21

Detection Summary

1

Client Sample ID: TRIP BLANK_14

No Detections.

Client Sample ID: MW-95S_050924

This Detection Summary does not include radiochemical test results.

No Detections.

Job ID: 240-204299-1

Lab Sample ID: 240-204299-1

Lab Sample ID: 240-204299-2

Client Sample ID: TRIP BLANK_14

Date Collected: 05/09/24 00:00 Date Received: 05/11/24 08:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/18/24 13:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/18/24 13:14	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 13:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/18/24 13:14	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 13:14	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/18/24 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			62 - 137			-		05/18/24 13:14	1
4-Bromofluorobenzene (Surr)	97		56 _ 136					05/18/24 13:14	1
Toluene-d8 (Surr)	94		78 - 122					05/18/24 13:14	1
Dibromofluoromethane (Surr)	107		73 - 120					05/18/24 13:14	1

Lab Sample ID: 240-204299-1 Matrix: Water

Job ID: 240-204299-1

Eurofins Cleveland

Client Sample ID: MW-95S_050924

Date Collected: 05/09/24 09:20 Date Received: 05/11/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/15/24 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		68 - 127			-		05/15/24 13:14	1
Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	UH	1.0	0.49	ug/L			05/24/24 16:54	1
cis-1,2-Dichloroethene	1.0	UH	1.0	0.46	ug/L			05/24/24 16:54	1
Tetrachloroethene	1.0	UH	1.0	0.44	ug/L			05/24/24 16:54	1
trans-1,2-Dichloroethene	1.0	UH	1.0	0.51	ug/L			05/24/24 16:54	1
Trichloroethene	1.0	UH	1.0	0.44	ug/L			05/24/24 16:54	1
Vinyl chloride	1.0	UH	1.0	0.45	ug/L			05/24/24 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		62 - 137			-		05/24/24 16:54	1
4-Bromofluorobenzene (Surr)	94		56 - 136					05/24/24 16:54	1
Toluene-d8 (Surr)	97		78 - 122					05/24/24 16:54	1
Dibromofluoromethane (Surr)	110		73 - 120					05/24/24 16:54	1

5/29/2024

Job ID: 240-204299-1

JOD ID: 240-204299-1

Matrix: Water

Lab Sample ID: 240-204299-2

BFB

(56-136)

102

104

97

94

104

97

104

101

95

94

DCA

(62-137)

110

107

116

121

117

107

109

113

115

118

Lab Sample ID 240-204161-B-3 MS

240-204299-1

240-204299-2

240-204161-B-3 MSD

240-204678-B-2 MS

LCS 240-613533/5

LCS 240-614364/5

MB 240-613533/10

MB 240-614364/9

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

240-204678-B-2 MSD

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Water

Client Sample ID

TRIP BLANK_14

MW-95S_050924

Matrix Spike Duplicate

Matrix Spike Duplicate

Lab Control Sample

Lab Control Sample

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Method Blank

Method Blank

Matrix Spike

Matrix Spike

cent Su	rogate Recovery (Acce	ptance Limits)
TOL	DBFM	
8-122)	(73-120)	
7	103	
96	101	
94	107	
7	110	
)	104	
)	99	
1	101	
8	102	
5	105	
0	107	

Matrix: Water

Matrix: Water			Prep Type: Total/NA
			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-204203-C-1 MS	Matrix Spike	109	
240-204203-C-1 MSD	Matrix Spike Duplicate	111	
240-204299-2	MW-95S_050924	109	
LCS 240-613063/4	Lab Control Sample	103	
MB 240-613063/6	Method Blank	108	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-613533/10

Matrix: Water Analysis Batch: 613533

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/18/24 10:42	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/18/24 10:42	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 10:42	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/18/24 10:42	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 10:42	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/18/24 10:42	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		62 - 137		05/18/24 10:42	1
4-Bromofluorobenzene (Surr)	95		56 _ 136		05/18/24 10:42	1
Toluene-d8 (Surr)	95		78 - 122		05/18/24 10:42	1
Dibromofluoromethane (Surr)	105		73 - 120		05/18/24 10:42	1

Lab Sample ID: LCS 240-613533/5 Matrix: Water Analysis Batch: 613533

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	25.5		ug/L		102	63 - 134	
cis-1,2-Dichloroethene	25.0	25.9		ug/L		104	77 - 123	
Tetrachloroethene	25.0	25.8		ug/L		103	76 - 123	
trans-1,2-Dichloroethene	25.0	25.9		ug/L		104	75 - 124	
Trichloroethene	25.0	25.4		ug/L		102	70 - 122	
Vinyl chloride	25.0	26.5		ug/L		106	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		62 - 137
4-Bromofluorobenzene (Surr)	104		56 - 136
Toluene-d8 (Surr)	101		78 - 122
Dibromofluoromethane (Surr)	101		73 - 120

102

97

Lab Sample ID: 240-204161-B-3 MS Matrix: Water Analysis Batch: 613533

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	25.0	24.5		ug/L		98	56 - 135
cis-1,2-Dichloroethene	2.5		25.0	26.8		ug/L		97	66 - 128
Tetrachloroethene	1.0	U	25.0	23.5		ug/L		94	62 _ 131
trans-1,2-Dichloroethene	1.0	U	25.0	24.2		ug/L		97	56 - 136
Trichloroethene	34		25.0	56.1		ug/L		90	61 - 124
Vinyl chloride	1.0	U	25.0	24.6		ug/L		99	43 - 157
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	110		62 _ 137						

5

10

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

56 - 136

78 - 122

Valatila O ---nic C do h CCIME IC 47 Me

Lab Sample ID: 240-204161-E	B-3 MS									Client	Sample ID	: Matrix	c Spike
Matrix: Water											Prep 1	Type: To	otal/NA
Analysis Batch: 613533													
	MS N	NS											
Surrogate	%Recovery G		fier	Limits									
Dibromofluoromethane (Surr)	- <u></u>	zuum		73 - 120									
Lab Sample ID: 240-204161-E	3-3 MSD								Client	Sample II	D: Matrix Sp		-
Matrix: Water											Prepr	Type: To	Jtal/IN/
Analysis Batch: 613533	Sample S	Samn		Spike	Med	MSE	`				%Rec		RPI
Analyta	Result C			Added	Result			Unit		D %Rec	Limits	RPD	Limi
Analyte 1,1-Dichloroethene		-		25.0	24.0	Qua	inter	ug/L		96	56 - 135	2	26
,		J											
cis-1,2-Dichloroethene	2.5			25.0	25.1			ug/L		91	66 - 128	7	14
Tetrachloroethene	1.0 U			25.0	22.4			ug/L		90	62 - 131	5	20
trans-1,2-Dichloroethene	1.0 U	J		25.0	22.8			ug/L		91	56 - 136	6	1:
Trichloroethene	34			25.0	53.8			ug/L		80	61 - 124	4	1
Vinyl chloride	1.0 U	J		25.0	24.9			ug/L		100	43 - 157	1	2
	MSD N	NSD											
Surrogate	%Recovery G	Quali	fier	Limits									
1,2-Dichloroethane-d4 (Surr)	107			62 - 137									
4-Bromofluorobenzene (Surr)	104			56 - 136									
Toluene-d8 (Surr)	96			78 - 122									
Dibromofluoromethane (Surr)	101			73 - 120									
Lab Sample ID: MB 240-6143	364/9									Client S	Sample ID:	Method	l Blani
Matrix: Water												Type: To	
Analysis Batch: 614364													
,,	Л	MB	мв										
Analyte	Res	ult	Qualifier		RL	MDL	Unit		D	Prepared	Analyz	ed	Dil Fa
I,1-Dichloroethene		1.0	U		1.0	0.49	ug/L				05/24/24	15:18	
sis-1,2-Dichloroethene	ł	1.0	U		1.0	0.46	ug/L				05/24/24	15:18	
Tetrachloroethene	,	1.0	U		1.0	0.44	ug/L				05/24/24	15:18	
rans-1,2-Dichloroethene		1.0			1.0	0.51					05/24/24		• • • • • •
Trichloroethene		1.0			1.0	0.44	0				05/24/24		
Vinyl chloride		1.0			1.0		ug/L				05/24/24		
	r	МВ	мв										
Surrogate	%Recove		Qualifier	Limits						Prepared	Analyz	ed	Dil Fa
	1	118		62 - 13	7						05/24/24	15:18	
1,2-Dichloroethane-d4 (Surr)		94		56 - 13	6						05/24/24	15:18	
		94											
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)		94 100		78 - 12	2						05/24/24	15:18	
4-Bromofluorobenzene (Surr)	1			78 - 12 73 - 12							05/24/24 05/24/24		
4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr)	1 1	100									05/24/24	15:18	
4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	1 1	100							Clie	ent Sample	05/24/24	15:18	

Analysis Batch: 614364

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	22.5		ug/L		90	63 - 134	
cis-1,2-Dichloroethene	25.0	23.3		ug/L		93	77 - 123	
Tetrachloroethene	25.0	24.3		ug/L		97	76 - 123	
trans-1,2-Dichloroethene	25.0	23.0		ug/L		92	75 - 124	
Trichloroethene	25.0	24.4		ug/L		98	70 - 122	

Eurofins Cleveland

10

Job ID: 240-204299-1

10

12 13

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-6143 Matrix: Water Analysis Batch: 614364	64/5						Clien	t Sample	ID: Lab Control Sample Prep Type: Total/NA
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl chloride			25.0	24.1		ug/L		96	60 - 144
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	113		62 - 137						
4-Bromofluorobenzene (Surr)	101		56 - 136						
Toluene-d8 (Surr)	98		78 - 122						
Dibromofluoromethane (Surr)	102		73 - 120						

Lab Sample ID: 240-204678-B-2 MS Matrix: Water

Analysis Batch: 614364

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	25.0	23.1		ug/L		92	56 - 135
cis-1,2-Dichloroethene	1.0	U	25.0	23.8		ug/L		95	66 - 128
Tetrachloroethene	1.0	U	25.0	22.8		ug/L		91	62 - 131
trans-1,2-Dichloroethene	1.0	U	25.0	23.5		ug/L		94	56 - 136
Trichloroethene	1.0	U	25.0	24.2		ug/L		97	61 - 124
Vinyl chloride	1.0	U	25.0	24.1		ug/L		96	43 - 157

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			62 - 137
4-Bromofluorobenzene (Surr)	104		56 - 136
Toluene-d8 (Surr)	99		78 - 122
Dibromofluoromethane (Surr)	104		73 - 120

Lab Sample ID: 240-204678-B-2 MSD Matrix: Water

Analysis Batch: 614364

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	25.0	22.9		ug/L		92	56 - 135	1	26
cis-1,2-Dichloroethene	1.0	U	25.0	22.3		ug/L		89	66 - 128	6	14
Tetrachloroethene	1.0	U	25.0	21.6		ug/L		86	62 - 131	6	20
trans-1,2-Dichloroethene	1.0	U	25.0	22.5		ug/L		90	56 - 136	5	15
Trichloroethene	1.0	U	25.0	21.8		ug/L		87	61 - 124	11	15
Vinyl chloride	1.0	U	25.0	23.9		ug/L		96	43 - 157	1	24

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		62 - 137
4-Bromofluorobenzene (Surr)	97		56 - 136
Toluene-d8 (Surr)	90		78 - 122
Dibromofluoromethane (Surr)	99		73 - 120

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Eurofins Cleveland

Page 14 of 21

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-613	063/6									Client S	Sample ID:		
Matrix: Water											Prep T	ype: To	otal/NA
Analysis Batch: 613063													
		МВ МВ	3										
Analyte	Re	sult Qu	alifier	RL		MDL	Unit		_ <u>D</u>	Prepared	Analyz	ed	Dil Fac
1,4-Dioxane		2.0 U		2.0		0.86	ug/L				05/15/24	10:06	
		МВ МЕ	3										
Surrogate	%Recov		alifier	Limits						Prepared	Analyz	ed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		108		68 - 127							05/15/24		
I													
Lab Sample ID: LCS 240-61	3063/4								Clien	t Sample	D: Lab Co	ontrol S	Sample
Matrix: Water											Prep T	ype: To	otal/NA
Analysis Batch: 613063													
				Spike	LCS	LCS					%Rec		
Analyte				Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
1,4-Dioxane				10.0	9.17			ug/L		92	75 - 121		
	LCS	105											
Surrogate		Qualifie	r	Limits									
1,2-Dichloroethane-d4 (Surr)		Quanne		68 - 127									
Lab Sample ID: 240-204203-	-C-1 MS									Client	Sample ID	: Matrix	x Spike
Matrix: Water											Prep T	ype: To	otal/NA
Analysis Batch: 613063													
	Sample	Sample		Spike	MS	MS					%Rec		
Analyte	Result	Qualifie	r	Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
1,4-Dioxane	1.1	J		10.0	10.5			ug/L		93	20 - 180		
	MS	мs											
Surrogate		Qualifie	r	Limits									
1,2-Dichloroethane-d4 (Surr)		Quanne		68 - 127									
Lab Sample ID: 240-204203	-C-1 MSD								Client S	Sample II	D: Matrix Sp	oike Du	plicate
Matrix: Water											Prep T	ype: To	otal/NA
Analysis Batch: 613063													
	Sample	Sample		Spike	MSD	MSD)				%Rec		RPD
Analyte	Result	Qualifie	r	Added	Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limi
1,4-Dioxane	1.1	J		10.0	10.4			ug/L		93	20 - 180	0	20
	MSD	мел											
Surrogate	MSD %Recovery		r	Limits									
Surrogate		guainte											

1,2-Dichloroethane-d4 (Surr) 111 68 - 127 Job ID: 240-204299-1

Eurofins Cleveland

GC/MS VOA

Analysis Batch: 613063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-204299-2	MW-95S_050924	Total/NA	Water	8260D SIM		
MB 240-613063/6	Method Blank	Total/NA	Water	8260D SIM		
LCS 240-613063/4	Lab Control Sample	Total/NA	Water	8260D SIM		
240-204203-C-1 MS	Matrix Spike	Total/NA	Water	8260D SIM		
240-204203-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM		
Analysis Batch: 61353	3					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-204299-1	TRIP BLANK_14	Total/NA	Water	8260D		2
MB 240-613533/10	Method Blank	Total/NA	Water	8260D		
LCS 240-613533/5	Lab Control Sample	Total/NA	Water	8260D		
240-204161-B-3 MS	Matrix Spike	Total/NA	Water	8260D		
240-204161-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D		_
Analysis Batch: 614364	4					1
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-204299-2	MW-95S_050924	Total/NA	Water	8260D		
MB 240-614364/9	Method Blank	Total/NA	Water	8260D		
LCS 240-614364/5	Lab Control Sample	Total/NA	Water	8260D		
240-204678-B-2 MS	Matrix Spike	Total/NA	Water	8260D		
240-204678-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D		

Matrix: Water

Matrix: Water

Lab Sample ID: 240-204299-1

Lab Sample ID: 240-204299-2

Client Sample ID: TRIP BLANK_14

Date F	Received:	05/11/24	08:00

Date Collected: 05/09/24 00:00

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	613533	MDH	EET CLE	05/18/24 13:14

Client Sample ID: MW-95S_050924 Date Collected: 05/09/24 09:20

Date Received: 05/11/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	614364	MDH	EET CLE	05/24/24 16:54
Total/NA	Analysis	8260D SIM		1	613063	MDH	EET CLE	05/15/24 13:14

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

13

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-28-25
Georgia	State	4062	02-27-25
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-27-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	06-30-24
New York	NELAP	10975	04-02-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

Eurofins Cleveland

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	ory program:	:		DW	1	NPD	ES	Г	RCR		T C	Other													
ompany Name: Arcadis						16	0							1	0								TestAmerica I	Labora	11	_
ddress: 28550 Cabot Drive, Suite 500	Client Project ?	Manager: Kris	Hinsk	ey		Site 0	Cont	act: Ch	ristin	a Wear	er			Lab	Conta	et: Mi	ke Del	Monic	0			_	COC No:	14	11	20
ity/State/Zip: Novi, MI, 48377	Telephone: 248	-994-2240				Telep	elephone: 248-994-2240			Tele	phone:	: 330-4	197-939	96					1 of 1		:oci					
	Email: kristoff	er.hinskey@ar	cadis.	com		1	Inal	vsis Tur	MATON	und Tin	IC .	П					A	nalys	es				For lab use only		.0.3	
'hone: 248-994-2240	Sampler Name		_			TAT	rt' diff	et ent from	below	- T													Walk-in client	-		
roject Name: Ford LTP		aryam t	for	nni				F	3 w															13-		
roject Number: 30206169.0401.03	Method of Ship		tear	0.001		- ") day	5	2 wi	eek		-	9						SIM				Lab sampling	30		100
PO # US3410018772	Shipping/Track	ine No:	_			-			2 da 1 da			1.1	rab=	9	2600			8260D	S OO				Job SDG No:			
	compland, crace		_		trix						_	Filtered Sample (Y/N)	C/ Grab	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D			le 82	1,4-Dioxane 8260D							
						1.1	Con	tainers &	res	ervauve		1 San		DCE	.2-D	PCE 8260D	TCE 8260D	Vinyl Chloride	xane						-	-
	Sample Date			intent	Solid Other:	H2SO4	603	- HO	23	Unpres		tered	Composite	-1.2-	Ins-1	E 82	E 82	yl CI	-Dk				Sample Special I			
Sample Identification	Sample Date	Sample Time	Ż	Aqui	C Sel	H2	Ä	HCI NaOt	Z	n'n	5	Ē	రి 🗆	cis	Tra	PC	TC	, Ľ	1,4							_
TRIP BLANK_ 14				1				1				N	G X	x	x	X	x	х					1 Trip Bla	ank		
MW-955_050924	5/9/24	0920		6				6				N	G ;	×х	X	X	X	x	X				3 VOAs fo	r 8260	D	
1302030121	9.101	0120	\vdash	6		+	-	-	-	+		/ 1	~ .		-		~					-	3 VOAs fo	r 8260	DSI	<u>^</u>
																						1				
				_			_		+	+		\vdash	_			-				-						
														1100				NA ION					1			
					+	++	-		-	+			_													_
	++												-	240-	2042	99 C	hain	of C	ustody							
				_	+ +				+	+				+	+	1	-		1	1	• T • • •					_
Possible Hazard Identification						Sa	impl	e Dispos	al(A	fee m:	v be a	ISSESSE	d if san	iples ar	e retai	ined to	nger t	1 mail	ponth)				<u> </u>	-		_
Non-Hazard Thammable T un Irrita			Jnki	wn				Return to					ندا By L		Γ /				Mon	ths						
pecial Instructions/QC Requirements & Comments: 12	131 Bost	ton Pos	Ť																							
ubmit all results through Cadena at jtomalia@cadenaco evel IV Reporting requested.	.com. Cadena #E	203728																								
elinquished by:	Company: :=			Date/Tu	ane:		_	- Roy	çeivçd	the			_		_	_	Cam					_	Data Time:			_
Mixigan Kenzen	Arcadi	5		Date Tin 5/9	124	100	15	No.	Jour		d	Sto	age	2			Ar	any:	IJ				5/9/24	16	45	5
Relinquished by:	Company:	0:5		Date/Ti	ne:			Rec	ceived		1,	ťΪ	1	11	~		Comp		55	AYE	-		Date Tiny	7.5.		
Relinquished by:	Company:	aw		S Data To	1012	~1	6	14	anister	d in Lu	U	Y.	p				Corre		F	N	1		5/10/	14		
1.14 11/1	Company:	EXA		Z	10/20	1		Rec	ceived		TU	AL V	DA	YE	D		Com		70	5			Dare Sme: 1	-14	80	\mathcal{D}

92008, Trestamença Laboratorea, Inc. Ali numeri moder Trestamença & Design ¹⁰⁰ are trademarka di Trestamença Caboratorea, Inc

	11-24 Other None Storage Location None See Multiple Couler Form Reading Couler Form aref Cor Tes aref Cor Tes aref Cor Cor
--	--

5

14

5/11/2024

Login Container Summary Report

14

5/29/2024

Client Sample ID

Client Sample ID	Lab ID	Container Type	Нđ
TRIP BLANK_14	240-204299-A-1	Voa Vial 40ml - Hydrochloric Acıd	
MW-95S_050924	240-204299-A-2	Voa Vial 40ml - Hydrochloric Acid	
MW-95S_050924	240-204299-B-2	Voa Vial 40ml - Hydrochloric Acid	-
MW-95S_050924	240-204299-C-2	Voa Vial 40ml - Hydrochloric Acid	-
MW-95S_050924	240-204299-D-2	Voa Vial 40ml - Hydrochloric Acid	
MW-95S_050924	240-204299-E-2	Voa Vial 40ml Hydrochloric Acid	1
MW-95S_050924	240-204299-F-2	Voa Vial 40ml - Hydrochloric Acid	

	<u>pH</u>
	<u>Container</u> pH <u>Temp</u>
	Preservation Added
	Preservation Preservation Added Lot Number

DATA VERIFICATION REPORT

May 29, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728 Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil Project number: 30206169.401.03 Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory submittal: 204299-1 Sample date: 2024-05-09 Report received by CADENA: 2024-05-29 Initial Data Verification completed by CADENA: 2024-05-29 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

HTQ - Sample result should be considered estimated and qualified with a J flag if detected and UJ flag if non-detect. Client sample was received/prepped/analyzed outside of the referenced holding time for the noted test: GCMS VOC sample -02 - re-analysis - UJ flags.

GCMS VOC CCV STANDARD response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Qualifiers added during verification have been added to the electronic data which is available for download from the CADENA CLMS. Refer to the attached table of analytical results that have been qualified during verification.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Sincerely,

Jim Tomalia, Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Qualified Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 204299-1

	Sample Name:	MW-95S	MW-95S_050924			
	Lab Sample ID:	2402042				
	Sample Date:	5/9/2024				
			Report		Valid	
Analyte	Cas No.	Result	Limit	Units	Qualifier	
<u>0D</u>						
1,1-Dichloroethene	75-35-4	ND	1.0	ug/l	UJ	
cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l	UJ	
Tetrachloroethene	127-18-4	ND	1.0	ug/l	UJ	
trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l	UJ	
Trichloroethene	79-01-6	ND	1.0	ug/l	UJ	
Vinyl chloride	75-01-4	ND	1.0	ug/l	UJ	
	0D 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene	Lab Sample ID: Sample Date: Analyte Cas No. Cas No.	Lab Sample ID: 2402042 Sample Date: 5/9/2024 Analyte Cas No. Result 0D 1,1-Dichloroethene 75-35-4 ND cis-1,2-Dichloroethene 156-59-2 ND Tetrachloroethene 127-18-4 ND trans-1,2-Dichloroethene 156-60-5 ND Trichloroethene 79-01-6 ND	Lab Sample ID: 2402042992 Sample Date: 5/9/2024 Analyte Cas No. Result Limit OD 1,1-Dichloroethene 75-35-4 ND 1.0 cis-1,2-Dichloroethene 127-18-4 ND 1.0 Tetrachloroethene 156-60-5 ND 1.0 trans-1,2-Dichloroethene 156-60-5 ND 1.0 Trichloroethene 79-01-6 ND 1.0	Lab Sample ID: Sample Date:2402042992 5/9/2024AnalyteCas No.ResultLimitUnits0001,1-Dichloroethene75-35-4ND1.0ug/lcis-1,2-Dichloroethene156-59-2ND1.0ug/lTetrachloroethene127-18-4ND1.0ug/ltrans-1,2-Dichloroethene156-60-5ND1.0ug/lTrichloroethene79-01-6ND1.0ug/l	

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 204299-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2402042 5/9/2024	991			MW-95S 2402042 5/9/2024			
	Analyte	Cas No.	Result	Report Limit	Units	Valid Qualifier	Result	Report Limit	Units	Valid Qualifier
	Analyte	Cas NU.	nesull	LIIIIIL	Units	Qualifier	nesuli	LIIIIIL	Units	Qualifier
GC/MS VOC										
<u>OSW-8260</u>	<u>ID</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	UJ
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	UJ
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	UJ
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	UJ
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	UJ
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	UJ
<u>OSW-8260</u>	DSIM									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-204299-1 CADENA Verification Report: 2024-05-29

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 54251R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-204299-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Barant Sampla	Ana	ysis
Sample ID		Matrix	Collection Date	Parent Sample	VOC	VOC SIM
TRIP BLANK_14	240-204299-1	Water	05/09/2024		Х	
MW-95S_050924	240-204299-2	Water	05/09/2024		Х	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Items Reviewed		orted		mance otable	Not Required
		No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		X	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		X	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCI

All samples were analyzed within the specified holding time criteria with exceptions noted below,

Sample Locations	Holding Time	Criteria
MW-95S_050924	15 days from collection to analysis	14 days from collection to analysis

Sample results associated with sample locations analyzed by analytical method SW-846 8260 were qualified, as specified in the table below. All other holding times were met.

Criteria	Qualificat	tion
Griteria	Detected Analytes	Non-detect Analytes
Analysis completed less than two times holding time	J	UJ
Analysis completed greater than two times holding time	J	R

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial / Continuing	Compounds	Criteria
TRIP BLANK_14	Continuing Calibration Verification %D	Vinyl chloride	+20.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification		
		Non-detect	R		
	RRF <0.05	Detect	J		
Initial and Continuing	RRF <0.01 ¹	Non-detect	R		
Calibration	RRF <0.01	Detect	J		
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No. Action		
	RRF >0.03 01 RRF >0.01	Detect	No Action		
	%RSD > 20% or a correlation coefficient <0.99		UJ		
Initial Calibration	%RSD > 20% of a correlation coefficient <0.99	Detect	J		
	%RSD > 90%	Non-detect	R		
	%KSD > 90%	Detect	J		
	$P(\mathbf{D} \in 200\%)$ (increases in constitution)	Non-detect	UJ		
	%D >20% (increase in sensitivity)	Detect	J		
Continuing Colibration		Non-detect	UJ		
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J		
	0(D = 0.00) (increases (decreases in constituity)	Non-detect	R		
	%D > 90% (increase/decrease in sensitivity)	Detect	J		

Note:

¹RRF of 0.01 only applies to compounds which are typically poor responding compounds

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

Rep	orted	Perfo Acce	Not Required	
No	Yes	No	Yes	Required
C/MS)				
	Х	Х		
				1
	Х		Х	
	Х		Х	
	Х		Х	
	Х	Х		
	Х		Х	
	Х		Х	
Х				Х
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	Х		Х	
	No IC/MS)	No Yes No Yes C/MS) X X X	No Yes No No Yes No C/MS) X X X X <	No Yes No Yes No Yes No Yes C/MS) X X X Image: Second

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY:	Bindu Sree M B
SIGNATURE:	BASHMB
DATE:	June 10, 2024

PEER REVIEW: Andrew Korycinski

DATE: June 12, 2024

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

Cash.

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regular	ory program:		- DW	4	E N	PDES	ſ	RCRA	1	Other										
ompany Name: Arcadis												1						TestAmerica L	aboratories	Inc.	
ddress: 28550 Cabot Drive, Suite 500	Client Project	Manager: Kris	Hinskey			Site C	ontact: (Christi	a Weaver			Lat	Conta	et: Mil	ke DelA	Ionico	COC No:	141	20		
	Telephone: 248	e: 248-994-2240 Telephone: 248-994-2240						Tel	phone	: 330-4	97-939	6		4	_						
'ity/State/Zip: Novi. MI. 48377	Email: kristoff	er.hinskey(a ar	adis.com	1		A	alysis I	WRATO	und Time						Ar	alys	1 of 1 COCS For lab use only				
hone: 248-994-2240																·					
roject Name: Ford LTP	Sampler Name		Inna			TAT	different tie	on below		-11								Walk-in client		100	
		aryam t	iana	11	_	10	day	✓ 2 w									_	Lab sampling			
roject Number: 30206169.0401.03	Method of Ship	hipment/Carrier:							(N)	b =G		00			0	SIX					
O # US3410018772	Shipping/Track	ling No:						600	826			8260	660D	Job SDG No:	-						
······································				Matrix		(ontainen	S. Pres	ervatives	- Ta	10	2601 E 82		Trans-1,2-DCE 8260D PCE 8260D		ride	8 al		ing the lite		
Sample Identification	Sample Date	Sample Time	Air Aqueous	Sediment Solid	Other:	H2SO4	HC	NaOH ZaAci	Unpres Other:	Filtered Sample (Y/N)	Composite=C / Grab=G	1,1-DCE 8260D cis-1,2-DCE 8260D	Trans-1,2 PCE 8260		CE 8260	PCE 8260D TCE 8260D	Vinyt Chloride 8260D	Inyl Chlo	1.4-Dioxane 8260D SIM		Sample Specific Notes / Special Instructions:
TRIP BLANK_ 14			1	<i>a</i> , <i>b</i> .			1			N		x x			×	×		1 Trip Bla	nk		
	- 10 10 ::					╉╾┼╴			+	-								3 VOAs for			
MW-958_050924	5/9/24	0920	i i				6			N	G	XX	X	$ \times$	$\left x \right $	$ \mathcal{X} $	\times	3 VOAs for	8260D SI	м	
					<u> </u>		+ +						-								
							++	-+-						+				_			
												1111					AN AN AND A COMPANY AND AND AND AND				
				+		╉╌┼╴	++	-			_										
								1				240	2042	299 C	hain d	of CL	stody				
						\vdash							1.				1			_	
									+ +			-		1							
Possible Hazard Identification	rritant 🗆 Poise	n B	Jaknow	'n		San		n to Chi	nt 🗸	e assess Dispos				ined lo Archive		anlr	Months				
pecial Instructions/QC Requirements & Comments:	2131 Bos	ran Pos	+																		
ubmit all results through Cadena at jtomalia@caden	aco.com. Cadena #	203728	21																		
evel IV Reporting requested.																					
elinquished by:	Company: Arcadi	(Dat	19/20	i	1000		Receive	l by:	1 ci		0			Ave	iny: f	•	Date Time:	11-111	-	
1 Million Center		1	5	14/2	1	104		Nov		k ft	rag	K_					Ч	5/7/69.	1649	\geq	
Relinquished by:	Company:	dis	Dat	e Time: S\[C	171	1 11	old	Receive	a by:	IM	N	14	\sim		Comp:	iny:	FFXA	Stink	24		
Relinquished by:	Company:	7	Dat	TITIC: .	1	() (Receive	d in Lubera	when.	10		-		Comp		NN NN	Date Time: 1	0		
	- L	-LXA	12	SIL	mal 1				1 1 1	ul/M V		OYE	D		1 7		INIX	Scil-	IUVI	50	

P2N08, Trestemence Laboratories, Inc. All n the render Laboratories, Mich.

Client Sample ID: TRIP BLANK_14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/18/24 13:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/18/24 13:14	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 13:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/18/24 13:14	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/18/24 13:14	1
Vinyl chloride	1.0	ъUJ	1.0	0.45	ug/L			05/18/24 13:14	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116	62 - 137		05/18/24 13:14	1
4-Bromofluorobenzene (Surr)	97	56 - 136		05/18/24 13:14	1
Toluene-d8 (Surr)	94	78 - 122		05/18/24 13:14	1
Dibromofluoromethane (Surr)	107	73 - 120		05/18/24 13:14	1

Client Sample ID: MW-95S_050924

Date Collected: 05/09/24 09:20

Date Received: 05/11/24 08:00

Method: SW846 8260D SIM - Volat	ethod: SW846 8260D SIM - Volatile Organic Compounds (GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/15/24 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		68 - 127			-		05/15/24 13:14	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	<mark>рн ПТ</mark>	1.0	0.49	ug/L			05/24/24 16:54	1
cis-1,2-Dichloroethene	1.0	≬н ∣	1.0	0.46	ug/L			05/24/24 16:54	1
Tetrachloroethene	1.0	ЧН	1.0	0.44	ug/L			05/24/24 16:54	1
trans-1,2-Dichloroethene	1.0	UH	1.0	0.51	ug/L			05/24/24 16:54	1
Trichloroethene	1.0	UН	1.0	0.44	ug/L			05/24/24 16:54	1
Vinyl chloride	1.0	UH 🗸	1.0	0.45	ug/L			05/24/24 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		62 - 137			-		05/24/24 16:54	1
4-Bromofluorobenzene (Surr)	94		56 - 136					05/24/24 16:54	1
Toluene-d8 (Surr)	97		78 - 122					05/24/24 16:54	1
Dibromofluoromethane (Surr)	110		73 - 120					05/24/24 16:54	1

Lab Sample ID: 240-204299-1 Matrix: Water

Lab Sample ID: 240-204299-2

Matrix: Water