PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 5/24/2024 7:45:03 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-204408-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 5/24/2024 7:45:03 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-204408-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

4

5

9

1 U

12

13

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

5/24/2024

Case Narrative

Client: Arcadis U.S., Inc. Project: Ford LTP

Job ID: 240-204408-1 Eurofins Cleveland

Job Narrative 240-204408-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/14/2024 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.1°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Job ID: 240-204408-1

Page 5 of 19 5/24/2024

Method Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204408-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

3

4

5

8

9

11

12

Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204408-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-204408-1	TRIP BLANK_31	Water	05/10/24 00:00	05/14/24 10:00
240-204408-2	MW-130S_051024	Water	05/10/24 11:38	05/14/24 10:00

.1

9

A

-

6

8

9

4 4

12

13

Detection Summary

Client: Arcadis U.S., Inc.

Job ID: 240-204408-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_31 Lab Sample ID: 240-204408-1

No Detections.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	1.5	1.0	0.45 ug/L	1	8260D	Total/NA

4

J

7

9

10

11

13

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_31

Date Received: 05/14/24 10:00

Lab Sample ID: 240-204408-1 Date Collected: 05/10/24 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/22/24 18:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/22/24 18:41	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 18:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/22/24 18:41	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 18:41	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/22/24 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137			_		05/22/24 18:41	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136					05/22/24 18:41	1
Toluene-d8 (Surr)	94		78 - 122					05/22/24 18:41	1
Dibromofluoromethane (Surr)	103		73 - 120					05/22/24 18:41	

Eurofins Cleveland

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Client Sample ID: MW-130S_051024

Lab Sample ID: 240-204408-2 Date Collected: 05/10/24 11:38

Matrix: Water

Date Received: 05/14/24 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/20/24 15:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	99		68 - 127			-		05/20/24 15:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/22/24 19:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/22/24 19:06	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 19:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/22/24 19:06	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 19:06	1
Vinyl chloride	1.5		1.0	0.45	ug/L			05/22/24 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)			62 137			_		05/22/24 19:06	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		62 - 137	_		05/22/24 19:06	1
4-Bromofluorobenzene (Surr)	90		56 - 136			05/22/24 19:06	1
Toluene-d8 (Surr)	94		78 - 122			05/22/24 19:06	1
Dibromofluoromethane (Surr)	106		73 - 120			05/22/24 19:06	1

Surrogate Summary

Client: Arcadis U.S., Inc. Job ID: 240-204408-1 Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_				Percent Sur	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-204408-1	TRIP BLANK_31	109	94	94	103
240-204408-2	MW-130S_051024	111	90	94	106
240-204410-D-2 MSD	Matrix Spike Duplicate	101	98	98	98
240-204410-E-2 MS	Matrix Spike	103	100	97	100
LCS 240-613973/4	Lab Control Sample	99	101	100	97
MB 240-613973/7	Method Blank	107	95	95	103
Currents Legend					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-204404-D-4 MS	Matrix Spike	100	
240-204404-D-4 MSD	Matrix Spike Duplicate	95	
240-204408-2	MW-130S_051024	99	
LCS 240-613686/4	Lab Control Sample	101	
MB 240-613686/6	Method Blank	99	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-613973/7

Matrix: Water

Analysis Batch: 613973

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/22/24 15:20	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/22/24 15:20	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 15:20	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/22/24 15:20	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 15:20	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/22/24 15:20	1

MB MB

Surrogate	%Recovery	Qualifier Lim	its	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	62 -	137		05/22/24 15:20	1
4-Bromofluorobenzene (Surr)	95	56 -	136		05/22/24 15:20	1
Toluene-d8 (Surr)	95	78 -	122		05/22/24 15:20	1
Dibromofluoromethane (Surr)	103	73 -	120		05/22/24 15:20	1

Lab Sample ID: LCS 240-613973/4

Matrix: Water

Analysis Batch: 613973

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	24.4	-	ug/L		98	63 - 134	
cis-1,2-Dichloroethene	25.0	23.4		ug/L		94	77 - 123	
Tetrachloroethene	25.0	26.1		ug/L		104	76 - 123	
trans-1,2-Dichloroethene	25.0	22.3		ug/L		89	75 - 124	
Trichloroethene	25.0	24.1		ug/L		96	70 - 122	
Vinyl chloride	12.5	10.2		ug/L		82	60 - 144	
Trichloroethene	25.0	24.1		ug/L		96	70 - 122	

LCS LCS

Surrogate	%Recovery C	ualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		62 - 137
4-Bromofluorobenzene (Surr)	101		56 ₋ 136
Toluene-d8 (Surr)	100		78 - 122
Dibromofluoromethane (Surr)	97		73 - 120

Lab Sample ID: 240-204410-D-2 MSD

Matrix: Water

Analysis Batch: 613973

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.0	U	25.0	24.7		ug/L		99	56 - 135	6	26
1.0	U	25.0	24.3		ug/L		97	66 - 128	3	14
1.0	U	25.0	23.3		ug/L		93	62 - 131	5	20
1.0	U	25.0	23.1		ug/L		92	56 - 136	5	15
1.0	U	25.0	23.6		ug/L		95	61 - 124	5	15
1.0	U	12.5	10.1		ug/L		81	43 - 157	2	24
	1.0 1.0 1.0 1.0 1.0	Sample Sample Result Qualifier 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	Result Qualifier Added 1.0 U 25.0 1.0 U 25.0 1.0 U 25.0 1.0 U 25.0 1.0 U 25.0	Result Qualifier Added Result 1.0 U 25.0 24.7 1.0 U 25.0 24.3 1.0 U 25.0 23.3 1.0 U 25.0 23.1 1.0 U 25.0 23.6	Result Qualifier Added Result Qualifier 1.0 U 25.0 24.7 1.0 U 25.0 24.3 1.0 U 25.0 23.3 1.0 U 25.0 23.1 1.0 U 25.0 23.6	Result Qualifier Added Result Qualifier Unit 1.0 U 25.0 24.7 ug/L 1.0 U 25.0 24.3 ug/L 1.0 U 25.0 23.3 ug/L 1.0 U 25.0 23.1 ug/L 1.0 U 25.0 23.6 ug/L	Result Qualifier Added Result Qualifier Unit D 1.0 U 25.0 24.7 ug/L ug/L 1.0 U 25.0 24.3 ug/L 1.0 U 25.0 23.3 ug/L 1.0 U 25.0 23.1 ug/L 1.0 U 25.0 23.6 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1.0 U 25.0 24.7 ug/L 99 1.0 U 25.0 24.3 ug/L 97 1.0 U 25.0 23.3 ug/L 93 1.0 U 25.0 23.1 ug/L 92 1.0 U 25.0 23.6 ug/L 95	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.0 U 25.0 24.7 ug/L 99 56 - 135 1.0 U 25.0 24.3 ug/L 97 66 - 128 1.0 U 25.0 23.3 ug/L 93 62 - 131 1.0 U 25.0 23.1 ug/L 92 56 - 136 1.0 U 25.0 23.6 ug/L 95 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1.0 U 25.0 24.7 ug/L 99 56 - 135 6 1.0 U 25.0 24.3 ug/L 97 66 - 128 3 1.0 U 25.0 23.3 ug/L 93 62 - 131 5 1.0 U 25.0 23.1 ug/L 92 56 - 136 5 1.0 U 25.0 23.6 ug/L 95 61 - 124 5

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		62 - 137
4-Bromofluorobenzene (Surr)	98		56 - 136
Toluene-d8 (Surr)	98		78 ₋ 122

Eurofins Cleveland

5/24/2024

Page 12 of 19

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 613973

Lab Sample ID: 240-204410-D-2 MSD

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

MSD MSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 98 73 - 120

Lab Sample ID: 240-204410-E-2 MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 613973

Prep Type: Total/NA

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene 1.0 U 25.0 23.3 ug/L 93 56 - 135 cis-1,2-Dichloroethene 1.0 U 25.0 23 6 94 66 - 128 ug/L Tetrachloroethene 1.0 U 25.0 22.2 ug/L 89 62 - 131 trans-1.2-Dichloroethene 25.0 21.9 ug/L 1.0 U 88 56 - 136 Trichloroethene 1.0 U 25.0 22 4 ug/L 90 61 - 124 Vinyl chloride 1.0 U 12.5 10.3 ug/L 43 - 157

MS MS

MR MR

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		62 - 137
4-Bromofluorobenzene (Surr)	100		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	100		73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-613686/6

Matrix: Water

Analysis Batch: 613686

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 05/20/24 14:13 MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 68 - 127 05/20/24 14:13

Lab Sample ID: LCS 240-613686/4

Matrix: Water Prep Type: Total/NA Analysis Batch: 613686 Spike LCS LCS

Analyte babbA Result Qualifier Unit %Rec Limits 1,4-Dioxane 10.0 9.53 ug/L 95 75 - 121

LCS LCS

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 68 - 127 101

Lab Sample ID: 240-204404-D-4 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 613686

7 manyone Batom Crocce									
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	2.0	U	10.0	8.89		ua/L		89	20 - 180

Eurofins Cleveland

5/24/2024

QC Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		68 - 127

_		
Lab Sample	ID: 240-20440	4-D-4 MSD

Matrix: Water

Analysis Batch: 613686

1,2-Dichloroethane-d4 (Surr)

•	Sample	Sample	Spike	MSD	MSD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D
1,4-Dioxane	2.0	U	10.0	9.93		ug/L	
	MSD	MSD					
Surrogate	%Recovery	Qualifier	Limits				

Client Sample ID: Matrix Spike Duplicate

99

Prep Type: Total/NA

RPD Limits %Rec

RPD Limit 20 20 - 180 11

QC Association Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204408-1

GC/MS VOA

Analysis Batch: 613686

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-204408-2	MW-130S_051024	Total/NA	Water	8260D SIM	
MB 240-613686/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-613686/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-204404-D-4 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-204404-D-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 613973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-204408-1	TRIP BLANK_31	Total/NA	Water	8260D	
240-204408-2	MW-130S_051024	Total/NA	Water	8260D	
MB 240-613973/7	Method Blank	Total/NA	Water	8260D	
LCS 240-613973/4	Lab Control Sample	Total/NA	Water	8260D	
240-204410-D-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	
240-204410-E-2 MS	Matrix Spike	Total/NA	Water	8260D	

3

4

7

8

3

13

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_31

Lab Sample ID: 240-204408-1 Date Collected: 05/10/24 00:00

Matrix: Water

Date Received: 05/14/24 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			613973	LEE	EET CLE	05/22/24 18:41

Client Sample ID: MW-130S_051024 Lab Sample ID: 240-204408-2

Date Collected: 05/10/24 11:38 Matrix: Water

Date Received: 05/14/24 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	613973	LEE	EET CLE	05/22/24 19:06
Total/NA	Analysis	8260D SIM		1	613686	MDH	EET CLE	05/20/24 15:00

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204408-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-28-25	
Georgia	State	4062	02-27-25	
Illinois	NELAP	200004	07-31-24	
lowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-27-25	
Kentucky (WW)	State	KY98016	12-30-24	
Minnesota	NELAP	039-999-348	12-31-24	
New Jersey	NELAP	OH001	06-30-24	
New York	NELAP	10975	04-02-25	
Ohio VAP	State	ORELAP 4062	02-27-25	
Oregon	NELAP	4062	02-27-25	
Pennsylvania	NELAP	68-00340	08-31-24	
Texas	NELAP	T104704517-22-19	08-31-24	
USDA	US Federal Programs	P330-18-00281	01-05-27	
Virginia	NELAP	460175	09-14-24	
West Virginia DEP	State	210	12-31-24	

3

4

5

9

10

11

Chain of Custody Record

<u>TestAmerica</u>

Client Contact	Regulat	ory program:		٢	DW	-	NPD	DES		RC	RA	()ther								
mpany Name: Arcadis						200	_							I.							TestAmerica Laboratories, I
dress: 28550 Cabot Drive, Suite 500	Client Project N	lanager: Kris	Hinske	:y		Site					La	b Cont	act: M	ike De	Monie	20		COC No:			
y/State/Zip: Novi, MI, 48377	Telephone: 248-	-994-2240				Tele	Telephone: 248-994-2240				Te	lephon	e: 330-	497-93	96			1 of 1 COCs			
	Email: kristoffe	r.hinskey@are	eadis.c	om			Anal	ysis T	urnaro	ound	ime		1				A	naly	ses		 For lab use only
one: 248-994-2240	Sampler Name:			TAT idai			E icaio	You out the	on below	w	1								Walk-in client		
ject Name: Ford LTP		ecca (Cos	sti	gan			TAT if different from below 3 weeks 10 day 2 weeks											Lab sampling		
ject Number: 30206169.0401.03	Method of Ship				,					week days		2	ပ္		و	8			SIM		
# US3410018772	Shipping/Track	ing No:							10	-		Filtered Sample (Y / N)	OD OD	1,1-DCE 8260D cis-1,2-DCE 8260D	E 8260D			e 8260I	1,4-Dioxane 8260D SIM		Job/SDG No:
					atrix				& Pre			d Sam	Composite=C / Grab=G	1,1-DCE 8260D	cis-1,2-DCE 82 Trans-1,2-DCE	PCE 8260D	Z60D	Vinyl Chloride 8260D	oxane		Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Alr	Aqueous	Solid Other:	112504	HNO3	DH.	NaOH	NaOH	Other:	Filter	Comp	1.1-DC	Trans	PCE 8	TCE 8260D	Vinyl (1,4-Di		Special Instructions:
TRIP BLANK_31				1				1				N	G :	x >	⟨ x	X	X	X			1 Trip Blank
MW-130S-051024	5/10/24	1138		6		T		6				N	6	X }	C X	(X	X	X	×		3 VOAs for 8260D 3 VOAs for 8260D SIM
						\top						\downarrow				11)					
			Н	_		+	-	11111				MIN					-				
			\vdash	-		+		-1111					W			M	-				
			Ш			\bot								MINN	I I I I I I I	1881		<u> </u>			
							1	240	204	4408	Chain	of Ci	ustoc	dy							
			П			1	1							- 1	T						
			Н			+			-			\vdash	_		-	-	-	-			
						1															
						1		\Box		+						1					
Possible Hazard Identification			<u> </u>			٠,		la Dier	Swal (A foo	may be a		d if en	umples	ara rat	ainud '	apour	han 1	oventh)		
	t Poiso	n B	Joko	iown			(Retur	n to Cl	lient	▼ [isposa	l By L	ناله طنت	Γ	Archi	e For		Mo	nths	
© Non-Hazard Chammable Sin Irritan ecial Instructions/QC Requirements & Comments:	00 Bea	COIO																			
bmit all results through Cadena at jtomalia@cadenaco. vel IV Reporting requested.	com. Cadena #E	203728																			
Inquished by: Malun listing	Company:	radis		Date/T	me: 0/24	15	り		Receive	ed by:	vi (no.	18	torn	01 0.		Corr	pany:	Arco	Wis	 Date/Time: 5/10/24 550
linquished by OMMer Languished by	Company:	idus		Date T	13/24	10	43		Receive	ed by:	9	F	Z		1-		Con	pany	14		Skiz lau 1930
linquished by:	Company	-		Date/T		00			Receiv	ed	Abdrigo	3 Apri	LO	AR			Con	pany:	300	2 .	Date Time: 1424

©2008, TestAmenca Laboratories, Inc. Altrights reserved. TestAmerica & Design ** are transmirate of TestAmerica caboratories, inc.

Page 18 of 19

3

_

6

8

10

11

13

14

5/24/2024

VOA Sample Preservation - Date/Time VOAs Frozen
Sample(s)
19 SAMPLE CONDITION were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. were received in a broken container Sample(s) were received with bubble >6 mm in diameter (Notify PM)
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by
Contacted PM Date byvıa Verbal Voice Maıl Other Concerning
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9 For each sample, does the COC specify preservatives (NN), # of containers (NN), and sample type of grab/comp(NN)? 10 Were correct bottle(s) used for the test(s) indicated? 11 Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? 13 Were all preserved sample(s) at the correct pH upon receipt? 14 Were VOAs on the COC? 15 Were air bubbles >6 mm in any VOA vials? 16 Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes No Yes No
ler(s)? If Yes Quantity Yes red & dated? the kits (LLHg/MeHg)? Yes used? res e appropriate place?
Eurofins Cooler # Clent Cooler Box Other Packing material used: Euroble Wrap Foam Plastic Bag None Other COOLANT Wet Ice Blue Ice Dry Ice Water None COOLANT Union Form Cooler temperature upon receipt IR GUN # (CF C) Observed Cooler Temp. C Corrected Cooler Temp. C
Opened on Opened on Other Client Drop Off Eurofins Courier Others. Drop-off Date/Time Storage Location
Eurofins - Cleveland Sample Receipt Form/Narrative Barberton Facility Cooler unpacked by:

Page 19 of 19

DATA VERIFICATION REPORT

May 24, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil

Project number: 30206169.401.03

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 204408-1 Sample date: 2024-05-10

Report received by CADENA: 2024-05-24

Initial Data Verification completed by CADENA: 2024-05-24

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description			
<	Less than the reported concentration.			
>	Greater than the reported concentration.			
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.			
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.			
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.			
Indicates an estimated value. This flag is used either when estimating a concentration tentatively identified compound or when the data indicates the presence of an analyte but the result is less than the sample Quantitation limit, but greater than zero. The flag in data validation to indicate a reported value should be considered estimated due to a quality assurance deficiencies.				
J-	The result is an estimated quantity, but the result may be biased low.			
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED			
JH	The sample result is considered estimated and is potentially biased high.			
JL	The sample result is considered estimated and is potentially biased low.			
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED			
NJ	Tentatively identified compound with approximated concentration.			
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)			
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.			
U	Indicates that the analyte / compound was analyzed for, but not detected.			
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.			
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.			

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 204408-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BLA 2402044 5/10/202	081			MW-130S_051024 2402044082 5/10/2024				
				Report		Valid		Report		Valid	
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	
GC/MS VOC											
OSW-8260D	1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		
•	s-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l ug/l		
Te	etrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		
tra	ans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		
Tr	ichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		
Vi	nyl chloride	75-01-4	ND	1.0	ug/l		1.5	1.0	ug/l		
OSW-8260DS	<u>sim</u>										
1,	4-Dioxane	123-91-1					ND	2.0	ug/l		

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-204408-1

CADENA Verification Report: 2024-05-24

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 54283R Review Level: Tier III Project: 30206169.401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-204408-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Analysis		
Sample 10	Labib	IVIALITA	Collection Date	Farent Sample	VOC	VOC SIM	
TRIP BLANK_31	240-204408-1	Water	05/10/2024		Х		
MW-130S_051024	240-204408-2	Water	05/10/2024		Х	X	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		X		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM		orted	Performance Acceptable		Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)					
Tier II Validation						
Holding times/Preservation		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Field Duplicate RPD	Х				Х	
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		X		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BASHIME

DATE: June 13, 2024

PEER REVIEW: Andrew Korycinski

DATE: June 17, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: DW T NPDES ☐ RCRA TestAmerica Laboratories, Inc. Company Name: Arcadis Site Contact: Christina Weaver Client Project Manager: Kris Hinskey Lab Contact: Mike DelMonico COC No: Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9396 COCs 1 of 1 City/State/Zip: Novi, MI, 48377 Analysis Turnaround Time Analyses For lab use only Email: kristoffer.hinskey@arcadis.com Phone: 248-994-2240 Walk-in client FAT if different from below Sampler Name: Project Name: Ford LTP Rebecca Costigan ✓ 2 weeks Lab sampling Project Number: 30206169.0401.03 □ I week 1,4-Dioxane 8260D SIM Frans-1,2-DCE 8260D ☐ 2 days /inyl Chloride 8260D f 1 day Job/SDG No: PO# US3410018772 Shipping/Tracking No: Matrix Containers & Preservatives Sediment Sample Specific Notes / HNO3 NaOH ZbAC NaOH Solid Special Instructions: Œ Sample Date | Sample Time Sample Identification NGXX $|\mathbf{x}|\mathbf{x}$ 1 Trip Blank 3 VOAs for 8260D MW-130S-051024 1138 XXXXX 5/10/24 6 3 VOAs for 8260D SIM Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Special Instructions/QC Requirements & Comments: 34(000) Inknown Disposal By Lab Poison B Submit all results through Cadena at jtomalia@ca evel IV Reporting requested. Novi Cold Storage Relinquished by: Arcadis Arcodis 5/10/24

©2008, TestAmence Laboratories, Inc., Altrights reserved. TestAmence & Design ^{or} are trademarks of TestAmence caboratories, inc.

Relinquished by:

Received A Aberica Aby: LOAR

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-204408-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_31

Lab Sample ID: 240-204408-1 Date Collected: 05/10/24 00:00 **Matrix: Water**

Date Received: 05/14/24 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/22/24 18:41	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/22/24 18:41	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 18:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/22/24 18:41	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 18:41	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/22/24 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137			_		05/22/24 18:41	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136					05/22/24 18:41	1
Toluene-d8 (Surr)	94		78 - 122					05/22/24 18:41	1
Dibromofluoromethane (Surr)	103		73 - 120					05/22/24 18:41	1

Client Sample ID: MW-130S_051024

Date Collected: 05/10/24 11:38

Date Received: 05/14/24 10:00

Method: SW846 8260D SIM - V	olatile Organic C	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/20/24 15:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 127			-		05/20/24 15:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/22/24 19:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/22/24 19:06	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 19:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/22/24 19:06	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/22/24 19:06	1
Vinyl chloride	1.5		1.0	0.45	ug/L			05/22/24 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.0 D: 11 (1 14.00)						-			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	111		62 - 137		05/22/24 19:06	1	
4-Bromofluorobenzene (Surr)	90		56 - 136		05/22/24 19:06	1	
Toluene-d8 (Surr)	94		78 - 122		05/22/24 19:06	1	
Dibromofluoromethane (Surr)	106		73 - 120		05/22/24 19:06	1	

Lab Sample ID: 240-204408-2

Matrix: Water