14

ANALYTICAL REPORT

PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 5/31/2024 7:42:31 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-204999-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 5/31/2024 7:42:31 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-204999-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Chain of Custody	20

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCI MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Page 4 of 22

Eurofins Cleveland

5/31/2024

Case Narrative

Client: Arcadis U.S., Inc. Project: Ford LTP

Job ID: 240-204999-1 Eurofins Cleveland

Job Narrative 240-204999-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/22/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.5°C and 3.7°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 22 5/31/2024

2

Job ID: 240-204999-1

9

4

5

8

9

12

13

14

Method Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204999-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204999-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-204999-1	TRIP BLANK_94	Water	05/16/24 00:00	05/22/24 08:00
240-204999-2	MW-215S_051624	Water	05/16/24 11:10	05/22/24 08:00
240-204999-3	MW-223S_051624	Water	05/16/24 12:25	05/22/24 08:00

3

4

J

7

10

11

13

14

Detection Summary

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_94

No Detections.

Client Sample ID: MW-215S_051624

No Detections.

Client Sample ID: MW-223S_051624

Lab Sample ID: 240-204999-3

0

Job ID: 240-204999-1

7

9

10

12

13

Client: Arcadis U.S., Inc.

No Detections.

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_94

Lab Sample ID: 240-204999-1 Date Collected: 05/16/24 00:00 **Matrix: Water**

Date Received: 05/22/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/28/24 20:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/28/24 20:56	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 20:56	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/28/24 20:56	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 20:56	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/28/24 20:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			62 - 137			-		05/28/24 20:56	1
4-Bromofluorobenzene (Surr)	88		56 ₋ 136					05/28/24 20:56	1
Toluene-d8 (Surr)	95		78 - 122					05/28/24 20:56	1
Dibromofluoromethane (Surr)	116		73 - 120					05/28/24 20:56	1

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: MW-215S_051624

Date Collected: 05/16/24 11:10 Date Received: 05/22/24 08:00

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 240-204999-2

05/28/24 21:21

05/28/24 21:21

05/28/24 21:21

05/28/24 21:21

Matrix: Water

Method: SW846 8260D SIM - \	_					_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/29/24 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		68 - 127			-		05/29/24 16:25	1
- Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/28/24 21:21	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/28/24 21:21	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 21:21	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/28/24 21:21	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 21:21	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/28/24 21:21	1

62 - 137

56 - 136

78 - 122

73 - 120

118

83

94

115

_

4

O

8

9

11

12

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: MW-223S_051624

Lab Sample ID: 240-204999-3 Date Collected: 05/16/24 12:25

Matrix: Water

Method: SW846 8260D SIM - \	/olatile Organic C	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/29/24 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		68 - 127			-		05/29/24 16:49	
- Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/29/24 17:18	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/29/24 17:18	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 17:18	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/29/24 17:18	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 17:18	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/29/24 17:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.0 Districtions (the constitution)						_		05/00/04 47 40	

Surrogate	%Recovery Qualifie	r Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	62 - 137	05/29/24 17:18	1
4-Bromofluorobenzene (Surr)	94	56 ₋ 136	05/29/24 17:18	1
Toluene-d8 (Surr)	93	78 - 122	05/29/24 17:18	1
Dibromofluoromethane (Surr)	109	73 - 120	05/29/24 17:18	1

Surrogate Summary

Client: Arcadis U.S., Inc. Job ID: 240-204999-1 Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Recov
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-204762-F-4 MS	Matrix Spike	96	98	94	96
240-204762-F-4 MSD	Matrix Spike Duplicate	98	101	95	103
240-204929-B-2 MSD	Matrix Spike Duplicate	105	99	96	102
240-204929-C-2 MS	Matrix Spike	104	94	99	103
240-204999-1	TRIP BLANK_94	117	88	95	116
240-204999-2	MW-215S_051624	118	83	94	115
240-204999-3	MW-223S_051624	111	94	93	109
LCS 240-614540/6	Lab Control Sample	104	96	101	101
LCS 240-614711/5	Lab Control Sample	97	102	100	100
MB 240-614540/10	Method Blank	113	85	95	108
MB 240-614711/8	Method Blank	107	94	94	104

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-204999-2	MW-215S_051624	86	
240-204999-3	MW-223S_051624	91	
240-205008-A-2 MS	Matrix Spike	89	
240-205008-A-2 MSD	Matrix Spike Duplicate	93	
LCS 240-614704/4	Lab Control Sample	87	
MB 240-614704/6	Method Blank	85	
Surrogate Legend			

Eurofins Cleveland

Page 12 of 22

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-614540/10

Matrix: Water

Project/Site: Ford LTP

Analysis Batch: 614540

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/28/24 13:44	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/28/24 13:44	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 13:44	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/28/24 13:44	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 13:44	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/28/24 13:44	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 05/28/24 13:44 113 4-Bromofluorobenzene (Surr) 85 56 - 136 05/28/24 13:44 05/28/24 13:44 Toluene-d8 (Surr) 95 78 - 122 Dibromofluoromethane (Surr) 108 73 - 120 05/28/24 13:44

Lab Sample ID: LCS 240-614540/6

Matrix: Water

Analysis Batch: 614540

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit [0 %Rec	Limits	
1,1-Dichloroethene	20.0	17.5		ug/L	87	63 - 134	
cis-1,2-Dichloroethene	20.0	18.4		ug/L	92	77 - 123	
Tetrachloroethene	20.0	17.3		ug/L	87	76 - 123	
trans-1,2-Dichloroethene	20.0	18.4		ug/L	92	75 - 124	
Trichloroethene	20.0	18.0		ug/L	90	70 - 122	
Vinyl chloride	20.0	21.4		ug/L	107	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		62 - 137
4-Bromofluorobenzene (Surr)	96		56 ₋ 136
Toluene-d8 (Surr)	101		78 - 122
Dibromofluoromethane (Surr)	101		73 120

Lab Sample ID: 240-204929-B-2 MSD

Matrix: Water

Analysis Batch: 614540

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.0	U	20.0	17.5		ug/L		87	56 - 135	1	26
1.7		20.0	20.4		ug/L		94	66 - 128	1	14
37	F1	20.0	46.5	F1	ug/L		50	62 - 131	8	20
1.0	U	20.0	18.4		ug/L		92	56 - 136	1	15
2.9		20.0	20.6		ug/L		88	61 - 124	2	15
1.0	U	20.0	21.8		ug/L		109	43 - 157	7	24
	Result 1.0 1.7 37 1.0 2.9	37 F1 1.0 U	Result Qualifier Added 1.0 U 20.0 1.7 20.0 37 F1 20.0 1.0 U 20.0 2.9 20.0	Result Qualifier Added Result 1.0 U 20.0 17.5 1.7 20.0 20.4 37 F1 20.0 46.5 1.0 U 20.0 18.4 2.9 20.0 20.6	Result Qualifier Added Result Qualifier 1.0 U 20.0 17.5 1.7 20.0 20.4 37 F1 20.0 46.5 F1 1.0 U 20.0 18.4 2.9 20.0 20.6	Result Qualifier Added Result Qualifier Unit 1.0 U 20.0 17.5 ug/L 1.7 20.0 20.4 ug/L 37 F1 20.0 46.5 F1 ug/L 1.0 U 20.0 18.4 ug/L 2.9 20.0 20.6 ug/L	Result Qualifier Added Result Qualifier Unit D 1.0 U 20.0 17.5 ug/L 1.7 20.0 20.4 ug/L 37 F1 20.0 46.5 F1 ug/L 1.0 U 20.0 18.4 ug/L 2.9 20.0 20.6 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1.0 U 20.0 17.5 ug/L 87 1.7 20.0 20.4 ug/L 94 37 F1 20.0 46.5 F1 ug/L 50 1.0 U 20.0 18.4 ug/L 92 2.9 20.0 20.6 ug/L 88	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.0 U 20.0 17.5 ug/L 87 56 - 135 1.7 20.0 20.4 ug/L 94 66 - 128 37 F1 20.0 46.5 F1 ug/L 50 62 - 131 1.0 U 20.0 18.4 ug/L 92 56 - 136 2.9 20.0 20.6 ug/L 88 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1.0 U 20.0 17.5 ug/L 87 56 - 135 1 1.7 20.0 20.4 ug/L 94 66 - 128 1 37 F1 20.0 46.5 F1 ug/L 50 62 - 131 8 1.0 U 20.0 18.4 ug/L 92 56 - 136 1 2.9 20.0 20.6 ug/L 88 61 - 124 2

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		62 - 137
4-Bromofluorobenzene (Surr)	99		56 - 136
Toluene-d8 (Surr)	96		78 - 122

Eurofins Cleveland

Page 13 of 22

5/31/2024

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-204929-B-2 MSD **Matrix: Water**

Project/Site: Ford LTP

Analysis Batch: 614540

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

MSD MSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 102 73 - 120

Lab Sample ID: 240-204929-C-2 MS

Matrix: Water

Analysis Batch: 614540

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1,1-Dichloroethene 1.0 U 20.0 17.2 ug/L 86 56 - 135 cis-1,2-Dichloroethene 20.0 20.1 92 66 - 128 1.7 ug/L Tetrachloroethene 37 F1 20.0 50.3 ug/L 69 62 - 131 trans-1,2-Dichloroethene 1.0 U 20.0 18.3 ug/L 91 56 - 136 Trichloroethene 2.9 20.0 21.0 ug/L 91 61 - 124 Vinyl chloride 1.0 U 20.0 20.4 ug/L 102 43 - 157

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		62 - 137
4-Bromofluorobenzene (Surr)	94		56 - 136
Toluene-d8 (Surr)	99		78 - 122
Dibromofluoromethane (Surr)	103		73 - 120

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 614711

Matrix: Water

Lab Sample ID: MB 240-614711/8

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/29/24 13:05	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/29/24 13:05	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 13:05	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/29/24 13:05	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 13:05	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/29/24 13:05	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		62 - 137		05/29/24 13:05	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136		05/29/24 13:05	1
Toluene-d8 (Surr)	94		78 - 122		05/29/24 13:05	1
Dibromofluoromethane (Surr)	104		73 - 120		05/29/24 13:05	1

Lab Sample ID: LCS 240-614711/5

Matrix: Water

Analysis Batch: 614711

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	25.0	25.1		ug/L		100	63 - 134
cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	77 - 123
Tetrachloroethene	25.0	25.0		ug/L		100	76 - 123
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	75 - 124
Trichloroethene	25.0	24.2		ug/L		97	70 - 122

Eurofins Cleveland

Page 14 of 22

10

QC Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-614711/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 614711

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	12.5	11.7		ug/L		93	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	102		56 - 136
Toluene-d8 (Surr)	100		78 - 122
Dibromofluoromethane (Surr)	100		73 - 120

Lab Sample ID: 240-204762-F-4 MS

Matrix: Water

Analysis Batch: 614711

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	100	U	2500	2280		ug/L		91	56 - 135	
cis-1,2-Dichloroethene	94	J	2500	2550		ug/L		98	66 - 128	
Tetrachloroethene	100	U	2500	2300		ug/L		92	62 - 131	
trans-1,2-Dichloroethene	190		2500	2370		ug/L		87	56 - 136	
Trichloroethene	2800		2500	4720		ug/L		76	61 - 124	
Vinyl chloride	100	U	1250	1100		ug/L		88	43 - 157	

MS MS %Recovery Qualifier Limits Surrogate 62 - 137 1,2-Dichloroethane-d4 (Surr) 96 4-Bromofluorobenzene (Surr) 98 56 - 136 78 - 122 Toluene-d8 (Surr) 94 Dibromofluoromethane (Surr) 96 73 - 120

Lab Sample ID: 240-204762-F-4 MSD

Matrix: Water

Analysis Batch: 614711

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	100	U	2500	2310		ug/L		92	56 - 135	1	26
cis-1,2-Dichloroethene	94	J	2500	2560		ug/L		99	66 - 128	0	14
Tetrachloroethene	100	U	2500	2310		ug/L		92	62 - 131	0	20
trans-1,2-Dichloroethene	190		2500	2380		ug/L		87	56 - 136	0	15
Trichloroethene	2800		2500	4810		ug/L		79	61 - 124	2	15
Vinyl chloride	100	U	1250	1120		ug/L		90	43 - 157	2	24

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		62 - 137
4-Bromofluorobenzene (Surr)	101		56 - 136
Toluene-d8 (Surr)	95		78 - 122
Dibromofluoromethane (Surr)	103		73 - 120

10

10

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Job ID: 240-204999-1

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-614704/6 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 614704

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/29/24 11:20	1
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 85 68 - 127 05/29/24 11:20

Lab Sample ID: LCS 240-614704/4 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 614704

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 10.0 9.49 ug/L 95 75 - 121

LCS LCS Surrogate %Recovery Qualifier Limits 68 - 127 1,2-Dichloroethane-d4 (Surr) 87

Client Sample ID: Matrix Spike Lab Sample ID: 240-205008-A-2 MS

Matrix: Water Prep Type: Total/NA

Analysis Batch: 614704

Sample Sample Spike MS MS %Rec Qualifier Added Qualifier Analyte Result Result Unit %Rec Limits 1,4-Dioxane 2.0 U 10.0 9.81 20 - 180 ug/L

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 89 68 - 127

Lab Sample ID: 240-205008-A-2 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 614704

MSD MSD %Rec RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1,4-Dioxane 2.0 U 10.0 10.1 101 20 - 180 ug/L

MSD MSD %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 93 68 - 127

Eurofins Cleveland

QC Association Summary

Client: Arcadis U.S., Inc. Job ID: 240-204999-1 Project/Site: Ford LTP

GC/MS VOA

Analysis Batch: 614540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-204999-1	TRIP BLANK_94	Total/NA	Water	8260D	
240-204999-2	MW-215S_051624	Total/NA	Water	8260D	
MB 240-614540/10	Method Blank	Total/NA	Water	8260D	
LCS 240-614540/6	Lab Control Sample	Total/NA	Water	8260D	
240-204929-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	
240-204929-C-2 MS	Matrix Spike	Total/NA	Water	8260D	

Analysis Batch: 614704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-204999-2	MW-215S_051624	Total/NA	Water	8260D SIM	
240-204999-3	MW-223S_051624	Total/NA	Water	8260D SIM	
MB 240-614704/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-614704/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-205008-A-2 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-205008-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 614711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-204999-3	MW-223S_051624	Total/NA	Water	8260D	<u> </u>
MB 240-614711/8	Method Blank	Total/NA	Water	8260D	
LCS 240-614711/5	Lab Control Sample	Total/NA	Water	8260D	
240-204762-F-4 MS	Matrix Spike	Total/NA	Water	8260D	
240-204762-F-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Eurofins Cleveland

5/31/2024

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_94

Date Collected: 05/16/24 00:00 **Matrix: Water** Date Received: 05/22/24 08:00

Lab Sample ID: 240-204999-1

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 8260D EET CLE 05/28/24 20:56 Total/NA Analysis 614540 НМВ

Client Sample ID: MW-215S_051624 Lab Sample ID: 240-204999-2

Date Collected: 05/16/24 11:10 **Matrix: Water**

Date Received: 05/22/24 08:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab Total/NA 8260D HMB EET CLE 05/28/24 21:21 Analysis 614540 Total/NA Analysis 8260D SIM 614704 MDH **EET CLE** 05/29/24 16:25 1

Client Sample ID: MW-223S_051624 Lab Sample ID: 240-204999-3

Date Collected: 05/16/24 12:25 **Matrix: Water**

Date Received: 05/22/24 08:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** or Analyzed Lab 05/29/24 17:18 Total/NA 8260D SAM EET CLE Analysis 614711 8260D SIM 614704 MDH 05/29/24 16:49 Total/NA Analysis EET CLE 1

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-204999-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	02-28-25 02-27-25		
California	State	2927			
Georgia	State	4062			
Illinois	NELAP	200004	07-31-24		
lowa	State	421	06-01-25		
Kentucky (UST)	State	112225	02-27-25		
Kentucky (WW)	State	KY98016	12-30-24		
Minnesota	NELAP	039-999-348	12-31-24		
New Jersey	NELAP	OH001	06-30-24		
New York	NELAP	10975	04-02-25		
Ohio VAP	State	ORELAP 4062	02-27-25		
Oregon	NELAP	4062	02-27-25		
Pennsylvania	NELAP	68-00340	08-31-24		
Texas	NELAP	T104704517-22-19	08-31-24		
USDA	US Federal Programs	P330-18-00281	01-05-27		
Virginia	NELAP	460175	09-14-24		
West Virginia DEP	State	210	12-31-24		

Ţ

8

9

10

11

13

4

Chain of Custody Record

10/16	<u>TestAmerica</u>
	THE LEADER IN ENVIRONMENTAL TEST

16	StAmerica Labora	itory location:	Ungn	1011-	1044	o Citati	ווט ווט	ve, o	uite 2	2007	Bilgill	OIT, WII	40110	7 010	J-227-	2/03							į.		1116	CEADER IN ENVIRONMENTAL TESTING
Client Contact	Regulat	tory program:		Г	DW	,	Г	NPD	ES		┌ R	CRA	Г	Oth	er [
Company Name: Arcadis	Client Project	Manager: Kris	Ulmalea				le:	C		Chi-	4i 11	eaver			'	1 - 1 /		A. B40	Dal	Monic			_			TestAmerica Laboratories, Inc. COC No:
Address: 28550 Cabot Drive, Suite 500		•	THISKE	.y 																						LOC 140;
City/State/Zip: Novi, MI, 48377	Telephone: 248	-994-2240					Tele	phor	ie: 24	8-994	1-2240					Telep	bone:	330-4	97-939	96					-	1 of 1 COCs
Phone: 248-994-2240	Email: kristoff	er.hinskey@arc	adis.c	om				Analysis Turnaround Time							Analyses						For lab use only					
	Sampler Name	Sampler Name: Alama PHera					TAT if different from below 3 weeks 10 day 2 weeks															ŀ	Walk-in client			
Project Name: Ford LTP																						į,	Lab sampling			
Project Number: 30206169.0401.03	Method of Ship	Method of Shipment/Carrier:				1		-		l week 2 days		E	ပ္			۵				SIM						
PO # US3410018772	Shipping/Track	ding No:					1						Filtered Sample (Y / N)	Composite=C/Grab=G		8260D	8260D			Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM					Job/SDG No:
	-		-	M	latrix		- 1	Con	tainer	5 & P	reserva	tives	lamp]	C=C/	8260	SE 82	-DCE	Q	۾	oride	ne 8%					
				sin di		E .	3	13		=	_ ۽	ı.	red S	posit	1,1-DCE 8260D	cis-1,2-DCE	Trans-1,2-DCE	PCE 8260D	TCE 8260D	1 Ch	Dioxa					Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	ŧ	Aqueous	Solid	Other:	H2S04	HNO3	HCI	NaO.	NaOH	Other:	E E	ပ်	+	cis-1	Tran	PCE	TCE	Viny	1.4-					Special Instructions:
TRIP BLANK_94				1			Г		1				N	G	X	X	Х	X	Х	х						1 Trip Blank
MW-2155_051624	5/16/24	MA		6	_		\top		6		\top			G	1	X	X	×	X	χ	χ			\Box	\neg	3 VOAs for 8260D
3035 051604				7	_	-	╁			+	+	+	Τ.	_	T.	-	_		_				\vdash	\rightarrow		3 VOAs for 8260D SIM
MW-2235_051624	5/16/24	1225		6					6				N	67	X	X	X	X	X	X	. X				-	
	1																									
			\vdash	+	+	i	1		-	+	+	+-	-		-		_								1	
			\sqcup				\perp			\perp	\perp						1111111	# 118 11							_	
																						1111				
					\dagger		T			\dashv	\top	\top	240													
			\vdash	+	+	ļ	+			_		+	240	-20	4999	Cha							t	-	-	
		ĺ											-				101	Cust	ody		# 1#!! [[
										П			T						1	_	_	-	I			
			H	+	+-	<u> </u>	+		-	\dashv	+	+		-		-								-	-	
	.,						_																			
Possible Hazard Identification Non-Hazard Tammable Tin Irrit	ant Poisc	on B	Jnkn	own			s				(A fee Client		e assess Dispos				retai A			han 1 r) onths				
Special Instructions/QC Requirements & Comments:		1	\ \					_			$\overline{}$	$\overline{}$	5	,		,		10		0 -	•	-رىد	$\overline{}$			- l. 0 0
Submit all results through Cadena at jtomaila@cadenac Level IV Reporting requested.	o.com. Cadena #E	203728	X	A.	<u> </u>	AS			S 35	-C		<u></u>	PL	14	XO ta	tu,	n	2	d	1),,,,	<u>(S</u>	-(ح	3	5	BOBOTAPA
Relinquished by Oldun Palen	Company:	rlis	E	3/		24	14	_		Recei	Ved by	100	DC						Comp	any:	d	s]	3/17/24 1440
Reiniquisned by:		coli)	- 1	Sate/T	417	24	06	32:	5	Receiv	ved by	L	sk	2		_			Comp	101	4					Date/Time: 5/21/24 0825
Relinquished by:	Company:		I.	5/21	inc.	1	090	0	1	Recei	ved in		atory by		D C	V -			Comp	严	13	00	_			Date Time: 32-24 800

C2008, TestAmerica Laboratories, Inc. All rights reserved, TestAmerica & Design ** are trademarks of TestAmerica Laboratories, Inc.

Burofins = Cleveland Sample Receipt Form/Narrative
Chent HYCa. 1 Site Name Street Name Cooler unpacked by Cooler Received Cooler 171-34 Onesied on 5:31-24 TAMMY ROYER
xp UPS FAS (Waypoint) Client Drop C
ox Chent Cooler Foam Plast
COOLANT: Wet Lee Blue Ice Dry Ice Water Mone 1 Cooler temperature upon receipt 1 Corp. 1 Cor
he outside of the cooler(s)? If Yes Quantity <u>COO</u> , of the cooler(s) signed & dated? n the bottle(s) or bottle kits (LLHg/MeHg)? ntact and uncompromised?
Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Were the custody papers relinquished & signed in the appropriate place? Yes No
6 Was/were the person(s) who collected the samples clearly identified on the COC? 7 Did all bottles arrive in good condition (Unbroken)? 8 Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9 For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample type of grab/comp(Y/N)? 10 Were correct bottle(s) used for the test(s) indicated? 11 Were correct bottle(s) used for the test(s) indicated?
12. Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC?
16 Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # COVOR ed Yes No 17 Was a LL Hg or Me Hg trip blank present? Yes No Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 🖾 additional next page Samples processed by:
19 SAMPLE CONDITION Sample(s)
20 SAMPLE PRESERVATION
ŧ 1
VOA Sample Preservation Date Lime VOAs Frozen.

WI NC_100_111714 Cooler Receipt Form

		Τ

Wet Ice Blue Ice Dry Ice Water None		R GUN #:); ;	
TO TOTAL		1R GUN #:	EC Client Box Other	Е
Wellce Blue Ice Dry Ice		IR GUN #	EC Client Box Other	
Wel ice Blue ice Dry ice Water None		IR GUN #:	EC Client Box Other	
Wet Ice Blue Ice Dry Ice Woler None		IR GUN #:	EC Client Box Other	_
Wet Ice Stue Ice Dry Ice Water None		IR GUN #:	EC Client Box Other	
Blue Water		IR GUN #:	EC Client Box Other	
Blue ice Waler None		IR GUN #:	EC Client Box Olher	
Blux Water		IR GUN #:	EC Client Box Other	
Blue Waler		IR GUN #:	EC Client Box Other	•
Blue Ice Vater None		IR GUN #:	EC Client Box Olher	***
Blue Ice Waler None		IR GUN #:	EC Client Box Other	
Blue Ice Wafer None		IR GUN #:	EC Client Box Other	
Blue ice Valer None		IR GUN #:	EC Client Box Other	-
Blue Ice Valer None		IR GUN #;	EC Client Box Other	
Bive Ice Wafer None		IR GUN #:	EC Client Box Other	
Wel Ice Blue Ice Dry Ice Waler Nane		IR GUN #:	EC Client Box Other	
Blue Ice Water None		IR GUN #:	EC Client Box Other	
Blue Waler		IR GUN #:	EC Client Box Other	
Wet ice Bive ice Dry ice Water None		IR GUN #:	EC Client Box Other	F77.
Blue Ice Waler None		IR GUN #:	EC Client Box Other	
Wel Ice Blue Ice Dry Ice Water None		IR GUN #:	EC Client Box Other	
Wet ice Blue Ice Dry ice Water None		IR GUN #:	EC Client Box Olher	
Wet Ice Blue Ice Dry Ice Water None		IR GUN #:	EC Client Box Other	177
Wet Ice Slue Ice Dry Ice Water None		IR GUN #:	EC Client Box Other	m
Wet Ice Blue Ice Dry Ice Water None		IR GUN #:	EC Client Box Other	
Blue Ice Vafer None		IR GUN #:	EC Client Box Other	
Blue Ice Vater None		R GUN #:	EC Client Box Other	
Wet ice Blue ice Dry ice Water None		IR GUN #:	EC Client Box Other	
		IR GUN #:	C Client Box Other	D3
Bive ice Valer None		IR GUN #:	Client Box Olher	
Blue ice Vafer None		IR GUN #:	Cilent Box Olher	
Vater None	37 -	1R GUN #:	C) Client Box Other	(EC
S Wet Like Blue Ice Water None). (S	IR GUN #: - X	Client Box Other	
Coolant (Circle)	Observed, Co	IR Gun # (Circle)	Cooler Description	Q_{\perp}

DATA VERIFICATION REPORT

May 31, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil

Project number: 30206169.401.03

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 204999-1 Sample date: 2024-05-16

Report received by CADENA: 2024-05-31

Initial Data Verification completed by CADENA: 2024-05-31

Number of Samples:3 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following MINOR QC anomalies were identified during verification of the analytical report:

GCMS VOC QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

ple/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI $48108\ 517\text{-}819\text{-}0356$

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 204999-1

		Sample Name:	TRIP BL	ANK_94			MW-21	5S_0516	24		MW-223S_051624					
		Lab Sample ID:	240204	9991			240204	9992			240204	9993				
		Sample Date:	5/16/20	24			5/16/20	24			5/16/2024					
				Report		Valid		Report		Valid		Report		Valid		
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier		
GC/MS VOC																
OSW-826	<u>0D</u>															
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l			
OSW-826	<u>ODSIM</u>															
	1,4-Dioxane	123-91-1					ND	2.0	ug/l		ND	2.0	ug/l			

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-204999-1

CADENA Verification Report: 2024-05-31

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 54330R Review Level: Tier III Project: 30167538.402.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-204999-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Ana	lysis
Sample ID	Lab ID	IVIALITIX	Collection Date	Parent Sample	VOC	VOC SIM
TRIP BLANK_94	240-204999-1	Water	05/16/2024		Х	
MW-215S_051624	240-204999-2	Water	05/16/2024		X	Х
MW-223S_051624	240-204999-3	Water	05/16/2024		Х	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		X		Х	
6. Sample collection date		Х		X	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	Reported		rmance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation			'	'	
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	X				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		X		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE: BASHIME

DATE: June 26, 2024

PEER REVIEW: Andrew Korycinski

DATE: June 30, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

10	16	<u>TestAmerica</u>
ı	•	THE LEADER IN ENVIRONMENTAL TESTING

T	estAmerica Labora	tory location:	Brighton	- 10448 C	itation D	rive, Sui	te 200	/ Brighton,	MI 48116	810	0-229-2	763					<u> </u>		TH	E LEADER IN ENVIRONMENTAL TESTING
Client Contact	Regulat	ory program:	1	- DW		NPDE	S	┌ RCR	A [Oth	er 🗆									
Company Name: Arcadis	Client Project !	Manager: Kris	Hinskov		Isia	e Conta	et: Chri	istina Wea	ver		' 1	l ah (Contac	+ MIL	e Dell	/onic		+		TestAmerica Laboratories, Inc.
Address: 28550 Cabot Drive, Suite 500																				
City/State/Zip: Novi, MI, 48377	Telephone: 248	-994-2240			Te	lephone						Telep	bone:	330-49	97-939					1 of 1 COCs
Phone: 248-994-2240	Email: kristoff	er.hinskey@are	adis.com			Analys	is Turn	around Tu	me						Au	ıalys	es			For lab use only
	Sampler Name	٠.	.0		TA	T if differ														Walk-in client
Project Name: Ford LTP		Hand	a PHE	exa		10 day		3 weeks 2 weeks												Lab sampling
Project Number: 30206169.0401.03	Method of Ship	ment/Carrier:						l week 2 days	1 5	P			Q				₩.			
PO # US3410018772	Shipping/Track	ing No:						1 day	Olher: S	Composite=C/Grab=G		G09	8260D			Vinyl Chloride 8260D	8260D SIM			Job/SDG No:
			N	latrix		Conta	iners &	Preservative	5) P	1,1-DCE 8260D	E 82	Frans-1,2-DCE	Q		ride	ne 8%			
	l								1	e la	8	2-DC	-1,2-	8260	9260	용	1,4-Dioxane			Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air	Sediment Solid	H2504	HNO3	NAOH	ZaAd NaOH Unpres	Oliber:		1.	cis-1,2-DCE 8260D	Trans	PCE 8260D	TCE 8260D	Viny	1.4-0			Special Instructions:
TRIP BLANK_94			1			-	1		N	1 G	X	Х	Х	Х	Х	Х		\Box		1 Trip Blank
	5/1/100	1110	6	+	\dashv	11,			- 	1			\ \ \	×	X	Y	V	++		3 VOAs for 8260D
1110-0105 00160A	5/16/24	1110					9		1	10	>	X	\triangle	\triangle	싀	싀	4	+		3 VOAs for 8260D SIM
MW-2155_051624 MW-2235_051624	5/16/14	1225	6			(0		1	I G	X	X	X	X	X	X	. X			<u>+</u>
			\vdash	++			+			1	-							+-+		
												1/1//	Bii iree	/# ***]					
																	11/11/11/11/11			
				+-+		++	-		- //											
									24	0-20	4990									
											4999	hai	n of	Cust	ody	1118 (8)	11111111111			
				+++	-		+			+-			,			_		+		
			\Box		\perp	\perp											- 	4		
												į								
Possible Hazard Identification ✓ Non-Hazard Tammable tin Irri	tant	n B	Jnknown				Disposa cturn to	l (A fee m	ay be asse					ed lor		an 1 c	nonth) Months			
Special Instructions/QC Requirements & Comments:	T POISO	u B	Jiidiowii			I_ K	cturn to	Chen	Disp	OSAI D	y Lab		Λ,	remve	roi i		Montas			
Submit all results through Cadena at jtomalia@cadena	co.com. Cadena #E	203728	<u>) Aa</u>	THY	56	G	G (لحكا		211	10	نها	ut	n -	{	20	W CC	2	<	DOD MAD
Level IV Reporting requested.						2		000	PL	71	40	υt	37	20	<u>L</u>		عف	O	o	STATE PAR
Relinquished by allium Piller	Company:	rus Zus	3/	17	414	40	Reco		COK	S	itor	a	9l		Comp	iny:	ids			3/17/24 1440
Relinquished by:	Company:	coli)	Date/	ime:	1 09	325	Reco	cived by:	el	7					Comp	SC1	<u></u>			Date/Time: 5/3/24 (8AS
Relinquished by:	Company:			134	-		_	eived in La	boratory	by:					Сотр	<i>مريد</i> -را بولو	700			Date: 72-24 800
XXX	VVIA.		17/7	414	09	W			TAM	MY	RN	ΥF	D			بحرا	27PC			3 99 94 000

©2008, TestAmerica Laboratories, Inc. All rights reserved, TestAmerica & Design ¹⁶ are trademarks of TestAmerica Laboratories, Inc.

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_94

Lab Sample ID: 240-204999-1 Date Collected: 05/16/24 00:00

Matrix: Water Date Received: 05/22/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/28/24 20:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/28/24 20:56	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 20:56	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/28/24 20:56	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 20:56	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/28/24 20:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		62 - 137			_		05/28/24 20:56	1
4-Bromofluorobenzene (Surr)	88		56 ₋ 136					05/28/24 20:56	1
Toluene-d8 (Surr)	95		78 - 122					05/28/24 20:56	1
Dibromofluoromethane (Surr)	116		73 - 120					05/28/24 20:56	

Client Sample ID: MW-215S_051624 Lab Sample ID: 240-204999-2

Date Collected: 05/16/24 11:10 Date Received: 05/22/24 08:00

Method: SW846 8260D SIM - V	olatile Organic C	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/29/24 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	86		68 - 127			_		05/29/24 16:25	1

Method: SW846 8260D - Vola	atile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/28/24 21:21	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/28/24 21:21	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 21:21	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/28/24 21:21	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/28/24 21:21	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/28/24 21:21	1
Surrogato	%Pecovery	Qualifier	l imite				Propared	Analyzad	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	118		62 - 137		05/28/24 21:21	1
4-Bromofluorobenzene (Surr)	83		56 - 136		05/28/24 21:21	1
Toluene-d8 (Surr)	94		78 - 122		05/28/24 21:21	1
Dibromofluoromethane (Surr)	115		73 - 120		05/28/24 21:21	1

Client Sample ID: MW-223S_051624 Lab Sample ID: 240-204999-3

Date Collected: 05/16/24 12:25 Date Received: 05/22/24 08:00

Method: SW846 8260D SIM - Volat	ile Organic C	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/29/24 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		68 - 127			_		05/29/24 16:49	1

Matrix: Water

Matrix: Water

Client: Arcadis U.S., Inc. Job ID: 240-204999-1

Project/Site: Ford LTP

Client Sample ID: MW-223S_051624

Lab Sample ID: 240-204999-3 Date Collected: 05/16/24 12:25 **Matrix: Water**

Date Received: 05/22/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/29/24 17:18	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/29/24 17:18	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 17:18	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/29/24 17:18	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/29/24 17:18	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/29/24 17:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		62 - 137			-		05/29/24 17:18	1
4-Bromofluorobenzene (Surr)	94		56 ₋ 136					05/29/24 17:18	1
Toluene-d8 (Surr)	93		78 - 122					05/29/24 17:18	1
Dibromofluoromethane (Surr)	109		73 - 120					05/29/24 17:18	1