PREPARED FOR

Attn: Kristoffer Hinskey Arcadis U.S., Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 6/5/2024 7:38:35 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-205247-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 6/5/2024 7:38:35 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

Page 2 of 20

Λ

5

6

1

9

10

4.0

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-205247-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

-5

4

8

9

11

12

Definitions/Glossary

Client: Arcadis U.S., Inc.

Job ID: 240-205247-1

Project/Site: Ford LTP

Qualifiers

GC/MS V	OA
---------	----

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
n	Listed under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery			
CFL	Contains Free Liquid			
CFU	Colony Forming Unit			
CNF	Contains No Free Liquid			
DER	Duplicate Error Ratio (normalized absolute difference)			
Dil Fac	Dilution Factor			
DL	Detection Limit (DoD/DOE)			
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample			

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

6/5/2024

Page 4 of 20

Case Narrative

Client: Arcadis U.S., Inc. Project: Ford LTP

Job ID: 240-205247-1 Eurofins Cleveland

Job Narrative 240-205247-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/25/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.3°C.

GC/MS VOA

Method 8260D_SIM: The method blank for analytical batch 240-615139 contained 1,4-Dioxane above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or reanalysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 20 6/5/2024

2

Job ID: 240-205247-1

3

4

5

0

0

a

10

12

13

Method Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-205247-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

3

4

5

7

Ö

40

11

13

Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-205247-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-205247-1	TRIP BLANK_70	Water	05/23/24 00:00	05/25/24 08:00
240-205247-2	MW-01_052324	Water	05/23/24 13:00	05/25/24 08:00

Detection Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-205247-1

Client Sample ID: TRIP BLANK_70 Lab Sample ID: 240-205247-1

No Detections.

Client Sample ID: MW-01_052324 Lab Sample ID: 240-205247-2

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
1,4-Dioxane	0.92	J B	2.0	0.86 ug/L	1	8260D SIM	Total/NA

1

4

5

7

9

10

12

13

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-205247-1

Project/Site: Ford LTP

Date Received: 05/25/24 08:00

Client Sample ID: TRIP BLANK_70

Lab Sample ID: 240-205247-1 Date Collected: 05/23/24 00:00

Matrix: Water

Analyzed

06/03/24 18:59

06/03/24 18:59

06/03/24 18:59

06/03/24 18:59

06/03/24 18:59

06/03/24 18:59

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit Prepared 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L Tetrachloroethene 1.0 U 1.0 0.44 ug/L trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L Trichloroethene 1.0 U 1.0 0.44 ug/L Vinyl chloride 1.0 U 1.0 0.45 ug/L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	62 - 137		06/03/24 18:59	1
4-Bromofluorobenzene (Surr)	86	56 ₋ 136		06/03/24 18:59	1
Toluene-d8 (Surr)	89	78 - 122		06/03/24 18:59	1
Dibromofluoromethane (Surr)	104	73 - 120		06/03/24 18:59	1

Dil Fac

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 240-205247-1

Project/Site: Ford LTP

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: MW-01_052324

Date Collected: 05/23/24 13:00 Date Received: 05/25/24 08:00 Lab Sample ID: 240-205247-2

06/03/24 20:55

06/03/24 20:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.92	J B	2.0	0.86	ug/L			06/03/24 01:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		68 - 127			-		06/03/24 01:02	1
Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			06/03/24 20:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			06/03/24 20:55	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			06/03/24 20:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			06/03/24 20:55	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			06/03/24 20:55	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			06/03/24 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			62 - 137			-		06/03/24 20:55	1
4-Bromofluorobenzene (Surr)	87		56 ₋ 136					06/03/24 20:55	1

78 - 122

73 - 120

96

Surrogate Summary

Client: Arcadis U.S., Inc.

Job ID: 240-205247-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limit				
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)	
240-205247-1	TRIP BLANK_70	99	86	89	104	
240-205247-2	MW-01_052324	110	87	96	112	
240-205255-B-3 MS	Matrix Spike	94	95	98	102	
240-205255-E-3 MSD	Matrix Spike Duplicate	90	89	93	96	
LCS 240-615275/5	Lab Control Sample	102	101	103	107	
MB 240-615275/9	Method Blank	109	93	98	112	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_

Eurofins Cleveland

3

4

6

8

10

12

13

Client: Arcadis U.S., Inc. Job ID: 240-205247-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-615275/9

Matrix: Water

Project/Site: Ford LTP

Analysis Batch: 615275

Client San	ple ID: Method Blank
	Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			06/03/24 18:36	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			06/03/24 18:36	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			06/03/24 18:36	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			06/03/24 18:36	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			06/03/24 18:36	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			06/03/24 18:36	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 109 62 - 137 06/03/24 18:36 4-Bromofluorobenzene (Surr) 93 56 - 136 06/03/24 18:36 Toluene-d8 (Surr) 98 78 - 122 06/03/24 18:36 Dibromofluoromethane (Surr) 112 73 - 120 06/03/24 18:36

Lab Sample ID: LCS 240-615275/5

Matrix: Water

Analysis Batch: 615275

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	LCS LCS						
Surrogate	%Recovery	Qualifier	Limits				
1,2-Dichloroethane-d4 (Surr)	102		62 - 137				
4-Bromofluorobenzene (Surr)	101		56 ₋ 136				
Toluene-d8 (Surr)	103		78 - 122				
Dibromofluoromethane (Surr)	107		73 - 120				

Lab Sample ID: 240-205255-B-3 MS

Matrix: Water

Analysis Batch: 615275

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	20.0	20.3		ug/L		102	56 - 135	
cis-1,2-Dichloroethene	1.0	U	20.0	20.7		ug/L		104	66 - 128	
Tetrachloroethene	1.0	U	20.0	20.1		ug/L		101	62 - 131	
trans-1,2-Dichloroethene	1.0	U	20.0	20.5		ug/L		102	56 - 136	
Trichloroethene	1.0	U	20.0	20.1		ug/L		101	61 - 124	
Vinyl chloride	1.0	U	20.0	22.7		ug/L		113	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		62 - 137
4-Bromofluorobenzene (Surr)	95		56 - 136
Toluene-d8 (Surr)	98		78 - 122

Eurofins Cleveland

6/5/2024

Page 12 of 20

Client: Arcadis U.S., Inc. Project/Site: Ford LTP

Job ID: 240-205247-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-205255-B-3 MS

Lab Sample ID: 240-205255-E-3 MSD

Matrix: Water

Analysis Batch: 615275

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier

Limits Dibromofluoromethane (Surr) 102 73 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 615275

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.0	U	20.0	21.5		ug/L		107	56 - 135	6	26
1.0	U	20.0	20.9		ug/L		105	66 - 128	1	14
1.0	U	20.0	20.3		ug/L		102	62 - 131	1	20
1.0	U	20.0	21.2		ug/L		106	56 - 136	3	15
1.0	U	20.0	20.2		ug/L		101	61 - 124	1	15
1.0	U	20.0	23.8		ug/L		119	43 - 157	5	24
	Result 1.0 1.0 1.0 1.0 1.0 1.0	Sample Sample Qualifier	Result Qualifier Added 1.0 U 20.0 1.0 U 20.0	Result Qualifier Added Result 1.0 U 20.0 21.5 1.0 U 20.0 20.9 1.0 U 20.0 20.3 1.0 U 20.0 21.2 1.0 U 20.0 20.2	Result Qualifier Added Result Qualifier 1.0 U 20.0 21.5 1.0 U 20.0 20.9 1.0 U 20.0 20.3 1.0 U 20.0 21.2 1.0 U 20.0 20.2	Result Qualifier Added Result Qualifier Unit 1.0 U 20.0 21.5 ug/L 1.0 U 20.0 20.9 ug/L 1.0 U 20.0 20.3 ug/L 1.0 U 20.0 21.2 ug/L 1.0 U 20.0 20.2 ug/L	Result Qualifier Added Result Qualifier Unit D 1.0 U 20.0 21.5 ug/L 1.0 U 20.0 20.9 ug/L 1.0 U 20.0 20.3 ug/L 1.0 U 20.0 21.2 ug/L 1.0 U 20.0 20.2 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1.0 U 20.0 21.5 ug/L 107 1.0 U 20.0 20.9 ug/L 105 1.0 U 20.0 20.3 ug/L 102 1.0 U 20.0 21.2 ug/L 106 1.0 U 20.0 20.2 ug/L 101	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.0 U 20.0 21.5 ug/L 107 56 - 135 1.0 U 20.0 20.9 ug/L 105 66 - 128 1.0 U 20.0 20.3 ug/L 102 62 - 131 1.0 U 20.0 21.2 ug/L 106 56 - 136 1.0 U 20.0 20.2 ug/L 101 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1.0 U 20.0 21.5 ug/L 107 56 - 135 6 1.0 U 20.0 20.9 ug/L 105 66 - 128 1 1.0 U 20.0 20.3 ug/L 102 62 - 131 1 1.0 U 20.0 21.2 ug/L 106 56 - 136 3 1.0 U 20.0 20.2 ug/L 101 61 - 124 1

MSD MSD

мв мв

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		62 - 137
4-Bromofluorobenzene (Surr)	89		56 - 136
Toluene-d8 (Surr)	93		78 - 122
Dibromofluoromethane (Surr)	96		73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-615139/6

Matrix: Water

Analysis Batch: 615139

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.884	J	2.0	0.86	ug/L	_		06/02/24 23:49	1
	МВ	MB							

Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 103 68 - 127 06/02/24 23:49

Lab Sample ID: LCS 240-615139/4

Matrix: Water

Analysis Ratch: 615139

Alialysis Dalcii. 613133								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	11.0		ug/L	_	110	75 _ 121	

LCS LCS

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 68 - 127 103

Lab Sample ID: 240-205269-B-24 MSD

Matrix: Water

Analysis Ratch: 615139

Analysis Batch. 010103											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	1.6	J B	10.0	10.5		ug/L		89	20 - 180	3	20

Eurofins Cleveland

Prep Type: Total/NA

Dil Fac

Prep Type: Total/NA

QC Sample Results

Client: Arcadis U.S., Inc.

Job ID: 240-205247-1

Project/Site: Ford LTP

Method: 8260D SIM - Volatile Organic O	Compounds (GC/MS) (Continued)
--	-------------------------------

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		68 - 127

Lab Sample ID: 240-205269-C-24 MS

Matrix: Water

Analysis Batch: 615139

Client Sample ID: Matrix Spi	кe
Prep Type: Total/N	IA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit 1,4-Dioxane 1.6 JB 10.0 10.2 86 20 - 180 ug/L

MS MS

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 105
 68 - 127

Eurofins Cleveland

2

1

0

9

10

12

13

QC Association Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-205247-1

GC/MS VOA

Analysis Batch: 615139

Lab Sample ID 240-205247-2	Client Sample ID MW-01_052324	Prep Type Total/NA	Matrix Water	Method 8260D SIM	Prep Batch
MB 240-615139/6	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-615139/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-205269-B-24 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	
240-205269-C-24 MS	Matrix Spike	Total/NA	Water	8260D SIM	

Analysis Batch: 615275

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-205247-1	TRIP BLANK_70	Total/NA	Water	8260D	
240-205247-2	MW-01_052324	Total/NA	Water	8260D	
MB 240-615275/9	Method Blank	Total/NA	Water	8260D	
LCS 240-615275/5	Lab Control Sample	Total/NA	Water	8260D	
240-205255-B-3 MS	Matrix Spike	Total/NA	Water	8260D	
240-205255-E-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

J

4

0

10

11

12

13

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 240-205247-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_70

Lab Sample ID: 240-205247-1 Date Collected: 05/23/24 00:00

Matrix: Water

Date Received: 05/25/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	615275	AJS	EET CLE	06/03/24 18:59

Client Sample ID: MW-01_052324 Lab Sample ID: 240-205247-2

Date Collected: 05/23/24 13:00 Matrix: Water

Date Received: 05/25/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	615275	AJS	EET CLE	06/03/24 20:55
Total/NA	Analysis	8260D SIM		1	615139	MDH	EET CLE	06/03/24 01:02

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Project/Site: Ford LTP

Job ID: 240-205247-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-28-25
Georgia	State	4062	02-27-25
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-27-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	06-30-24
New York	NELAP	10975	04-02-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

4

5

7

ŏ

9

10

12

13

MICHIGAN 190

Chain of Custody Record

6/6

TestAm	nerico

Client Contact	Regula	tory program:		┌ DW	7		PDES	٢	RCRA		Oth	ner								Trank A marrier W. A.	
Company Name: Arcadis	Client Project	Manager: Kris	Hinskey		Ţ.	Site C	ontact:	Christi	na Wear	ver			Lab C	ontac	: Mik	e DelM	onico			TestAmerica Labo COC No:	ratories, Inc
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	1-994-2740				Telent	hone: 2	48-994-	2240				Teleni	none:	330-49	7-9396					
City/State/Zip: Novi, MI, 48377									ound Tie	ne I			- Cicpi				alyses			1 of 1 For lab use only	COCs
Phone: 248-994-2240	Email: Kristofi	er.hinskey@ar	adis.com														ary ses	TIT			, mineral
Project Name: Ford LTP	Sampler Name	Alana	S. M.	1010		TAT if	different	from below				П								Walk-in client	
Project Number: 30206169.0401.03	Method of Ship	/ I ICOV K	X Pr	ten	4	10	day	F 2 1									_			Lab sampling	-
								□ 20	days	Security of the security of th	Composite-C/Grab-G		۵	Trans-1,2-DCE 8260D			Vinyl Chloride 8260D 1,4-Dioxane 8260D SIM			I-LEDG N-	
O # US3410018772	Shipping/Traci	king No:						□ 10		1	S S	9	cis-1,2-DCE 8260D	E 82			Vinyl Chloride 8260D 1,4-Dioxane 8260D S		1	Job/SDG No:	
				Matrix			Containe	rs & Pro	servative	3		8260D	SCE	2-00	009	000	orid				
			Air Aqueous	Sediment	g	<u>ة</u> ة	3 _	=	_ E		n pod (u	1,1-DCE	1,2-[ns-1	PCE 8260D	TCE 8260D				Sample Specifi Special Instr	
Sample Identification	Sample Date	Sample Time	가 하	Soli	Other:	H2SO4	IICI	NaOH ZaAc	Unpres	5 5	ပြ	=	cis	Tra	8	2	i 4.			эресімі півт	
TRIP BLANK_ 70			1				1			N	١G	X	X	Х	x	x	x			1 Trip Blank	
MW-01-052324	5/23/24	1300	6				1		\top	2	16	1	V	V	V	v	VV			3 VOAs for 82 3 VOAs for 82	
\\ - \(\)	= 1070.	1300	1			-	100	1	++	1	1/	1/		$\frac{1}{2}$	$\hat{\ }$	\mathcal{X}	$\hat{\mathcal{A}}$	1		3 VOAS 101 02	OOD SINI
MW-WID-03774	2/23/14	1	V			+	10				16	卜	入	X	~						2 :-2
MHN-201-057324	- 5/23/24	1505	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3		+	38		+++	14	HG	X	X	V	X	X	$\epsilon \mid \lambda$	4		2 40 AS FO	626DD
HIW 120.7050 1	1/03/10	<u> </u>	1,8			\neg	76		+	,	1	1								200,13.0	
					-	-	_				-	-				_		\perp			
																	11.1				
					\vdash	-	+	\vdash	++	+	+										
																240-2	05247	Chain of Cu	stody	111 01011 1001 1001	
						\dashv	+		+		+					+	_			3	
								Щ			1.	Щ.									
Possible Hazard Identification ▼ Non-Hazard	rritant Pois	on B	Jaknow	a .		San		sposal (im to Cl		y be asse ✓ Disp					chive			n) Aonths			
Special Instructions/QC Requirements & Comments:																					
Submit all results through Cadena at jtomalia@cade evel IV Reporting requested.	naco.com. Cadena #	E203728	\mathcal{M}	SIT	e																
Relinquished by: Allum Piterh	Company:	2lc	25	73/23/2	1745	541	0	Receiv	JUI'C	00	9	Her	ac	72			CC			Date/Time: 5/23/22j	1540
Relinquished by: NOVI COLD STORAGE	Company: ARCA	213	San	7Time:	124	13	45	Receive	od by:	<u></u>	_		·	,	ľ	Compai	2.CA	DIS		Date/Time! 14 5(24) 24	1345
Relinquished by:	Company: ARCA		Date	7Time:	-	145		Receiv	cd in la	boratory	by:	>			1	Compa	EEN	7		Date/Time: 5/24/24 /	450
	171001	<u> </u>		- 17	- 1	17.							_	_							<u> </u>
\$2008, TestAmerica Laboratories Inc., All righte reserved, TestAmerica & Design "sero trademerica of TestAmerica Laboratories, Inc.	EETA		Sla	14 24		1500	ن د	T	1	TAM	MY	RO	YE	R			E)DC		5-25-24	(x

6/5/2024

VOA Sample Preservation - Date/Time VOAs Frozen
Sample(s)
PLE PRESERVATION
Sample(s)were received after the recommended holding time had expired. Sample(s)were received ma broken container Sample(s)were received with bubble >6 mm in diameter (Notify PM)
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
Contacted PMDatebyvia Verbal Voice Mail Other Concerning
nubbles >6 mm in any VOA vials? Larger than thus. NA trip blank present in the cooler(s)? Trip Blank Lot # 1000. Hg or Me Hg trip blank present?
12. Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory 13 Were all preserved sample(s) at the correct pH upon receipt? Yes No (NA pH Strip Lo# HC339814 Yes No. Yes No.
8 Could all bottle labels (ID/Date/Time) be reconciled with the COC? (Yes No 9 For each sample, does the COC specify preservatives (Y/N), # of contamers (Y/N), and sample type of grab/comp(Y/N)? 10 Were correct bottle(s) used for the test(s) indicated? 11 Sufficient quantity received to perform indicated analyses? (Yes No
Were the custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Did all bottles arrive in good condition (Unbroken)?
Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Yes No Oil and Grease
If Yes Quantitydated? s (LLHg/MeHg)?
chipon receipt (CF 0.0 °C) Observed Cooler I
Foam Plastic Bag N
Receipt After-hours Drop-off Date/ThrueStorage Location
Received on 5:25:14 Opened on 5:35:14
ic.
Eurofius Cleveland Sample Receipt-Korm/Narrative Login #:: 0 Company

Page 19 of 20

Temperature readings					
Client Sample ID	<u>Lab ID</u>	Container Type	Container P pH Temp A	reservation \dded	Preservation Preservation Added Lot Number
TRIP BLANK_70	240-205247-A-1	Voa Vial 40ml - Hydrochloric Acıd			
MW-01_052324	240-205247-A-2	Voa Vıal 40ml - Hydrochloric Acid			
MW-01_052324	240-205247-B-2	Voa Vial 40ml - Hydrochloric Acid			
MW-01_052324	240-205247-C-2	Voa Vial 40ml - Hydrochloric Acid			
MW-01_052324	240-205247-D-2	Voa Vial 40ml - Hydrochloric Acıd			
MW-01_052324	240-205247-E-2	Voa Vial 40ml - Hydrochloric Acid			

MW-01_052324

240-205247-F-2

Voa Vial 40ml - Hydrochloric Acid

Page 20 of 20

Page 1 of 1

DATA VERIFICATION REPORT

June 05, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil

Project number: 30206169.401.03

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 205247-1 Sample date: 2024-05-23

Report received by CADENA: 2024-06-05

Initial Data Verification completed by CADENA: 2024-06-05

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

MBK - GCMS VOC SIM QC batch method blank had a detection below the RL for the following analyte: 1,4-DIOXANE. The following client sample results should be considered to be non-detect at the RL and qualified with UB flags: -002.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 205247-1

		Sample Name:	TRIP BLANK_70				MW-01_052324			
		Lab Sample ID:	2402052471			2402052472				
		Sample Date:	5/23/2024			5/23/2024				
			Report			Valid	Report			Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-826	<u>0D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
OSW-826	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					0.92	2.0	ug/l	UB