PREPARED FOR

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 11/29/2024 11:42:25 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-215387-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/29/2024 11:42:25 AM

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396 Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-215387-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Qualifiers GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCI MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Arcadis US Inc. Project: Ford LTP

Job ID: 240-215387-1 Eurofins Cleveland

Job Narrative 240-215387-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/21/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.2°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 19 11/29/2024

2

Job ID: 240-215387-1

3

4

5

O

8

9

10

13

Method Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215387-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

4

5

7

ŏ

11

12

Sample Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215387-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-215387-1	TRIP BLANK_96	Water	11/19/24 00:00	11/21/24 08:00
240-215387-2	MW-149S_111924	Water	11/19/24 13:10	11/21/24 08:00

3

4

5

9

10

1 1

13

Detection Summary

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_96

Lab Sample ID: 240-215387-1

No Detections.

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	0.91	J	1.0	0.45	ug/L	1	_	8260D	Total/NA

Ш

4

5

7

9

11

40

4 /

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_96

Lab Sample ID: 240-215387-1 Date Collected: 11/19/24 00:00

Matrix: Water

Date Received: 11/21/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 12:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 12:52	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 12:52	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 12:52	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 12:52	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/24 12:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137			-		11/25/24 12:52	1
4-Bromofluorobenzene (Surr)	87		56 ₋ 136					11/25/24 12:52	1
Toluene-d8 (Surr)	98		78 - 122					11/25/24 12:52	1
Dibromofluoromethane (Surr)	102		73 - 120					11/25/24 12:52	1

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Client Sample ID: MW-149S_111924

Lab Sample ID: 240-215387-2 Date Collected: 11/19/24 13:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/26/24 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			68 - 127			_		11/26/24 16:10	

Surrogate	%Recovery	Quaimer	Limits				Preparea	Anaiyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	107		68 - 127					11/26/24 16:10	1
- Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 16:21	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 16:21	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 16:21	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 16:21	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 16:21	1
Vinyl chloride	0.91	J	1.0	0.45	ug/L			11/25/24 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137			_		11/25/24 16:21	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	62 - 137		11/25/24 16:21	1
4-Bromofluorobenzene (Surr)	83	56 ₋ 136		11/25/24 16:21	1
Toluene-d8 (Surr)	93	78 - 122		11/25/24 16:21	1
Dibromofluoromethane (Surr)	99	73 - 120		11/25/24 16:21	1

Surrogate Summary

Client: Arcadis US Inc.

Job ID: 240-215387-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-215332-B-1 MS	Matrix Spike	95	100	104	94
240-215332-B-1 MSD	Matrix Spike Duplicate	91	96	100	92
240-215387-1	TRIP BLANK_96	100	87	98	102
240-215387-2	MW-149S_111924	98	83	93	99
LCS 240-636548/5	Lab Control Sample	94	100	104	95
MB 240-636548/9	Method Blank	93	84	92	95

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-215294-C-4 MS	Matrix Spike	111	
240-215294-C-4 MSD	Matrix Spike Duplicate	100	
240-215387-2	MW-149S_111924	107	
LCS 240-636809/5	Lab Control Sample	109	
MB 240-636809/7	Method Blank	107	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

Job ID: 240-215387-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-636548/9

Matrix: Water

Analysis Batch: 636548

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.49 ug/L 11/25/24 11:19 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 11/25/24 11:19 1.0 U Tetrachloroethene 1.0 0.44 ug/L 11/25/24 11:19 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 11/25/24 11:19 Trichloroethene 1.0 U 1.0 0.44 ug/L 11/25/24 11:19 1.0 11/25/24 11:19 Vinyl chloride 1.0 U 0.45 ug/L

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		62 - 137		11/25/24 11:19	1
4-Bromofluorobenzene (Surr)	84		56 - 136		11/25/24 11:19	1
Toluene-d8 (Surr)	92		78 - 122		11/25/24 11:19	1
Dibromofluoromethane (Surr)	95		73 - 120		11/25/24 11:19	1

Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 636548

Lab Sample ID: LCS 240-636548/5

Prep Type: Total/NA LCS LCS %Rec

Spike Analyte Added Result Qualifier Unit %Rec Limits 95 1,1-Dichloroethene 1000 947 ug/L 63 - 134 cis-1,2-Dichloroethene 1000 947 ug/L 95 77 - 123 Tetrachloroethene 1000 1040 ug/L 104 76 - 123 trans-1,2-Dichloroethene 1000 923 92 75 - 124 ug/L 1000 Trichloroethene 962 ug/L 96 70 - 122 Vinyl chloride 1000 849 ug/L 85 60 - 144

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		62 _ 137
4-Bromofluorobenzene (Surr)	100		56 ₋ 136
Toluene-d8 (Surr)	104		78 - 122
Dibromofluoromethane (Surr)	95		73 - 120

Lab Sample ID: 240-215332-B-1 MS

Matrix: Water

Analysis Batch: 636548

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample Sample MS MS %Rec Spike Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec 1,1-Dichloroethene 500 U 10000 8890 ug/L 89 56 - 135 cis-1,2-Dichloroethene 500 U 10000 9190 ug/L 92 66 - 128 Tetrachloroethene 500 U 10000 10000 ug/L 100 62 - 131trans-1,2-Dichloroethene 500 U 10000 8960 ug/L 90 56 - 136 Trichloroethene 13000 10000 22300 91 61 - 124 ug/L Vinyl chloride 10000 43 - 157 500 U 7620 ug/L

MS MS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95	62 - 137
4-Bromofluorobenzene (Surr)	100	56 - 136
Toluene-d8 (Surr)	104	78 - 122

Eurofins Cleveland

Job ID: 240-215387-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-215332-B-1 MS **Matrix: Water**

Analysis Batch: 636548

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 94 73 - 120

Lab Sample ID: 240-215332-B-1 MSD

Matrix: Water

Analysis Batch: 636548

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
500	U	10000	9340		ug/L		93	56 - 135	5	26
500	U	10000	9540		ug/L		95	66 - 128	4	14
500	U	10000	10300		ug/L		103	62 - 131	2	20
500	U	10000	9350		ug/L		94	56 - 136	4	15
13000		10000	22600		ug/L		94	61 - 124	1	15
500	U	10000	8730		ug/L		87	43 - 157	13	24
	Result 500 500 500 500 13000	Sample Sample Result Qualifier 500 U 500 U 500 U 13000 U 500 U	Result Qualifier Added 500 U 10000 500 U 10000 500 U 10000 500 U 10000 13000 10000	Result Qualifier Added Result 500 U 10000 9340 500 U 10000 9540 500 U 10000 10300 500 U 10000 9350 13000 10000 22600	Result Qualifier Added Result Qualifier 500 U 10000 9340 500 U 10000 9540 500 U 10000 10300 500 U 10000 9350 13000 10000 22600	Result Qualifier Added Result Qualifier Unit 500 U 10000 9340 ug/L 500 U 10000 9540 ug/L 500 U 10000 10300 ug/L 500 U 10000 9350 ug/L 13000 10000 22600 ug/L	Result Qualifier Added Result Qualifier Unit D 500 U 10000 9340 ug/L 500 U 10000 9540 ug/L 500 U 10000 10300 ug/L 500 U 10000 9350 ug/L 13000 10000 22600 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 500 U 10000 9340 ug/L 93 500 U 10000 9540 ug/L 95 500 U 10000 10300 ug/L 103 500 U 10000 9350 ug/L 94 13000 10000 22600 ug/L 94	Result Qualifier Added Result Qualifier Unit D %Rec Limits 500 U 10000 9340 ug/L 93 56 - 135 500 U 10000 9540 ug/L 95 66 - 128 500 U 10000 10300 ug/L 103 62 - 131 500 U 10000 9350 ug/L 94 56 - 136 13000 10000 22600 ug/L 94 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 500 U 10000 9340 ug/L 93 56 - 135 5 500 U 10000 9540 ug/L 95 66 - 128 4 500 U 10000 10300 ug/L 103 62 - 131 2 500 U 10000 9350 ug/L 94 56 - 136 4 13000 10000 22600 ug/L 94 61 - 124 1

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 91 62 - 137 4-Bromofluorobenzene (Surr) 96 56 - 136 Toluene-d8 (Surr) 100 78 - 122 Dibromofluoromethane (Surr) 92 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 240-636809/7

Matrix: Water

Analysis Batch: 636809

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/26/24 12:39	1
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 107 68 - 127 11/26/24 12:39

ah Sample ID: LCS 240-636809/5

Lab Sample ID: LCS 240-636809/5	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 636809	

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 10.0 7.72 ug/L 75 - 121

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 68 - 127 109

M

Lab Sample ID: 240-215294-C-4 M	S		Client Sample ID: Matrix Spike
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 636809			
		 	0/ 5

Sample Sample Spike %Rec MS MS Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 1,4-Dioxane 2.0 U 10.0 7.97 ug/L 80 20 - 180

Eurofins Cleveland

QC Sample Results

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Qualifier

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			68 - 127

•					
Lab	Sam	ple ID:	240-2	15294-C-4	MSD

Matrix: Water

-	Analy	ysis	Batch:	636809
---	-------	------	--------	--------

•	Sample	Sample	Spike	MSD	MSD
Analyte	Result	Qualifier	Added	Result	Qualif
1,4-Dioxane	2.0	U	10.0	8.15	
	MSD	MSD			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	100		68 - 127		

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

RPD D RPD Limit Unit %Rec Limits

81 20 - 180 2 ug/L

QC Association Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215387-1

GC/MS VOA

Analysis Batch: 636548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
240-215387-1	TRIP BLANK_96	Total/NA	Water	8260D	
240-215387-2	MW-149S_111924	Total/NA	Water	8260D	
MB 240-636548/9	Method Blank	Total/NA	Water	8260D	
LCS 240-636548/5	Lab Control Sample	Total/NA	Water	8260D	
240-215332-B-1 MS	Matrix Spike	Total/NA	Water	8260D	
240-215332-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 636809

Lab Sample ID 240-215387-2	Client Sample ID MW-149S_111924	Prep Type Total/NA	Matrix Water	Method 8260D SIM	Prep Batch
MB 240-636809/7	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-636809/5	Lab Control Sample	Total/NA	Water	8260D SIM	
240-215294-C-4 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-215294-C-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

1

Δ

5

6

8

9

10

11

Lab Chronicle

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_96

Lab Sample ID: 240-215387-1 Date Collected: 11/19/24 00:00

Matrix: Water

Date Received: 11/21/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	636548	AJS	EET CLE	11/25/24 12:52

Client Sample ID: MW-149S_111924 Lab Sample ID: 240-215387-2

Date Collected: 11/19/24 13:10 Matrix: Water

Date Received: 11/21/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	636548	AJS	EET CLE	11/25/24 16:21
Total/NA	Analysis	8260D SIM		1	636809	R5XG	EET CLE	11/26/24 16:10

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215387-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-28-25
Connecticut	State	PH-0806	12-31-26
Georgia	State	4062	02-27-25
Illinois	NELAP	200004	08-31-25
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-27-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Hampshire	NELAP	225024	09-30-25
New Jersey	NELAP	OH001	07-03-25
New York	NELAP	10975	04-02-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-25
Texas	NELAP	T104704517-22-19	08-31-25
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-25
West Virginia DEP	State	210	12-31-24

4

5

9

10

12

13

Chain of Custody Record

MICHIG	A TestAmerico
190	THE LEADER IN ENVIRONMENTAL TESTING

Company Name: Arcadis Address: 28550 Cabot Drive, Suite 500																								TestAmerica Laboratories, In
Address: 28550 Cabot Drive, Suite 500	Client Project N	ent Project Manager: Kris Hinskey Site					Site (onta	et: C	hrist	tina Wes	ver			La	b Cont	act: M	ike Del	Monic	0	Contact: Mike DelMonico			
-an-ton- Date Militel Date 200																	ephone: 330-497-9396							
City/State/Zip: Novi, M1, 48377	Telephone: 248-	994-2240							: 248-						1,6	lephon	e: 330-							1 of 1 COCs
Phone: 248-994-2240	Email: kristoffe	r.hinskey@arc	adis.c	om			A	Analysis Turnaround Time				Analyses						For lab use only						
	Sampler Name:						TAT	f differ	rent from				1					1						Walk-in client
Project Name: Ford LTP	I M	Maryam Hanani		10	day			weeks weeks													Lab sampling			
Project Number: 30206169.0401.03	Method of Shipe							cuy	r	- 1	week		2	ا ي		۵				¥.				
PO # US3410018772	Shipping/Tracking No:								-	$-\frac{2}{1}$	days			2	9	8260D			2600	00				Job/SDG No:
			_	M	ntrix			Cant		£ D.	eservativ		출	C/Grab=G	000	S S			de 8	826				
						g		Т		T				Composite	1,1-DCE 8260U	Trans-1.2-DCE	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM				Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	ξį	Aqueous	Solid	o P	H2S04	HNO3	Ξ ,	ZAAc	NaOH Unpres	Other:	Ě	3		Tra	PCE	TCE	Ş	1,4				Special Instructions:
TRIP BLANK_ 96				1			П	1	1				N	3	x >	(X	X	X	Х	7.5				1 Trip Blank
MW-1495_111924	11/19/24	12:0	\Box	6			H	\top	1.	\dagger	+ 1	_		<u>,</u>	, ,	//	λ_{λ}		V	V		\top		3 VOAs for 8260D
1-110-1443_111924	1417427	1310	\vdash	9	\vdash		Н	4	6	+	\dashv		17	9	X)	4 >	Y	X	X	X		+	-	3 VOAs for 8260D SIM
					T		П			T	\top			1										
			\vdash	-	+		\vdash	+	+	+	+		+	+	+	+	-	-	-			+	+	
																						4	P-	853
		,	\vdash	+	╁╌		Н	+	+	+	+	_		+	+	+		+			-	-	18	Mark
																							R	42
													П										_	
			\vdash	+	+-		Н	+	+	+	$\dashv \dashv$	_	+	+	+	+	+	+	-			_	240-2	215387 COC
																						1	-	
Possible Hazard Identification			ш				Sa	mple	Dispo	osal ((A fee π	ay be	assesse	d if sa	mples	are ret	ained l	onger t	han I	month)			<u> </u>
✓ Non-Hazard	ant Poiso		Jnkn	own				R	Ceturn	to C	lient	(P)	Disposa	By L	.ab	Γ.	Archiv	e For		M	onths			
pecial Instructions/QC Requirements & Comments: 34	1450 Be	acon																						
Submit all results through Cadena at jtomalia@cadenac Level IV Reporting requested.	o.com. Cadena #E	203728																						
Relinquished by 11 -	Arcad	· (1	Date/Ti	me G 1) ii	17	a Î) R	eceiv	ved by:	Pal	10	٠ ــــــــــــــــــــــــــــــــــــ		_		Com	pany:		1:			Date/Time: 11/19/24 163
Relinquished by	Company:	L)		Date/Ti		29 <u>1</u> 2	140	عد		ocein ecein	out	بالك	u O	1 C)	rig	2_	-	Com	pany:		<u> </u>			Date/Time
	ARCADIS (1/20/24			24	13	کک	-	0	llic	4	27	\mathcal{L}	~	~		Company:				11/20124 1445				
Relinquished by:	Company TETA			Daté/Ti	me:	4 1			R	ecci	nell in i-	Spoke)	ory by:	DAR				Com	pany:					Date/Time:

G2008, TestAmerica Laboratories, Inc. All rights reserved.
TestAmerica & Design ** are trademarks of TestAmerica Laboratories, Inc.

VOA Sample Preservation - Date/Time VOAs Frozen.
Sample(s) were further preserved in the laboratory Time preserved. Preservative(s) added/Lot number(s).
20. SAMPLE PRESERVATION
Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received with bubble >6 mm in diameter (Notify PM)
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
Concerning
Contacted PM Date by via Verbal Voice Mail Other
15 Were air pubbles >6 mm in any VOA viais? Larger than this. 16 Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes No 17 Was a LL Hg or Me Hg trip blank present? Yes No
Were volue 10-1/ nave occur encouver at the conject pH upon receipt? Yere VOAs on the COC?
11 Sufficient quantity received to perform indicated analyses? 12 Are these work share samples and all listed on the COC? Yes No
Could all bottle labels (ID/Date/Time) be reconciled with the COC? For each sample, does the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM), and the COC specify preservatives (YM), # of containers (YM),
e appropriate place? (Carly identified on the COC? (Tex) No
Shippers' packing slip attached to the cooler(s)? Yes (No. Did custody papers accompany the sample(s)? Yes (No. Yes) No. Yes)
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/McHg)? -Were tamper/custody seals intact and uncompromised? Yes No NA Receiving:
IR GUN #
Foam Box Client Cooler Box used: Bubble Wrap Foam Plastic Bag N Wet Co Blue Ice Dry Ice Water 1
Received on 1-21.24 Opened on 1.21.24 Opened on 1.22 Opened on
Euroffins—Clesseland Sample Receipt Form/Narrative Barberffon Facility Client APPAA Cooler unpacked by

WI-NC-099-110524 Cooler Receipt Form.doc

DATA VERIFICATION REPORT

November 29, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil

Project number: 30206169.0401.04_WA-03

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 215387-1 Sample date: 2024-11-19

Report received by CADENA: 2024-11-29

Initial Data Verification completed by CADENA: 2024-11-29

Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

Analytical results reported between RDL and MDL are flagged 'J' and considered estimated values.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI $48108\ 517\text{-}819\text{-}0356$

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 215387-1

		Sample Name:	TRIP BLANK_96				MW-149	24		
		Lab Sample ID:	240215	3871			240215	3872		
		Sample Date:	11/19/2024				11/19/2			
			Report			Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC										
OSW-826	<u>0D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		0.91	1.0	ug/l	J
OSW-826	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-215387-1

CADENA Verification Report: 2024-11-29

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 56899R Review Level: Tier III Project: 30206169.0401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-215387-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Ana	lysis
Sample 10	Labib	Wallix	Collection Date	Farent Sample	VOC	VOC SIM
TRIP BLANK_96	240-215387-1	Water	11/19/2024		X	
MW-149S_111924	240-215387-2	Water	11/19/2024		X	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Reported		Perfor Accep	mance otable	Not Required
	No	Yes	No	Yes	Required
Sample receipt condition		Х		X	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		X	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation			'	'	
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		X		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Febin J S

SIGNATURE:

DATE: December 16, 2024

PEER REVIEW: Andrew Korycinski

DATE: December 20, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

MICHIGATestAmerica
190
THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratory location: Brighton --- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: ☐ NPDES **RCRA** Other Company Name: Arcadis TestAmerica Laboratories, Inc. Site Contact: Christina Weaver Lab Contact: Mike DelMonico Client Project Manager: Kris Hinskey Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9396 COCs City/State/Zip: Novi, M1, 48377 Analysis Turnaround Time Analyses For lab use only Email: kristoffer.hinskey@arcadis.com Phone: 248-994-2240 TAT if different from below Walk-in client Sampler Name: Project Name: Ford LTP 3 weeks Maryam Hanani ₹ 2 weeks Lab sampling Project Number: 30206169.0401.03 1 week 4-Dioxane 8260D SIM Frans-1,2-DCE 8260D 2 days Vinyl Chloride 8260D Job/SDG No: PO # US3410018772 Shipping/Tracking No: [I day Matrix Containers & Preservatives TCE 8260D Sample Specific Notes / Special Instructions: Σ Sample Time Sample Date Sample Identification TRIP BLANK_ 96 NGXXX X 1 Trip Blank 3 VOAs for 8260D 1310 MW-1495_111924 11/19/24 6 3 VOAs for 8260D SIM 240-215387 COC Sample Disposal (A fee may be assessed if samples are retained longer than I month) Possible Hazard Identification sin Irritant / Jnknown Disposal By Lab ✓ Non-Hazard lammable Special Instructions/QC Requirements & Comments: 34450 Beacon Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203728 Level IV Reporting requested. Relinquished Mev Arcadi Company: Relinquished by

G2008, TestAmerica Laboratories, Inc. All rights reserved.
TestAmerica & Design ** are trademarks of TestAmerica Laboratories, Inc.

Company TA

Relinquished by

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description						
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.						
U	Indicates the analyte was analyzed for but not detected.						

U	indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215387-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_96

Lab Sample ID: 240-215387-1 Date Collected: 11/19/24 00:00 **Matrix: Water**

Date Received: 11/21/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 12:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 12:52	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 12:52	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 12:52	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 12:52	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/24 12:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137			_		11/25/24 12:52	1
4-Bromofluorobenzene (Surr)	87		56 ₋ 136					11/25/24 12:52	1
Toluene-d8 (Surr)	98		78 - 122					11/25/24 12:52	1
Dibromofluoromethane (Surr)	102		73 - 120					11/25/24 12:52	1

Client Sample ID: MW-149S_111924 Lab Sample ID: 240-215387-2

Date Collected: 11/19/24 13:10

Method: SW846 8260D SIM - V Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0		2.0		ug/L	<u>-</u> -	Tropurcu	11/26/24 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		68 - 127			-		11/26/24 16:10	1
Method: SW846 8260D - Volati	ile Organic Comp	ounds by G	C/MS						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 16:21	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 16:21	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 16:21	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 16:21	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 16:21	1
Vinyl chloride	0.91	J	1.0	0.45	ug/L			11/25/24 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		62 - 137			-		11/25/24 16:21	1
4-Bromofluorobenzene (Surr)	83		56 ₋ 136					11/25/24 16:21	1
Toluene-d8 (Surr)	93		78 - 122					11/25/24 16:21	1
Dibromofluoromethane (Surr)	99		73 - 120					11/25/24 16:21	1

Matrix: Water