

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 11/19/2024 6:34:57 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-214619-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

lowo

Generated 11/19/2024 6:34:57 AM 1

5

12 13

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	_
U	Indicates the analyte was analyzed for but not detected.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 7
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	Ο
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-214619-1

Job ID: 240-214619-1

Eurofins Cleveland

Job Narrative 240-214619-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/9/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Client: Arcadis US Inc. Project/Site: Ford LTP

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: Arcadis US Inc. Project/Site: Ford LTP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-214619-1	TRIP BLANK_8	Water	11/06/24 00:00	11/09/24 08:00
240-214619-2	MW-216S_110624	Water	11/06/24 10:00	11/09/24 08:00

Detection Summary

Job ID: 240-214619-1

Lab Sample ID: 240-214619-1

Lab Sample ID: 240-214619-2

Project/Site: Ford LTP Client Sample ID: TRIP BLANK_8

Client: Arcadis US Inc.

No Detections.

Client Sample ID: MW-216S_110624

No Detections.

Eurofins Cleveland

Client: Arcadis US Inc. Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_8

Date Collected: 11/06/24 00:00 d. 11/09/24 08.00 Date Receiv

Date Received: 11/09/24 08:00											
Method: SW846 8260D - Volatile Organic Compounds by GC/MS											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 14:44	1		
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 14:44	1		
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 14:44	1		
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 14:44	1		
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 14:44	1		
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 14:44	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		62 - 137		11/16/24 14:44	1
4-Bromofluorobenzene (Surr)	103		56 _ 136		11/16/24 14:44	1
Toluene-d8 (Surr)	103		78 - 122		11/16/24 14:44	1
Dibromofluoromethane (Surr)	98		73 - 120		11/16/24 14:44	1

5 **8** 9

Job ID: 240-214619-1

Lab Sample ID: 240-214619-1

Matrix: Water

Client Sample ID: MW-216S_110624

Date Collected: 11/06/24 10:00 Date Received: 11/09/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/12/24 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 127			-		11/12/24 15:23	1
Method: SW846 8260D - Volat	ile Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 15:07	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 15:07	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 15:07	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 15:07	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 15:07	1
Vinyl chloride	1.0	U F1	1.0	0.45	ug/L			11/16/24 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137			-		11/16/24 15:07	1
4-Bromofluorobenzene (Surr)	101		56 ₋ 136					11/16/24 15:07	1
Toluene-d8 (Surr)	101		78 - 122					11/16/24 15:07	1
Dibromofluoromethane (Surr)	100		73 - 120					11/16/24 15:07	1

Matrix: Water

Lab Sample ID: 240-214619-2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water

Prep Type: Total/NA

Prep Type: Total/NA

				Percent Su	rogate Recov	very (Acceptance Limits)	
		DCA	BFB	TOL	DBFM		
ab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)		
40-214619-1	TRIP BLANK_8	101	103	103	98		
40-214619-2	MW-216S_110624	100	101	101	100		
40-214619-2 MS	MW-216S_110624	96	104	107	101		
40-214619-2 MSD	MW-216S_110624	97	97	100	102		
CS 240-635551/4	Lab Control Sample	95	98	98	96		
B 240-635551/7	Method Blank	100	102	101	96		
Surrogate Legend							- 1
DCA = 1,2-Dichloroetha	ane-d4 (Surr)						
BFB = 4-Bromofluorob	enzene (Surr)						- 1
TOL = Toluene-d8 (Sur	r)						

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water

		DCA	Percent Surrogate Recovery (Acceptance Limits)
ample ID	Client Sample ID	(68-127)	
14619-2	MW-216S_110624	93	
9759-B-1 MS	Matrix Spike	84	
9759-B-1 MSD	Matrix Spike Duplicate	98	
-634921/5	Lab Control Sample	89	
0-634921/8	Method Blank	90	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Analysis Batch: 635551

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 12:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 12:50	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 12:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 12:50	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 12:50	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 12:50	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Preparec	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137		11/16/24 12:50	1
4-Bromofluorobenzene (Surr)	102		56 - 136		11/16/24 12:50	1
Toluene-d8 (Surr)	101		78 - 122		11/16/24 12:50	1
Dibromofluoromethane (Surr)	96		73 - 120		11/16/24 12:50	1

Lab Sample ID: LCS 240-635551/4 Matrix: Water Analysis Batch: 635551

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	25.4		ug/L		101	63 - 134	
cis-1,2-Dichloroethene	25.0	24.8		ug/L		99	77 - 123	
Tetrachloroethene	25.0	25.1		ug/L		101	76 - 123	
trans-1,2-Dichloroethene	25.0	22.6		ug/L		90	75 - 124	
Trichloroethene	25.0	23.7		ug/L		95	70 - 122	
Vinyl chloride	12.5	8.39		ug/L		67	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		62 - 137
4-Bromofluorobenzene (Surr)	98		56 - 136
Toluene-d8 (Surr)	98		78 - 122
Dibromofluoromethane (Surr)	96		73 - 120

107

Lab Sample ID: 240-214619-2 MS Matrix: Water Analysis Batch: 635551

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	1.0	U	25.0	23.6		ug/L		94	56 - 135
cis-1,2-Dichloroethene	1.0	U	25.0	25.1		ug/L		100	66 - 128
Tetrachloroethene	1.0	U	25.0	22.5		ug/L		90	62 - 131
trans-1,2-Dichloroethene	1.0	U	25.0	22.7		ug/L		91	56 - 136
Trichloroethene	1.0	U	25.0	21.0		ug/L		84	61 - 124
Vinyl chloride	1.0	U F1	12.5	7.56		ug/L		60	43 - 157
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	96		62 - 137						
4-Bromofluorobenzene (Surr)	104		56 - 136						

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: MW-216S_110624

Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Cleveland

78 - 122

10

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water	2 MS						C	Clien	t Samı	ole ID: MW-2 Prep Ty		
Analysis Batch: 635551												
Surrogate	MS %Recovery	MS Qualifier	Limits									
Dibromofluoromethane (Surr)		<u> </u>	73 - 120									
Lab Sample ID: 240-214619- Matrix: Water	2 MSD						C	Clien	t Samı	ole ID: MW-2 Prep Ty		
Analysis Batch: 635551												
· ····· , ··· · ·······	Sample	Sample	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	1	D 9	%Rec	Limits	RPD	Lim
1,1-Dichloroethene		U	25.0	24.0		ug/L			96	56 - 135	2	2
cis-1,2-Dichloroethene	1.0	U	25.0	23.9		ug/L			96	66 - 128	5	1
Tetrachloroethene	1.0		25.0	22.7		ug/L			91	62 - 131	1	2
trans-1.2-Dichloroethene	1.0		25.0	22.0		ug/L			88	56 - 136	3	
Trichloroethene		U	25.0	22.0		ug/L			86	61 ₋ 124	3	1
			25.0 25.0	21.0 8.30	E 1				00 33	43 - 157	3 9	2
Vinyl chloride	1.0		20.0	0.30	C I	ug/L			33	40 - 10/	9	2
	MSD	MSD										
Surrogate		Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	97		62 - 137									
4-Bromofluorobenzene (Surr)	97		56 - 136									
Toluene-d8 (Surr)	100		78 - 122									
Dibromofluoromethane (Surr)	100		73 - 120									
lethod: 8260D SIM - Vol		Compoun	ds (GC/MS)					С	lient S	ample ID: M		
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-634 Matrix: Water		Compoun	ds (GC/MS)					С	lient S	ample ID: M Prep Ty		
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-634 Matrix: Water	921/8		ds (GC/MS)					С	lient S			
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921	921/8	MB MB			MDI Unit		D			Prep Ty	pe: To	tal/N/
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte	921/8	MB MB sult Qualifier			MDL Unit		<u>D</u>		lient S	Prep Ty Analyzed	pe: To	tal/N/ Dil Fa
Iethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane	921/8	MB MB			MDL Unit		_ <u>D</u>			Prep Ty	pe: To	tal/N/ Dil Fa
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte	921/8 	MB MB sult Qualifier					_ <u>D</u>			Prep Ty Analyzed	pe: To	tal/N/ Dil Fa
lethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte	921/8 Re:	MB MB sult Qualifier 2.0 U					<u> </u>	Preț		Prep Ty Analyzed	pe: To I :52 —	Dil Fa
Tethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane	921/8 Re:	MB MB sult Qualifier 2.0 U MB MB					<u>D</u>	Preț	pared	Prep Ty Analyzed 11/12/24 11	pe: To	tal/N/ Dil Fa <i>Dil Fa</i>
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr)	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier						Prep Prep	pared pared	Analyzed 11/12/24 11 Analyzed 11/12/24 11	pe: To	tal/N/ Dil Fa <i>Dil Fa</i>
Iethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-6349	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier						Prep Prep	pared pared	Prep Ty Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor	pe: To 	Dil Fa Dil Fa
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr)	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier						Prep Prep	pared pared	Analyzed 11/12/24 11 Analyzed 11/12/24 11	pe: To 	Dil Fa Dil Fa
Iethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier						Prep Prep	pared pared	Prep Ty Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor	pe: To 	Dil Fa Dil Fa
Iethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-6349	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier						Prep Prep	pared pared	Prep Ty Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor	pe: To 	Dil Fa
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier		LCS	0.86 ug/L	Unit	Clie	Prep Prep	pared pared	Prep Ty <u>Analyzec</u> 11/12/24 11 <u>Analyzec</u> 11/12/24 11 ID: Lab Cor Prep Ty	pe: To 	Dil Fa
Method: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier	RL 2.0 68 - 127 Spike	LCS	0.86 ug/L	- Unit ug/L	Clie	Prep Prep	pared pared	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec	pe: To 	Dil Fac
Method: 8260D SIM - Vol Lab Sample ID: MB 240-6343 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 68 - 127 Spike Added	LCS Result	0.86 ug/L		Clie	Prep Prep	pared pared sample	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits	pe: To 	Dil Fa
Method: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921 Analysis Batch: 634921 Analysis Batch: 634921 Analyte 1,4-Dioxane	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 2.0 68 - 127 68 - 127 68 - 127 127 10.0	LCS Result	0.86 ug/L		Clie	Prep Prep	pared pared sample	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits	pe: To 	Dil Fac
Method: 8260D SIM - Vol Lab Sample ID: MB 240-6343 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921 Analysis Batch: 634921 Analyse 1,4-Dioxane Surrogate 1,4-Dioxane Surrogate 1,4-Dioxane	921/8 P21/8 Re: %Recov \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 	LCS Result	0.86 ug/L		Clie	Prep Prep	pared pared sample	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits	pe: To 	Dil Fa
Iethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate	921/8 	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 2.0 68 - 127 68 - 127 68 - 127 127 10.0	LCS Result	0.86 ug/L		Clie	Prep Prep	pared pared sample	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits	pe: To 	Dil Fa
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analyts Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr)	921/8 921/8 Re: %Recov 1921/5 LCS %Recovery 89	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 	LCS Result	0.86 ug/L		Clie	Prep Prep ent S	pared pared ample %Rec 75	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits 75 - 121	pe: To 	tal/N/ Dil Fa Dil Fa ample tal/N/
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759-	921/8 921/8 Re: %Recov 1921/5 LCS %Recovery 89	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 	LCS Result	0.86 ug/L		Clie	Prep Prep ent S	pared pared ample %Rec 75	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: I	pe: To	tal/N/ Dil Fa Dil Fa ample tal/N/ Spike
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759- Matrix: Water	921/8 921/8 Re: %Recov 1921/5 LCS %Recovery 89	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 	LCS Result	0.86 ug/L		Clie	Prep Prep ent S	pared pared ample %Rec 75	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits 75 - 121	pe: To	Dil Fau Dil Fau Dil Fau ample tal/N/
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759-	921/8 P21/8 Re: %Recov 4921/5 LCS %Recovery 89 B-1 MS	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 Limits 68 - 127 Spike Added 10.0 Limits 68 - 127	LCS Result 7.55	0.86 ug/L LCS Qualifier		Clie	Prep Prep ent S	pared pared ample %Rec 75	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: I Prep Ty	pe: To	Dil Fac
Aethod: 8260D SIM - Vol Lab Sample ID: MB 240-6349 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-634 Matrix: Water Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759- Matrix: Water	921/8 Re: %Recov 4921/5 LCS %Recovery 89 B-1 MS Sample	MB MB sult Qualifier 2.0 U MB MB rery Qualifier 90	RL 2.0 	LCS Result 7.55	0.86 ug/L		Clie	Prep Prep ent S	pared pared ample %Rec 75	Analyzed 11/12/24 11 Analyzed 11/12/24 11 ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: I	pe: To 	tal/NA Dil Fac 1 Dil Fac 1 ample tal/NA

Eurofins Cleveland

Job ID: 240-214619-1

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	84		68 - 127								
- Lab Sample ID: 500-259759-	B-1 MSD					C	Client Sa	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Water										ype: To	
Analysis Batch: 634921											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	1.7	J	10.0	7.70		ug/L		60	20 - 180	9	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Eurofins Cleveland

8260D

8260D

Water

Water

GC/MS VOA

240-214619-2 MS

240-214619-2 MSD

MW-216S_110624

MW-216S_110624

Analysis Batch: 634921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-214619-2	MW-216S_110624	Total/NA	Water	8260D SIM	
MB 240-634921/8	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-634921/5	Lab Control Sample	Total/NA	Water	8260D SIM	
500-259759-B-1 MS	Matrix Spike	Total/NA	Water	8260D SIM	
500-259759-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	
Analysis Batch: 63555 - Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
240-214619-1	TRIP BLANK_8	Total/NA	Water	8260D	
240-214619-2	MW-216S_110624	Total/NA	Water	8260D	
	Mathead Diamis	Total/NA	Water	8260D	
MB 240-635551/7	Method Blank	TOLAI/INA	Water	OLOOD	

Total/NA

Total/NA

Matrix: Water

Matrix: Water

Lab Sample ID: 240-214619-1

Client Sample ID: TRIP BLANK_8

Date Collected: 11/06/24 00:00 Date Received: 11/09/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			635551	LEE	EET CLE	11/16/24 14:44

Client Sample ID: MW-216S_110624 Date Collected: 11/06/24 10:00

Date Received: 11/09/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	635551	LEE	EET CLE	11/16/24 15:07
Total/NA	Analysis	8260D SIM		1	634921	R5XG	EET CLE	11/12/24 15:23

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

12 13

Accreditation/Certification Summary

Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory: Eurofins Cleveland

aboratory: Eurofins Cle I accreditations/certifications held by	y this laboratory are listed. Not all accreditations/ce	artifications are applicable to this report	t.	
Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-28-25	
Connecticut	State	PH-0806	12-31-26	
Georgia	State	4062	02-27-25	
Illinois	NELAP	200004	08-31-25	
Iowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-27-25	
Kentucky (WW)	State	KY98016	12-30-24	
Minnesota	NELAP	039-999-348	12-31-24	
New Hampshire	NELAP	225024	09-30-25	
New Jersey	NELAP	OH001	07-03-25	
New York	NELAP	10975	04-02-25	
Ohio VAP	State	ORELAP 4062	02-27-25	
Oregon	NELAP	4062	02-27-25	
Pennsylvania	NELAP	68-00340	08-31-25	
Texas	NELAP	T104704517-22-19	08-31-25	
USDA	US Federal Programs	P330-18-00281	01-05-27	
Virginia	NELAP	460175	09-14-25	
West Virginia DEP	State	210	12-31-24	

Eurofins Cleveland

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	tory program	:	- I	w	E N	PDES	ſ	RCR	A	F 0	ther		1								
Company Name: Arcadis	Client Project	Manager: Kris	Hinske			Site C	ontact: (Christ	ina Wea	Ver			II ab	Conta	ct: Mil	(e Del	Monic				TestAmerica Labor	ratories, I
Address: 28550 Cabot Drive, Suite 500				,	_												_					
City/State/Zip: Novi, MI, 48377	Telephone: 248	-994-2240				Telep	10ne: 24	8-994-	2240				Tele	phone:	330-4	97-939	96				1 of 1	COCs
	Email: kristoff	er.hinskey@ar	cadis.c	om		A	alysis I		ound In	MC		T	-	- Ji		A	nalys	cs	-		For lab use only	cocs
Phone: 248-994-2240																					NY - II. In allowed	-
Project Name: Ford LTP	Sampler Name	Jetim	, 1	May 1	¥		different fr	T 3	weeks	_											Walk-in client	States
Project Number: 30206169.0401.03	Method of Ship	CA CA A	1 1	in	2	10	day	F 1	weeks week		-							Σ			Lab sampling	
PO # US3410018772	Shipping/Track	ting No:			_	-			days day		mple (Y / N)		DOD	8260[260D	SODS			Job/SDG No:	
				Matr	ix		entainer	s & Pr	eservativ	8	apte	Seon S	E 826	DCE 8			ide 8	e 826				
Sample Identification	Sample Date	Sample Time	÷	Aquenus Sediment	Solid Other:	112504			Va OH Un pres		Filtered Sample (Y / N)	1.1-DCE 8260D	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM			Sample Specific Special Instru	
TRIP BLANK_								~ N	2-				+	-			-				-	
				1			1				NC	ЭX		X	X	Х	Х				1 Trip Blank	
MU-2165_110624	1106124	10:00		0			6				NE	77	$\langle \rangle \times$	X	X	×	X	X			3 VOAs for 826 3 VOAs for 826	
																	240-2	214619				
			e											1								
· · · · · · · · · · · · · · · · · · ·	•													Ĩ								
Possible Hazard Identification	ritant 🔽 Poiso	n B í	Jnkno	wn	-	San	ple Disj Retur	posal (n to Cl		ay be as					ned los		han 1 r	Month)	hs			
pecial Instructions/QC Requirements & Comments: 31		Isworth	St	ŀ	activia	11																
ubmit all results through Cadena at jtomalia@cadena evel IV Reporting requested.	co.com. Cadena #E	203728				Ç	58															
elinquished by	Company:	(endi)	D	ate/Time	124	16:	au	Receive		(ald	51	here	2			Comp	any:	dis			Date/Time:	6:00
telinquished by:	Company	des	D	ate/Time	712-	16		Receive	ed by	JI	V	10	i			Comp	any.	ET	A		Date/Time	
Relinquithed by A. In Alle	Company	<u><</u>	D	ate/Time	T ₋	16		Receiv	cd in La	borator	y by:		-	-		Comp	any		-	-	Date/Tame:	4801

92008, TestAmerica Laberatories, Inc. All rights resorved. TestAmerica & Design " Are tradeministic of TestAmerica Laboratories. In 13

14

5
8
9
12
13
14

Charles Concerts Concerts <thc< th=""></thc<>
--

Page 19 of 20

WI-NC-099-092324 Cooler Receipt Form.doc

э.

Temperature readings.

240-214619-C-2 240-214619-D-2 240-214619-E-2 240-214619-G-2	<u>Client Sample ID</u> TRIP BLANK_8 MW-216S_110624 MW-216S_110624	<u>Lab ID</u> 240-214619-A-1 240-214619-A-2 240-214619-B-2	<u>Container Type</u> Voa Vial 40ml - Hydrochloric Acid Voa Vial 40ml - Hydrochloric Acid Voa Vial 40ml - Hydrochloric Acid	Container Preservation pH Temp Added Lot Number
240-214619-A-2 240-214619-B-2 240-214619-C-2 240-214619-D-2 240-214619-E-2 240-214619-G-2	TRIP BLANK_8	240-214619-A-1	Voa Vial 40ml - Hydrochloric Acid	
240-214619-B-2 240-214619-C-2 240-214619-D-2 240-214619-E-2 240-214619-G-2	MW-216S_110624	240-214619-A-2	Voa Vial 40ml - Hydrochlorıc Acıd	
240-214619-C-2 240-214619-D-2 240-214619-E-2 240-214619-G-2	MW-216S_110624	240-214619-B-2	Voa Vial 40ml - Hydrochloric Acid	
240-214619-D-2 240-214619-E-2 240-214619-G-2	MW-216S_110624	240-214619-C-2	Voa Vial 40ml - Hydrochloric Acid	
240-214619-E-2 240-214619-G-2		240-214619-D-2	Voa-Vial-40ml - Hydrochloric Acid	
240-214619-G-2	MW-216S_110624	240-214619-E-2	Voa Viał 40ml - Hydrochlorıc Acıd	
	MW-216S_110624	240-214619-G-2	Voa Vial 40ml - Hydrochloric Acid	An and a second s

DATA VERIFICATION REPORT

November 19, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728 Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil Project number: 30206169.0401.04_WA-03 Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory submittal: 214619-1 Sample date: 2024-11-06 Report received by CADENA: 2024-11-19 Initial Data Verification completed by CADENA: 2024-11-19 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC sample -002 MS or MSD recoveries but not both or RPD only were outliers for VINYL CHLORIDE so client sample results were not qualified based on this QC outlier alone.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 214619-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BL/ 240214 11/6/20	6191 24			MW-216 240214 11/6/20	6192 24	24	
	Analyte	Cas No.	Result	Report Limit		Valid Qualifier	Result	Report Limit	Units	Valid Qualifier
GC/MS VOC OSW-826	<u>0D</u>									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-826</u>	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-214619-1 CADENA Verification Report: 2024-11-19

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 56938R Review Level: Tier III Project: 30206169.0401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-214619-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Somalo ID	Lab ID	Matrix	Sample	Barant Sampla	Ana	lysis
Sample ID		Matrix	Collection Date	Parent Sample	VOC	VOC SIM
TRIP BLANK_8	240-214619-1	Water	11/06/2024		Х	
MW-216S_110624	240-214619-2	Water	11/06/2024		Х	Х

DATA REVIEW

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Items Reviewed	Rep	orted	Perfor Accep		Not
		No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

DATA REVIEW

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample ID	Compound	MS Recovery	MSD Recovery
MW-216S_110624	Vinyl chloride	AC	<ll but="">10%</ll>

Notes:

AC Acceptable

LL Lower control limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (III)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (11) but a 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD spiking	Detect	No Action
solution concentration.	Non-detect	NO ACION

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

7. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		X	
Tier III Validation	_	1			1
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate (MSD)		Х	Х		
MS/MSD Precision (RPD)		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bindu Sree M B

SIGNATURE:

B.A.Sh_MB

DATE: December 16, 2024

PEER REVIEW: Andrew Korycinski

DATE: December 19, 2024

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton - 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact Company Name: Arcadis	Regulat	ory program:	:	1	DW		□ NF	DES	1	RC	RA	F 0	ther									_		
	Client Project	Manager: Kris	Hinske	y		s	ite Co	ntact:	Christ	tina W	aver			Lab	Cont	act: M	ike Del	Monic	0	1			tAmerica Laborato No:	res, In
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240					eleph	one: 24	8-994	-2240				Tel	phone	: 330-	497-93	96						
City/State/Zip: Novi, MI, 48377	Email: kristoff		endie co		_	\rightarrow		alysis T			IDC		-					nalys	es		_	For	1 of 1 CO ab use only	Cs
Phone: 248-994-2240			cauts.co			_					1				T	1	T			1				
Project Name: Ford LTP	Sampler Name	Jetem	. 1	have	12	Г	'AT if d	ifferent fr	3	weeks	<u> </u>	11	-									Wal	k-in client	
Project Number: 30206169.0401.03	Method of Ship		/	Vyl	2	-	10 c	ay	F 1	weeks week									¥			Lab	sampling	
PO # US3410018772	Shipping/Track	ing No:				-				days day		e (Y/N		260D	8260			8260D	260D S			Job/	SDG No:	
			 _	Mati	rix	_	C	ntainer	s & Pr	eservat	ves	Samp	8260	CE 8	5-DCE	g	9	oride	ane 8				1000	
Sample Identification	Sample Date	Sample Time	Air	Aqueous Sediment	Solid Other:		HN03	ΗC	NaOH	Unpres	Other:	Filtered Sample (Y / N)	1.1-DCE 8260D	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM				Sample Specific Not Special Instruction	
TRIP BLANK_			ŀ	1		Ť	T	1				NC		-	+		X	X				1	Trip Blank	
MU-2165_110624	MAGIN	0:00	1 1	0				6		1		171	17	< \		-	×	×	\mathbf{X}			1	VOAs for 8260D	
110 210021	I I VOIC	10.00	++	-		-	+	6	-	-		N	4					~	~				VOAs for 8260D	SIM
				+	4	_																		
			+				4			+			+	+		1	6					tt		
			+		\rightarrow	\rightarrow	+	\square	_	-		╉╌┼╍	+			-	+	Ī	с VI	È +	_	╂┼		
										-									2.7					
													+-		-			-		F				
				-	-		-	++		+			-	+			1	240-	214619	c 2+		tt		
				_	-					+			-	-	-	-		-	-			+		
			0							1												\square		
Possible Hazard Identification	Poiso	a P	Jnkno				Sam	ole Disj Retur			nay be :	assessed Disposal	if san	nples a		ined lo Archiv		han I i	nonth) Month	<u> </u>	_	-		
			St	1	and/	1.4	-	Keiui	n to C.	nem	- 1	Jisposai	By La	.0		Alcinv	eror i	-	Monu	<u> </u>		-		
special Instructions/QC Requirements & Comments: 3485 Submit all results through Cadena at jtomalia@cadenaco.co Level IV Reporting requested.	om. Cadena #E	203728	51	د	110	700	\langle	55																
Relinquished by:	Company:	(endis	D	ate/Time	011-	1	6.0	υľ	Receiv	ed by:	1010	15	his	a	_		Com	any	dis			Date	Time: 16:	00
Relinquished by	Company:	des	D	ate/Time	ำไว	4	16		Receiv	ed by:	Ì	V	10	ì			Com	any.	EN	1		Date	Time	
Relinquished by	Company	XA	_	ate/Time		ì	163		Receiv	ed in 1	aborate	ory by:	•				Com	panya		-		Det	Time: had	'An

02008, TestAmerica Laboratories, Inc., All rights reserved. TestAmerica & Design "" are trademarks of TestAmerica Laboratories, Inc.

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Clossury	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample ID: TRIP BLANK_8

Date Collected: 11/06/24 00:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 14:44	1	
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 14:44	1	
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 14:44	1	
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 14:44	1	
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 14:44	1	
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 14:44	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		62 - 137		11/16/24 14:44	1
4-Bromofluorobenzene (Surr)	103		56 - 136		11/16/24 14:44	1
Toluene-d8 (Surr)	103		78 - 122		11/16/24 14:44	1
Dibromofluoromethane (Surr)	98		73 - 120		11/16/24 14:44	1

Client Sample ID: MW-216S_110624

Date Collected: 11/06/24 10:00

Date	Received:	11/09/24	08:00

Method: SW846 8260D SIM - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/12/24 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 127			-		11/12/24 15:23	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 15:07	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 15:07	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 15:07	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 15:07	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 15:07	1
Vinyl chloride	1.0 -	UE1 UJ	1.0	0.45	ug/L			11/16/24 15:07	1
Surrogate	%Pecovery	Qualifier	Limite				Propared	Analyzod	Dil Eac

Surrogate	%Recovery	Quaimer	Linnis		Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137	-		11/16/24 15:07	1
4-Bromofluorobenzene (Surr)	101		56 - 136			11/16/24 15:07	1
Toluene-d8 (Surr)	101		78 - 122			11/16/24 15:07	1
Dibromofluoromethane (Surr)	100		73 - 120			11/16/24 15:07	1

Lab Sample ID: 240-214619-1 Matrix: Water

Lab Sample ID: 240-214619-2

Matrix: Water

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 11/19/2024 6:38:00 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-214621-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

lowo

Generated 11/19/2024 6:38:00 AM 1

5

12 13

Authorized for release by Michael DelMonico, Project Manager I <u>Michael.DelMonico@et.eurofinsus.com</u> (330)497-9396

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
 Ø	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-214621-1

Job ID: 240-214621-1

Eurofins Cleveland

Job Narrative 240-214621-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/9/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Client: Arcadis US Inc. Project/Site: Ford LTP

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: Arcadis US Inc. Project/Site: Ford LTP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-214621-1	TRIP BLANK_1	Water	11/06/24 00:00	11/09/24 08:00
240-214621-2	MW-116S_110624	Water	11/06/24 11:00	11/09/24 08:00

Detection Summary

Job ID: 240-214621-1

Lab Sample ID: 240-214621-2

Lab Sample ID: 240-214621-1

No Detections.

Client: Arcadis US Inc.

Project/Site: Ford LTP

Client Sample ID: MW-116S_110624

Client Sample ID: TRIP BLANK_1

No Detections.

Eurofins Cleveland

Client: Arcadis US Inc. Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_1

Date Collected: 11/06/24 00:00 Date Received: 11/09/24 08:00

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 16:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 16:16	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 16:16	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:16	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137			-		11/16/24 16:16	1
4-Bromofluorobenzene (Surr)	98		56 - 136					11/16/24 16:16	1
Toluene-d8 (Surr)	101		78 - 122					11/16/24 16:16	1
Dibromofluoromethane (Surr)	99		73 - 120					11/16/24 16:16	1

11/19/2024

Matrix: Water

Lab Sample ID: 240-214621-1

2 3 4 5 6 7 8 9

Client Sample ID: MW-116S_110624

Date Collected: 11/06/24 11:00 Date Received: 11/09/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/12/24 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 127			-		11/12/24 16:10	1
Method: SW846 8260D - Volati	ile Organic Comr	ounds by (C/MS						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 16:39	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 16:39	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:39	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 16:39	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:39	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		62 - 137			-	-	11/16/24 16:39	1
4-Bromofluorobenzene (Surr)	101		56 - 136					11/16/24 16:39	1
Toluene-d8 (Surr)	101		78 - 122					11/16/24 16:39	1
Dibromofluoromethane (Surr)	102		73 - 120					11/16/24 16:39	1

11/19/2024

Lab Sample ID: 240-214621-2 Matrix: Water

nalyzed

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix

5 9

Prep Type: Total/NA

Matrix: Water						Prep Type: Total/N
-				Percent Su	rrogate Recovery (Ac	ceptance Limits)
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)	
240-214619-A-2 MS	Matrix Spike	96	104	107	101	
240-214619-D-2 MSD	Matrix Spike Duplicate	97	97	100	102	
240-214621-1	TRIP BLANK_1	99	98	101	99	
240-214621-2	MW-116S_110624	97	101	101	102	
LCS 240-635551/4	Lab Control Sample	95	98	98	96	
MB 240-635551/7	Method Blank	100	102	101	96	
Surrogate Legend						
DCA = 1,2-Dichloroetha	ne-d4 (Surr)					
BFB = 4-Bromofluorobe	nzene (Surr)					
TOL = Toluene-d8 (Surr)					
DBFM = Dibromofluoror	nethane (Surr)					

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water

			Percent Surrogate Recovery (Acceptance Limits)	÷
		DCA		
Lab Sample ID	Client Sample ID	(68-127)		
240-214621-2	MW-116S_110624	95		
500-259759-B-1 MS	Matrix Spike	84		
500-259759-B-1 MSD	Matrix Spike Duplicate	98		
LCS 240-634921/5	Lab Control Sample	89		
MB 240-634921/8	Method Blank	90		
Surrogate Legend				

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

Method: 8260D - Volatile Organic Compounds by GC/MS

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 12:50	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 12:50	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 12:50	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 12:50	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 12:50	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 12:50	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		62 - 137		11/16/24 12:50	1
4-Bromofluorobenzene (Surr)	102		56 - 136		11/16/24 12:50	1
Toluene-d8 (Surr)	101		78 - 122		11/16/24 12:50	1
Dibromofluoromethane (Surr)	96		73 - 120		11/16/24 12:50	1

Lab Sample ID: LCS 240-635551/4 Matrix: Water Analysis Batch: 635551

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	25.4		ug/L		101	63 - 134	
cis-1,2-Dichloroethene	25.0	24.8		ug/L		99	77 - 123	
Tetrachloroethene	25.0	25.1		ug/L		101	76 - 123	
trans-1,2-Dichloroethene	25.0	22.6		ug/L		90	75 - 124	
Trichloroethene	25.0	23.7		ug/L		95	70 - 122	
Vinyl chloride	12.5	8.39		ug/L		67	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		62 - 137
4-Bromofluorobenzene (Surr)	98		56 - 136
Toluene-d8 (Surr)	98		78 - 122
Dibromofluoromethane (Surr)	96		73 - 120

Lab Sample ID: 240-214619-A-2 MS Matrix: Water Analysis Batch: 635551

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte **Result Qualifier** %Rec Limits Unit D 1.0 U 25.0 1,1-Dichloroethene 23.6 ug/L 94 56 - 135 cis-1,2-Dichloroethene 1.0 U 25.0 66 - 128 25.1 ug/L 100 22.5 Tetrachloroethene 1.0 U 25.0 ug/L 90 62 - 131 trans-1,2-Dichloroethene 1.0 U 25.0 22.7 ug/L 91 56 - 136 Trichloroethene 25.0 61 - 124 1.0 U 21.0 ug/L 84 Vinyl chloride 1.0 UF1 12.5 7.56 ug/L 60 43 - 157 MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		62 - 137
4-Bromofluorobenzene (Surr)	104		56 - 136
Toluene-d8 (Surr)	107		78 - 122

11/16/24 12:50 1

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA

Eurofins Cleveland

10

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Analysis Batch: 635551	-A-2 MS							Client	Sample ID: Prep Ty		
	MS I	ИS									
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane (Surr)			73 - 120								
Lab Sample ID: 240-214619	-D-2 MSD						Client	Sample II	D: Matrix Spi		
Matrix: Water									Prep Ty	pe: To	tal/NA
Analysis Batch: 635551											
	Sample S	•	Spike	MSD	MSD				%Rec		RPI
Analyte	Result 0		Added		Qualifier	Unit			Limits	RPD	Limi
1,1-Dichloroethene	1.0 U		25.0	24.0		ug/L		96	56 - 135	2	26
cis-1,2-Dichloroethene	1.0 l		25.0	23.9		ug/L		96	66 - 128	5	14
Tetrachloroethene	1.0 l	J	25.0	22.7		ug/L		91	62 _ 131	1	20
trans-1,2-Dichloroethene	1.0 l	J	25.0	22.0		ug/L		88	56 - 136	3	15
Trichloroethene	1.0 l	J	25.0	21.6		ug/L		86	61 _ 124	3	15
Vinyl chloride	1.0 l	J F1	25.0	8.30	F1	ug/L		33	43 - 157	9	24
	MSD I										
Surrogate		Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	97		62 - 137								
4-Bromofluorobenzene (Surr)	97		56 - 136								
Toluene-d8 (Surr)	100		78 - 122								
Dibromofly or mother of (Cyrr)	102		73 - 120								
Dibromofluoromethane (Surr) Method: 8260D SIM - Vo Lab Sample ID: MB 240-634	latile Organic	Compou	nds (GC/MS)					Client S	Sample ID: M		
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water	latile Organic	Compou	nds (GC/MS)					Client \$	Sample ID: M Prep Ty		
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634	latile Organic		nds (GC/MS)					Client S			
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921	latile Organic	MB MB			MDL Unit		D		Prep Ty	pe: To	tal/NA
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte	latile Organic 1921/8 	MB MB	RL		MDL Unit		D	Client S	Prep Ty Analyze	ре: То d	tal/NA Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921	latile Organic 1921/8 	MB MB			MDL Unit		<u>D</u>		Prep Ty	ре: То d	tal/NA Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte	latile Organic	MB MB	RL				_ <u>D</u>		Prep Ty Analyze	ре: То d	tal/NA Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte	latile Organic	MB MB Sult Qualifier 2.0 U MB MB	RL 2.0				D		Prep Ty Analyze	pe: To d :52 –	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane	latile Organic 1921/8 	MB MB Sult Qualifier 2.0 U MB MB	RL 2.0				_ <u>D</u>	Prepared	Prep Ty Analyze 11/12/24 11	pe: To d :52 -	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr)	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier						Prepared Prepared	Analyze 11/12/24 11 Analyze 11/12/24 11	be: To d :52 - d :52 -	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier						Prepared Prepared	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 EID: Lab Cor	pe: To d :52 - d :52 - htrol S	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr)	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier						Prepared Prepared	Analyze 11/12/24 11 Analyze 11/12/24 11	pe: To d :52 - d :52 - htrol S	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier						Prepared Prepared	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 EID: Lab Cor	pe: To d :52 - d :52 - htrol S	Dil Fac
Aethod: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier		LCS				Prepared Prepared	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 EID: Lab Cor	pe: To d :52 - d :52 - htrol S	Dil Fac Dil Fac Dil Fac ample
Aethod: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier	RL 2.0 2.0 		0.86 ug/L	Unit	Clie	Prepared Prepared	Prep Ty 	pe: To d :52 - d :52 - htrol S	Dil Fac Dil Fac Dil Fac ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier			0.86 ug/L	- Unit ug/L	Clie	Prepared Prepared nt Sample	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 ElD: Lab Corr Prep Ty %Rec	pe: To d :52 - d :52 - htrol S	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte	latile Organic	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0 2.0 68 - 127 Spike Added	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits	pe: To d :52 - d :52 - htrol S	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0 Limits 68 - 127 Spike Added 10.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits	pe: To d :52 - d :52 - htrol S	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate	latile Organic	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits	pe: To d :52 - d :52 - htrol S	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane	latile Organic 1921/8 Res %Recove	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0 Limits 68 - 127 Spike Added 10.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits	pe: To d :52 - d :52 - htrol S	tal/NA Dil Fac 1 Dil Fac 1 ample
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr)	LCS LCS <thlcs< th=""> <thlcs< th=""> <thlcs< th=""></thlcs<></thlcs<></thlcs<>	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample 0 %Rec 75	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits 75 - 121	pe: To d :52	Dil Fac
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759	LCS LCS <thlcs< th=""> <thlcs< th=""> <thlcs< th=""></thlcs<></thlcs<></thlcs<>	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample 0 %Rec 75	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID:	pe: To d :52	Dil Fac 1 Dil Fac 1 ample tal/NA
Aethod: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759 Matrix: Water	LCS LCS <thlcs< th=""> <thlcs< th=""> <thlcs< th=""></thlcs<></thlcs<></thlcs<>	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0	Result	0.86 ug/L		Clie	Prepared Prepared nt Sample 0 %Rec 75	Analyzer 11/12/24 11 Analyzer 11/12/24 11 Analyzer 11/12/24 11 e ID: Lab Cor Prep Ty %Rec Limits 75 - 121	pe: To d :52	Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759	LCS L	MB MB sult Qualifier 2.0 U MB MB ery Qualifier	RL 2.0 Limits 68 - 127 Spike Added 10.0 Limits 68 - 127	Result 7.55	0.86 ug/L LCS Qualifier		Clie	Prepared Prepared nt Sample 0 %Rec 75	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 B ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: Prep Ty	pe: To d :52	Dil Fac 1 Dil Fac 1 ample tal/NA
Method: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane <i>Surrogate</i> 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759 Matrix: Water Analysis Batch: 634921	Latile Organic 1921/8 Res %Recovery 4921/5 LCS %Recovery 89 -B-1 MS Sample	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90	RL 2.0 Limits 68 - 127 Spike Added 10.0 Limits 68 - 127	Result 7.55	0.86 ug/L LCS Qualifier	ug/L	Clie	Prepared Prepared nt Sample 0 %Rec 75 Client	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 D: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: Prep Ty %Rec	pe: To d :52	Dil Fac 1 Dil Fac 1 ample tal/NA
Aethod: 8260D SIM - Vo Lab Sample ID: MB 240-634 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: LCS 240-63 Matrix: Water Analysis Batch: 634921 Analyte 1,4-Dioxane Surrogate 1,2-Dichloroethane-d4 (Surr) Lab Sample ID: 500-259759 Matrix: Water	LCS L	MB MB sult Qualifier 2.0 U MB MB ery Qualifier 90 LCS Qualifier	RL 2.0 Limits 68 - 127 Spike Added 10.0 Limits 68 - 127	Result 7.55	0.86 ug/L LCS Qualifier		Clie	Prepared Prepared nt Sample 0 %Rec 75 Client	Analyze 11/12/24 11 Analyze 11/12/24 11 Analyze 11/12/24 11 B ID: Lab Cor Prep Ty %Rec Limits 75 - 121 Sample ID: Prep Ty	pe: To d :52	Dil Fac 1 Dil Fac 1 ample tal/NA

Eurofins Cleveland

Job ID: 240-214621-1

10

Job ID: 240-214621-1

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	84		68 - 127								
Lab Sample ID: 500-259759-	B-1 MSD					C	Client Sa	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 634921											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	1.7	J	10.0	7.70		ug/L		60	20 - 180	9	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

10

Eurofins Cleveland

GC/MS VOA

240-214619-D-2 MSD

Matrix Spike Duplicate

Analysis Batch: 634921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-214621-2	MW-116S_110624	Total/NA	Water	8260D SIM	
MB 240-634921/8	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-634921/5	Lab Control Sample	Total/NA	Water	8260D SIM	
500-259759-B-1 MS	Matrix Spike	Total/NA	Water	8260D SIM	
500-259759-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	
- Analysis Batch: 63555	1				
nalysis Batch: 63555 Lab Sample ID	1 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
· ·		Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
Lab Sample ID	Client Sample ID				Prep Batch
Lab Sample ID 240-214621-1 240-214621-2	Client Sample ID TRIP BLANK_1	Total/NA	Water	8260D	Prep Batch
Lab Sample ID 240-214621-1	Client Sample ID TRIP BLANK_1 MW-116S_110624	Total/NA Total/NA	Water Water	8260D 8260D	Prep Batch

Total/NA

Water

8260D

Matrix: Water

Matrix: Water

Lab Sample ID: 240-214621-1

Lab Sample ID: 240-214621-2

Client Sample ID: TRIP BLANK_1 Date Collected: 11/06/24 00:00

Date Received: 11/09/24 08:00

-	Batch	Datab		Dilution	Detab			Draward
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	635551	LEE	EET CLE	11/16/24 16:16

Client Sample ID: MW-116S_110624 Date Collected: 11/06/24 11:00

Date Received: 11/09/24 08:00

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	635551	LEE	EET CLE	11/16/24 16:39
Total/NA	Analysis	8260D SIM		1	634921	R5XG	EET CLE	11/12/24 16:10

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

12 13

Accreditation/Certification Summary

Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory: Eurofins Cleveland

aboratory: Eurofins Cle				
accreditations/certifications held by	y this laboratory are listed. Not all accreditations/cer	artifications are applicable to this report	<u></u>	
Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-28-25	
Connecticut	State	PH-0806	12-31-26	
Georgia	State	4062	02-27-25	
Illinois	NELAP	200004	08-31-25	
lowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-27-25	
Kentucky (WW)	State	KY98016	12-30-24	
Minnesota	NELAP	039-999-348	12-31-24	
New Hampshire	NELAP	225024	09-30-25	
New Jersey	NELAP	OH001	07-03-25	
New York	NELAP	10975	04-02-25	
Ohio VAP	State	ORELAP 4062	02-27-25	
Oregon	NELAP	4062	02-27-25	
Pennsylvania	NELAP	68-00340	08-31-25	
Texas	NELAP	T104704517-22-19	08-31-25	
USDA	US Federal Programs	P330-18-00281	01-05-27	
Virginia	NELAP	460175	09-14-25	
West Virginia DEP	State	210	12-31-24	

Eurofins Cleveland

Chain of Custody Record

TestAmerica Laboratory location: Brighton - 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	tory program:	:	C	DW	,	r N	PDES	ſ	RC	RA	Г	Other										
Company Name: Arcadis	Client Project 1	Manager: Kris	Hinsk	cy			Site Co	ntact:	Christ	ina W	taver			La	b Cont	act: M	ike De	Monic	:0				TestAmerica Laboratories, In COC No:
Address: 28550 Cabot Drive, Suite 500	Telephone: 248		-				Talank	one: 24	9 00.4	22.40			-		lanhon	e: 330-	497-93	96	+				
City/State/Zip: Novi, MI, 48377	- ·													10	repiion	c. 550-							1 of 1 COCs
Phone: 248-994-2240	Email: kristoff	er.hinskey@ar	cadis.c	om				alysis I	urnar	bauo	ime		H		T	Т	T	nalys	ses			-	For lab use only
	Sampler Name			10	2		TAT if	different f		weeks	L												Walk-in client
Project Name: Ford LTP		JEREMY		1/2	15		10	day		weeks													Lab sampling
Project Number: 30206169.0401.03	Method of Ship	ment/Carrier:								week days		Î	Ŷ		8				SIM				
PO # US3410018772	Shipping/Track	cing No:							r i			mple (Y / N)	/Grat		E 826			8260	3260D				Job/SDG No
				M	atrix			ontaine	rs & Pr	cserval	ives	- Sel	E C	826	-DC	8	g	oride	ane 8				
				Aquenus Sediment	Salid	her:	H2S04		NaOH ZaAd	oH	her:	Filtered Sa	Composite=C / Grab=G	1,1-DCE 8260D	Trans-1 2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM				Sample Specific Notes / Special Instructions:
Sample Identification	Sample Date	Sample Time	ž	<u>در</u> کر	Sal	ŏ	Ξi	HC	2 Z	25	ō	F	Ŭ.			<u> </u>	<u>الم</u>	5	È	╞═┼╋	_	+	
TRIP BLANK_				1				1				N	G	x x	(x	X	X	X					1 Trip Blank
MW-1165_110624	11/06/24	11:00		6				6				N	6	X 2	(>	$\langle \rangle$	X	×	×				3 VOAs for 8260D 3 VOAs for 8260D SIM
							E						1		-0								P.90 -
		· ·		-		\mathbb{N}																	[53] E
								1	\rightarrow	+													
							-							+	+								240-214621 300
						-												\geq					
																						\geq	
													Ĩ							1			
Possible Hazard Identification Non-Hazard implication implication	nt 🗇 Poisc	on B	Jnkr	IOWE			San	nple Dis Retu	posal (rn to C	(A fee lient	may be	assess Dispos	ed if sa al By L	amples	are ret	ained Archi	onger ve For	than 1	month	i) onths			
Special Instructions/QC Requirements & Comments: 7	~ 1	1 1.	<	L	1	11/-	· ()	/															
Submit all results through Cadena at jtomalia@cadenaco. .evel IV Reporting requested.		203728) I	124	1		G	25														
Relinquished by:	Company:	Verti3		Date/T	ime:	124	16:0	00	Receiv	ved by:	11	,010		Ster	122	~	Com	pany:	Ale	101	s		Date/Time: 16:00
Relinquished by	Company:	adis		Date/T		24		55	Receiv			r	M	16	-		Com	pany:	Et	A			Date/Time:
Relinquishes by:	Company	1 A 1		Date/T	me:			S	Receiv	vedin	Laborat	tory by	:				Con	my.	br				Date/Time: 1. do

92008, TeslAmerica Laboratories, Inc. All robb reserved, TeslAmerica & Design "" are trademarks of TeslAmerica Laboratories, In

5
8
9
13
14

Contacted PMDatebyvia Verbal Voice Mail Other Concerning 18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by: 19. SAMPLE CONDITION
--

11/19/2024 -----

1

Temperature readings

MW-116S_110624	MW-1165_110624	MW-116S_110624	MW-1165_110624	MW-116S_110624	MW-1165_110624	TRIP BLANK_1	Client Sample ID
240-214621-G-2	240-214621-E-2	240-214621-D-2	240-214621-C-2	240-214621-B-2	240-214621-A-2	240-214621-A-1	<u>Lab ID</u>
Voa Vial 40ml - Hydrochloric Acıd	Voa Vial 40ml - Hydrochloric Acid	Voa-Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acıd	Container Type			
							T <u>Container</u> Preservation Preservation pH Temp Added Lot Number

DATA VERIFICATION REPORT

November 19, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728 Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil Project number: 30206169.0401.04_WA-03 Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory submittal: 214621-1 Sample date: 2024-11-06 Report received by CADENA: 2024-11-19 Initial Data Verification completed by CADENA: 2024-11-19 Number of Samples:2 Sample Matrices:Water Test Categories:GCMS VOC Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at <u>http://clms.cadenaco.com/index.cfm</u>.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than $5x$ (or $10x$ for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than $10x$ the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland Laboratory Submittal: 214621-1

		Sample Name: Lab Sample ID: Sample Date:	TRIP BL/ 240214 11/6/20	6211			MW-116 240214 11/6/20		24	
	Analyte	Cas No.	Result	Report Limit		Valid Qualifier	Result	Report Limit	Units	Valid Qualifier
GC/MS VOC OSW-826	0D									
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l	
<u>OSW-826</u>	<u>ODSIM</u>									
	1,4-Dioxane	123-91-1					ND	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-214621-1 CADENA Verification Report: 2024-11-19

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 56874R Review Level: Tier III Project: 30206169.0401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-214621-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Ana	lysis	
Sample ID		Maurix	Collection Date		VOC	VOC SIM	
TRIP BLANK_1	240-214621-1	Water	11/06/2024		Х		
MW-116S_110624	240-214621-1	Water	11/06/2024		Х	Х	

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Items Reviewed	Rep	orted	Perfori Accep		Not
		No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of Quality Assurance or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

DATA REVIEW

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate sample was not collected for samples from this SDG.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

No compounds were detected in the samples within this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA REVIEW

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted	Perfo Acce	Not	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation		1			1
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD	Х				Х
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

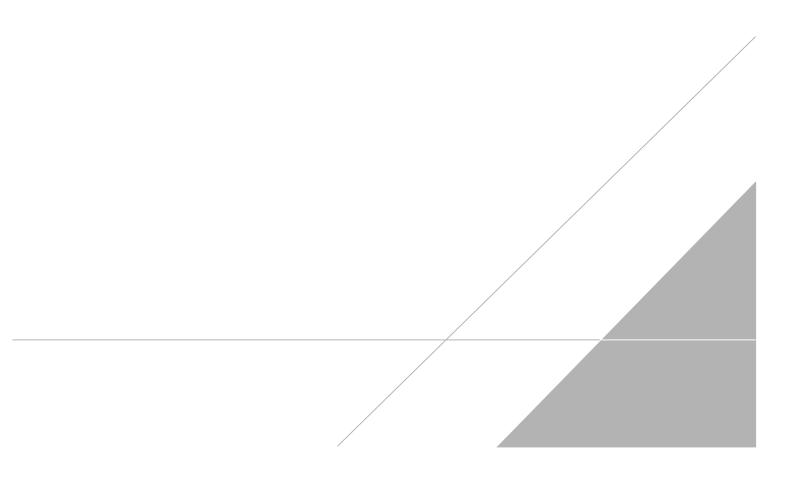
%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY:	Febin J S	
--------------------------	-----------	--

SIGNATURE:


Pal	2
\bigcirc /.	

DATE: December 23, 2024

PEER REVIEW: Andrew Korycinski

DATE: December 23, 2024

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763

Client Contact	Regulat	ory program:		r DW		NPDE	s	RCRA		Othe	r									
Company Name: Arcadis	Client Project	Manager L'rie	Hinston	-	Ic:	Conto	the Chair	tina Weav			- 17	ab Con	last M	ika Dal	Manie				TestAmerica Laboratories, In COC No:	
ddress: 28550 Cabot Drive, Suite 500	Client Project Manager: Kris Hinskey			1311	e Contat	a: Chris	lina weav	CF		ľ	ao Con	LACI: MI	ike Dei	NIGHA	.0			CUC No:		
14-15-4-58 Maril 843 40297	Telephone: 248	-994-2240			Te	lephone:	248-994	-2240			Т	clephor	e: 330-	497-93	96					
ity/State/Zip: Novi, MI, 48377	Email: kristoff	r.hinskev@ar	cadis.com		-	Analys	s Turna	round Tim		T				A	naly	es			1 of 1 COCs For lab use only	
hone: 248-994-2240										11							I I			
roject Name: Ford LTP	Sampler Name		M.	1.15	ТА	T if differe		weeks											Walk-in client	
		Jeremy	10	1115	_	10 day	- 2	weeks											Lab sampling	
roject Number: 30206169.0401.03	Method of Ship	ment/Carrier:						week days	2	Ŷ		6				SIM				
O # US3410018772	Shipping/Track	ing No:					F 1		le (V)	/Grat	0	260D			8260	260D			Job/SDG No:	
				Matrix		Centa	ners & Pi	reservatives		Ŷ	3260	8		0	oride	90				
		Sample Time	Air Aquenus	Sediment	Other: H2SO4	HN03	NaOH	Unpres Other:	Filtered Sample (Y / N)	Composite=C / Grab=G	1,1-DCE 8260D	cis-1,2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM			Sample Specific Notes / Special Instructions:	
Sample Identification	Sample Date	Sample Time	2 2	N N	<u>5</u>		z .	2 3 8	-	U U	-	<u>iii iii</u>	i a	Ĕ	2	÷				
TRIP BLANK_			1			1			N	IG	X	x x	X	X	X				1 Trip Blank	
MLI-1165 110624	11105.124	11:00	1.			P	1 1		٨	1 2	V	V s		X	×	×			3 VOAs for 8260D	
1 W 1103-110021	1100161	11,00	0	_						10	^	11		-	1				3 VOAs for 8260D SIM	
																			240-214621 ;OC	
				-+-+			++		_	+		_								
																ľ				
Possible Hazard Identification			<u> </u>					(A fee mag	be asses	ssed if s	sample				han 1					
Provide Non-Hazard Tammable in 1 pecial Instructions/QC Requirements & Comments:	rritant Poiso	nB	Jnknown	_	_	Re	turn to C	lient	Dispo	osal By	Lab		Archiv	e For		Month	5	_		
5.		dseld th	. 51	De.	Watel		50													
ubmit all results through Cadena at jtomalia@cader evel IV Reporting requested.	aco.com. Cadena #E	203728			l.	(
elinquished by:	Company:		Date/	Time:			Receiv	ved by:			/			Comp	any.				Date/Time:	
prof for	A	VENDI3		1061	29 16	;00		Vavi	6.1	0	Stu	127	4			Alena	15		106124 16:00	
clinquished by	Company:	dis	Date	Time	24	655		ved by	In	M	110	~		Comp	_	FXA			Date/Time:	
elinquished by	Company	1.4.1	Date	Time.		~		vedin Lab	oratory t	by:	(-		Com		UN			Date(Tipe: 1. do	
		4		1717	9 1	17-		10		. C				1 1	· / /	10			I RAPAR VILL	

O2008, TestAmerica Laboratories, Inc. All report reserved. TestAmerica & Design "" are trademarks of TestAmerica Laboratories, Inc.

. . .

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client Sample ID: TRIP BLANK_1

Date Collected: 11/06/24 00:00

Lab Sample ID: 240-214621-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/16/24 16:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/16/24 16:16	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/16/24 16:16	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/16/24 16:16	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/16/24 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		62 - 137			_		11/16/24 16:16	1
4-Bromofluorobenzene (Surr)	98		56 - 136					11/16/24 16:16	1
Toluene-d8 (Surr)	101		78 - 122					11/16/24 16:16	1
Dibromofluoromethane (Surr)	99		73 - 120					11/16/24 16:16	1

Client Sample ID: MW-116S_110624

Date Collected: 11/06/24 11:00

Date	Received:	11/09/24	08:00

Dibromofluoromethane (Surr)

Method: SW846 8260D SIM - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/12/24 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 127			_		11/12/24 16:10	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

102

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

······································								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.49	ug/L			11/16/24 16:39	1
1.0	U	1.0	0.46	ug/L			11/16/24 16:39	1
1.0	U	1.0	0.44	ug/L			11/16/24 16:39	1
1.0	U	1.0	0.51	ug/L			11/16/24 16:39	1
1.0	U	1.0	0.44	ug/L			11/16/24 16:39	1
1.0	U	1.0	0.45	ug/L			11/16/24 16:39	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
97		62 - 137			_		11/16/24 16:39	1
101		56 - 136					11/16/24 16:39	1
101		78 - 122					11/16/24 16:39	1
	Result 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 97 101	Result Qualifier 1.0 U 1.01 U	Result Qualifier RL 1.0 U 1.0 1.0 0 1.0 * * * * * * * * * * * * * * * * * * * * <td< td=""><td>$\begin{tabular}{ c c c c c c c } \hline Result & Qualifier & RL & MDL \\ \hline 1.0 & U & 1.0 & 0.49 \\ \hline 1.0 & U & 1.0 & 0.46 \\ \hline 1.0 & U & 1.0 & 0.44 \\ \hline 1.0 & U & 1.0 & 0.51 \\ \hline 1.0 & U & 1.0 & 0.44 \\ \hline 1.0 & U & 1.0 & 0.45 \\ \hline \end{tabular} \\ \hline ta$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{tabular}{ c c c c c c c } \hline Result & Qualifier & RL & MDL \\ \hline 1.0 & U & 1.0 & 0.49 \\ \hline 1.0 & U & 1.0 & 0.46 \\ \hline 1.0 & U & 1.0 & 0.44 \\ \hline 1.0 & U & 1.0 & 0.51 \\ \hline 1.0 & U & 1.0 & 0.44 \\ \hline 1.0 & U & 1.0 & 0.45 \\ \hline \end{tabular} \\ \hline ta$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

73 - 120

11/16/24 16:39

1

Lab Sample ID: 240-214621-2 Matrix: Water