PREPARED FOR

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 11/29/2024 12:03:51 PM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-215380-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/29/2024 12:03:51 PM

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)497-9396

Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-215380-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Chain of Custody	19

3

4

8

9

11

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-215380-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

DL

Appreviation	These commonly used appreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 20

Case Narrative

Client: Arcadis US Inc. Project: Ford LTP

Job ID: 240-215380-1 Eurofins Cleveland

Job Narrative 240-215380-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/21/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.2°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Job ID: 240-215380-1

Page 5 of 20 11/29/2024

Method Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215380-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

А

4

7

ŏ

10

11

13

Sample Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215380-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-215380-1	TRIP BLANK_84	Water	11/20/24 00:00	11/21/24 08:00
240-215380-2	MW-196_112024	Water	11/20/24 11:10	11/21/24 08:00
240-215380-3	MW-196S_112024	Water	11/20/24 12:25	11/21/24 08:00

1 0

Detection Summary

Client: Arcadis US Inc.

Job ID: 240-215380-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_84

Lab Sample ID: 240-215380-1

No Detections.

Client Sample ID: MW-196_112024

Lab Sample ID: 240-215380-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	270		10	4.6	ug/L	10	_	8260D	Total/NA
trans-1,2-Dichloroethene	110		10	5.1	ug/L	10		8260D	Total/NA
Trichloroethene	550		10	4.4	ug/L	10		8260D	Total/NA

Client Sample ID: MW-196S_112024 Lab Sample ID: 240-215380-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	81		2.0	0.92	ug/L	2	_	8260D	Total/NA
trans-1,2-Dichloroethene	2.5		2.0	1.0	ug/L	2		8260D	Total/NA
Trichloroothono	71		2.0	0.88	ua/l	2		83600	Total/NIA

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

Page 8 of 20 11/29/2024

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215380-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_84

Lab Sample ID: 240-215380-1 Date Collected: 11/20/24 00:00

Matrix: Water

Date Received: 11/21/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 15:31	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 15:31	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 15:31	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 15:31	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 15:31	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/24 15:31	1

Surrogate	%Recovery Qua	alifier Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123	62 - 137	_		11/25/24 15:31	1
4-Bromofluorobenzene (Surr)	85	56 ₋ 136			11/25/24 15:31	1
Toluene-d8 (Surr)	97	78 - 122			11/25/24 15:31	1
Dibromofluoromethane (Surr)	110	73 - 120			11/25/24 15:31	1

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215380-1

Project/Site: Ford LTP

Date Received: 11/21/24 08:00

Client Sample ID: MW-196_112024

Lab Sample ID: 240-215380-2 Date Collected: 11/20/24 11:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/26/24 13:03	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 127			_		11/26/24 13:03	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	10	U	10	4.9	ug/L			11/25/24 15:51	10
cis-1,2-Dichloroethene	270		10	4.6	ug/L			11/25/24 15:51	10
Tetrachloroethene	10	U	10	4.4	ug/L			11/25/24 15:51	10
trans-1,2-Dichloroethene	110		10	5.1	ug/L			11/25/24 15:51	10
Trichloroethene	550		10	4.4	ug/L			11/25/24 15:51	10
Vinyl chloride	10	U	10	4.5	ug/L			11/25/24 15:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2 Diablamathana d4 (Cum)			60 107			_		11/05/04 15:51	10

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		62 - 137	-		11/25/24 15:51	10
4-Bromofluorobenzene (Surr)	71		56 - 136			11/25/24 15:51	10
Toluene-d8 (Surr)	84		78 - 122			11/25/24 15:51	10
Dibromofluoromethane (Surr)	98		73 - 120			11/25/24 15:51	10

Client Sample Results

Client: Arcadis US Inc. Job ID: 240-215380-1

Project/Site: Ford LTP

Client Sample ID: MW-196S_112024

Lab Sample ID: 240-215380-3

Date Collected: 11/20/24 12:25 Matrix: Water Date Received: 11/21/24 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/26/24 13:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		68 - 127			-		11/26/24 13:26	1
Method: SW846 8260D - Volati	le Organic Comp	ounds by G	SC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	2.0	U	2.0	0.98	ug/L			11/25/24 16:11	2
cis-1,2-Dichloroethene	81		2.0	0.92	ug/L			11/25/24 16:11	2
Tetrachloroethene	2.0	U	2.0	0.88	ug/L			11/25/24 16:11	2
trans-1,2-Dichloroethene	2.5		2.0	1.0	ug/L			11/25/24 16:11	2
Trichloroethene	71		2.0	0.88	ug/L			11/25/24 16:11	2
Vinyl chloride	2.0	U	2.0	0.90	ug/L			11/25/24 16:11	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124		62 - 137			_		11/25/24 16:11	2
4-Bromofluorobenzene (Surr)	82		56 ₋ 136					11/25/24 16:11	2
Toluene-d8 (Surr)	94		78 - 122					11/25/24 16:11	2
Dibromofluoromethane (Surr)	109		73 - 120					11/25/24 16:11	2

11/29/2024

Surrogate Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215380-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-215379-B-1 MS	Matrix Spike	117	102	104	106
240-215379-B-1 MSD	Matrix Spike Duplicate	109	96	99	100
240-215380-1	TRIP BLANK_84	123	85	97	110
240-215380-2	MW-196_112024	111	71	84	98
240-215380-3	MW-196S_112024	124	82	94	109
LCS 240-636590/4	Lab Control Sample	106	95	94	96
MB 240-636590/7	Method Blank	114	81	91	103

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-215294-C-4 MS	Matrix Spike	111	
240-215294-C-4 MSD	Matrix Spike Duplicate	100	
240-215380-2	MW-196_112024	102	
240-215380-3	MW-196S_112024	109	
LCS 240-636809/5	Lab Control Sample	109	
MB 240-636809/7	Method Blank	107	
Surrogate Legend			

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

_

10

12

13

Client: Arcadis US Inc. Job ID: 240-215380-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-636590/7

Matrix: Water

Project/Site: Ford LTP

Analysis Batch: 636590

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			11/25/24 11:31	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			11/25/24 11:31	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 11:31	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			11/25/24 11:31	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			11/25/24 11:31	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			11/25/24 11:31	1

MB MB %Recovery Qualifier Dil Fac Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 11/25/24 11:31 114 4-Bromofluorobenzene (Surr) 81 56 - 136 11/25/24 11:31 Toluene-d8 (Surr) 91 78 - 122 11/25/24 11:31

Lab Sample ID: LCS 240-636590/4

Matrix: Water

Surrogate

Analysis Batch: 636590

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample

11/25/24 11:31

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	27.3		ug/L		109	63 - 134	
cis-1,2-Dichloroethene	25.0	26.6		ug/L		107	77 - 123	
Tetrachloroethene	25.0	26.9		ug/L		108	76 - 123	
trans-1,2-Dichloroethene	25.0	28.3		ug/L		113	75 - 124	
Trichloroethene	25.0	24.7		ug/L		99	70 - 122	
Vinyl chloride	12.5	13.3		ug/L		107	60 - 144	

73 - 120

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 106 62 - 137 4-Bromofluorobenzene (Surr) 95 56 - 136 Toluene-d8 (Surr) 94 78 - 122 73 - 120 Dibromofluoromethane (Surr) 96

103

Lab Sample ID: 240-215379-B-1 MS

Matrix: Water

Analysis Batch: 636590

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	25.0	24.2		ug/L		97	56 - 135	_
cis-1,2-Dichloroethene	1.0	U	25.0	23.8		ug/L		95	66 - 128	
Tetrachloroethene	1.0	U	25.0	25.5		ug/L		102	62 - 131	
trans-1,2-Dichloroethene	1.0	U	25.0	25.6		ug/L		103	56 - 136	
Trichloroethene	1.0	U	25.0	23.6		ug/L		94	61 - 124	
Vinyl chloride	1.0	U	12.5	10.2		ug/L		82	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	117		62 - 137
4-Bromofluorobenzene (Surr)	102		56 - 136
Toluene-d8 (Surr)	104		78 - 122

Eurofins Cleveland

11/29/2024

Page 13 of 20

Job ID: 240-215380-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-215379-B-1 MS **Matrix: Water**

Analysis Batch: 636590

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS

Lab Sample ID: 240-215379-B-1 MSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 106 73 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 636590

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	25.0	26.7		ug/L		107	56 - 135	10	26
cis-1,2-Dichloroethene	1.0	U	25.0	25.5		ug/L		102	66 - 128	7	14
Tetrachloroethene	1.0	U	25.0	27.1		ug/L		108	62 - 131	6	20
trans-1,2-Dichloroethene	1.0	U	25.0	26.9		ug/L		108	56 - 136	5	15
Trichloroethene	1.0	U	25.0	24.9		ug/L		99	61 - 124	5	15
Vinyl chloride	1.0	U	12.5	11.6		ug/L		93	43 - 157	13	24

MSD MSD

мв мв

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		62 - 137
4-Bromofluorobenzene (Surr)	96		56 - 136
Toluene-d8 (Surr)	99		78 - 122
Dibromofluoromethane (Surr)	100		73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-636809/7

Matrix: Water

Analysis Batch: 636809

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			11/26/24 12:39	1
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 107 68 - 127 11/26/24 12:39

Lab Sample ID: LCS 240-636809/5

Matrix: Water

Analysis Batch: 636809							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	10.0	7.72		ug/L		77	75 - 121

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109	68 - 127

Lab Sample ID: 240-215294-C-4 MS

Matrix: Water

Analysis Batcl

D: 240-215294-C-4 MS	Client Sample ID: Matrix Spike
	Prep Type: Total/NA
ch: 636809	

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Limits Unit %Rec 1,4-Dioxane 2.0 U 10.0 7.97 ug/L 80 20 - 180

Eurofins Cleveland

QC Sample Results

Spike

MSD MSD Result Qualifier

8.15

Client: Arcadis US Inc. Job ID: 240-215380-1 Project/Site: Ford LTP

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			68 - 127

_			
Lab Sample	ID: 240-21	5294-C-4	MSD

Matrix: Water

Analysis Batch: 636809

Allul	, 0.0	Dutoii.	00000

Analyte	Result	Qualifier	Added
1,4-Dioxane	2.0	U	10.0
	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1.2-Dichloroethane-d4 (Surr)	100		68 - 127

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

RPD Limits RPD Limit

D Unit %Rec 81 20 20 - 180 2 ug/L

QC Association Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215380-1

GC/MS VOA

Analysis Batch: 636590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-215380-1	TRIP BLANK_84	Total/NA	Water	8260D	
240-215380-2	MW-196_112024	Total/NA	Water	8260D	
240-215380-3	MW-196S_112024	Total/NA	Water	8260D	
MB 240-636590/7	Method Blank	Total/NA	Water	8260D	
LCS 240-636590/4	Lab Control Sample	Total/NA	Water	8260D	
240-215379-B-1 MS	Matrix Spike	Total/NA	Water	8260D	
240-215379-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 636809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-215380-2	MW-196_112024	Total/NA	Water	8260D SIM	
240-215380-3	MW-196S_112024	Total/NA	Water	8260D SIM	
MB 240-636809/7	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-636809/5	Lab Control Sample	Total/NA	Water	8260D SIM	
240-215294-C-4 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-215294-C-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

2

3

4

5

Q

10

11

14

Lab Chronicle

Client: Arcadis US Inc. Job ID: 240-215380-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_84

Lab Sample ID: 240-215380-1 Date Collected: 11/20/24 00:00

Matrix: Water

Date Received: 11/21/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			636590	LEE	EET CLE	11/25/24 15:31

Client Sample ID: MW-196_112024 Lab Sample ID: 240-215380-2

Date Collected: 11/20/24 11:10 Matrix: Water

Date Received: 11/21/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		10	636590	LEE	EET CLE	11/25/24 15:51
Total/NA	Analysis	8260D SIM		1	636809	R5XG	EET CLE	11/26/24 13:03

Client Sample ID: MW-196S_112024 Lab Sample ID: 240-215380-3

Date Collected: 11/20/24 12:25 Matrix: Water

Date Received: 11/21/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			636590	LEE	EET CLE	11/25/24 16:11
Total/NA	Analysis	8260D SIM		1	636809	R5XG	EET CLE	11/26/24 13:26

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Accreditation/Certification Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-215380-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927 02-28-	
Connecticut	State	PH-0806	12-31-26
Georgia	State	4062	02-27-25
Illinois	NELAP	200004	08-31-25
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-27-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Hampshire	NELAP	225024	09-30-25
New Jersey	NELAP	OH001	07-03-25
New York	NELAP	10975	04-02-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-25
Texas	NELAP	T104704517-22-19	08-31-25
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-25
West Virginia DEP	State	210	12-31-24

4

9

10

10

13

Chain of Custody Record

4.0 4.7 MICHIGAN TENTO

TestAmerica Laboratory location: Brighton -- 10448 Citation Drive, Suite 200 / Brighton, MI 48116 / 810-229-2763 Client Contact Regulatory program: DW NPDES RCRA Company Name: Arcadis TestAmerica Laboratories, Inc. Client Project Manager: Kris Hinskey Lab Contact: Mike DelMonico Site Contact: Christina Weaver Address: 28550 Cabot Drive, Suite 500 Telephone: 248-994-2240 Telephone: 248-994-2240 Telephone: 330-497-9396 COCs City/State/Zip: Novi, M1, 48377 Analysis Turnaround Time Analyses Email: kristoffer.hinskey@arcadis.com For lab use only Phone: 248-994-2240 Walk-in client Sampler Name: Project Name: Ford LTP 3 weeks Lottie Jun 10 day ✓ 2 weeks Lab sampling Project Number: 30206169,0401.03 SIM 1 week Composite-C/Grab-G Filtered Sample (Y / N) 2 days Vinyl Chloride 8260D 1.4-Dioxane 8260D PO # US3410018772 Job/SDG No Shipping/Tracking No: 1 day Matrix PCE 82600 Sample Specific Notes / NAOH HNO3 Solid Special Instructions: HC Sample Date Sample Time Sample Identification TRIP BLANK_ 84 NG Χ Х X 1 Χ X X 1 Trip Blank 3 VOAs for 8260D 6 6 MW-196_112024 11/20/24 σ 3 VOAs for 8260D SIM MW-1965_112024 1225 6 (UZO124 240-215380 COC Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ✓ Non-Hazard lammable sin Irritant Poison B Jnknown Return to Client Disposal By Lab Archive For Special Instructions/QC Requirements & Comments: Onsite Submit all results through Cadena at jtomalia@cadenaco.com. Cadena #E203728 Level IV Reporting requested. Relinguished by ANCADIS 320 4/20/24 ARCADIS ARCADIS 11/20/24 1443

\$2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design ¹⁹ are trademarks of TestAmerica Laboratories, Inc.

COMPANY

11/20/24 1450

	VOA Sample Preservation - Date/Time VOAs Frozen.
	Sample(s) were further preserved in the laboratory Time preserved. Preservative(s) added/Lot number(s)
1.	20. SAMPLE PRESERVATION
	Sample(s)were received after the recommended holding time had expired. Sample(s)were received mith bubble >6 mm in diameter (Notify PM)
	18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by:
<u></u>	Concerning
<u></u>	Contacted PM Date by via Verbal Voice Mail Other
	15 Were air bubbles >6 mm m any VOA vials? Larger than thus. Yes No NA 16 Was a VOA trap blank present m the cooler(s)? Trap Blank Lot # Yes No 17 Was a LL Hg or Me Hg trap blank present?
	13 Were all preserved sample(s) at the correct pH upon receipt? 14 Were VOAs on the COC? Yes No NA) pH Strip Lot# HC448976 Yes No NA) pH Strip Lot# HC448976
	
	with the COC?
	6. Was/were the person(s) who collected the samples clearly identified on the COC? (TE) No 7. Did all bottles arrive in good condition (Unbroken)?
······································	Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Where the custody papers religiously the sample of the coolers are already to the coolers.
······································	-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? Yes No NA
	tyYes No NA
	of See Multiple Cooler Form + 0 - 2 °C Corrected Cooler Temp. 4 'O °C Corrected Cooler T
	al used. Bubble Wrap Foam Plastic Bag
	Drop-off Date/Time Storage Location Foam Box Client Cooler Box Other
	Cooler Received on 1 - 21; 24 Opened on 1 24 MALISSA LOAR FedEx: 1st Grd Exp UPS FAS Waypoint Chent Drop Off Eurofins Courier Other
	AS Site Name
	Eurbfins - Eleveland Sample Receipt Form/Narrative Login # :- Login # :-

WI-NC-099-110524 Cooler Receipt Form.doc

DATA VERIFICATION REPORT

November 30, 2024

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - Soil Gas, Ground Water and Soil

Project number: 30206169.0401.04_WA-03

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 215380-1 Sample date: 2024-11-20

Report received by CADENA: 2024-11-29

Initial Data Verification completed by CADENA: 2024-11-30

Number of Samples:3 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description							
<	Less than the reported concentration.							
>	Greater than the reported concentration.							
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.							
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.							
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.							
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.							
J-	The result is an estimated quantity, but the result may be biased low.							
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED							
JH	The sample result is considered estimated and is potentially biased high.							
JL	The sample result is considered estimated and is potentially biased low.							
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED							
NJ	Tentatively identified compound with approximated concentration.							
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)							
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.							
U	Indicates that the analyte / compound was analyzed for, but not detected.							
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.							
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.							

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 215380-1

Sample Name:	TRIP BLA	ANK_84			MW-196	5_11202	4		MW-196S_112024			
.ab Sample ID:	2402153801				240215	3802			2402153803			
Sample Date:	11/20/2024				11/20/2024			11/20/2024				
	Report		Valid	Report		Valid	l Report			Valid		
Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
75-35-4	ND	1.0	ug/l		ND	10	ug/l		ND	2.0	ug/l	
156-59-2	ND	1.0	ug/l		270	10	ug/l		81	2.0	ug/l	
127-18-4	ND	1.0	ug/l		ND	10	ug/l		ND	2.0	ug/l	
156-60-5	ND	1.0	ug/l		110	10	ug/l		2.5	2.0	ug/l	
79-01-6	ND	1.0	ug/l		550	10	ug/l		71	2.0	ug/l	
75-01-4	ND	1.0	ug/l		ND	10	ug/l		ND	2.0	ug/l	
123-91-1					ND	2.0	ug/l		ND	2.0	ug/l	
7 1 1 7	ab Sample ID: ample Date: Cas No. 75-35-4 1.56-59-2 1.27-18-4 1.56-60-5 79-01-6 75-01-4	ab Sample ID: 2402153 ample Date: 11/20/2 Cas No. Result 75-35-4 ND 156-59-2 ND 127-18-4 ND 156-60-5 ND 179-01-6 ND 175-01-4 ND	Ab Sample ID: 2402153801 Ample Date: 11/20/2024 Report Cas No. Result Limit 75-35-4 ND 1.0 1.56-59-2 ND 1.0 1.27-18-4 ND 1.0 1.56-60-5 ND 1.0 1.075-01-6 ND 1.0 1.075-01-4 ND 1.0	Ab Sample ID: 2402153801 Ample Date: 11/20/2024 Report Cas No. Result Limit Units 75-35-4 ND 1.0 ug/l 1.56-59-2 ND 1.0 ug/l 1.27-18-4 ND 1.0 ug/l 1.56-60-5 ND 1.0 ug/l 1.56-60-5 ND 1.0 ug/l 1.79-01-6 ND 1.0 ug/l 1.75-01-4 ND 1.0 ug/l	Ab Sample ID: 2402153801 Ample Date: 11/20/2024 Report Valid Cas No. Result Limit Units Qualifier 75-35-4 ND 1.0 ug/l 1.56-59-2 ND 1.0 ug/l 1.27-18-4 ND 1.0 ug/l 1.56-60-5 ND 1.0 ug/l 1.56-60-5 ND 1.0 ug/l 1.75-01-6 ND 1.0 ug/l 1.75-01-4 ND 1.0 ug/l 1.75-01-4 ND 1.0 ug/l	Ab Sample ID: 2402153801 240215 ample Date: 11/20/2024 11/20/2 Report Valid Cas No. Result Limit Units Qualifier Result 25-35-4 ND 1.0 ug/l ND 1.56-59-2 ND 1.0 ug/l ND 1.56-60-5 ND 1.0 ug/l ND 1.56-60-5 ND 1.0 ug/l 110 29-01-6 ND 1.0 ug/l 550 25-01-4 ND 1.0 ug/l ND	ab Sample ID: 2402153801 2402153802 ample Date: 11/20/2024 11/20/2024 Report Valid Report Cas No. Result Limit Units Qualifier Result Limit 25-35-4 ND 1.0 ug/l ND 10 1.56-59-2 ND 1.0 ug/l ND 10 1.27-18-4 ND 1.0 ug/l ND 10 1.56-60-5 ND 1.0 ug/l 110 10 29-01-6 ND 1.0 ug/l ND 10 25-01-4 ND 1.0 ug/l ND 10	### Sample ID: 2402153801 2402153802 ### Sample Date: 11/20/2024 ### Total Park	Ab Sample ID: 2402153801 2402153802 ample Date: 11/20/2024 Tall/20/2024 Valid Report Valid Cas No. Result Limit Units Qualifier Result Limit Units Qualifier 25-35-4 ND 1.0 ug/l ND 10 ug/l 1.56-59-2 ND 1.0 ug/l ND 10 ug/l 1.27-18-4 ND 1.0 ug/l ND 10 ug/l 1.56-60-5 ND 1.0 ug/l 550 10 ug/l 29-01-6 ND 1.0 ug/l ND 10 ug/l 25-01-4 ND 1.0 ug/l ND 10 ug/l	Ab Sample ID: 2402153801 2402153802 2402	ab Sample ID: 2402153801 2402153802 2402153803 ample Date: 11/20/2∪24 11/20/2∪24 11/20/2∪24 Report Valid Report Valid Report Cas No. Result Limit Units Qualifier	ab Sample ID: 2402153801