5

8

10

12

14

1

PREPARED FOR

ANALYTICAL REPORT

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377 Generated 2/20/2025 8:03:54 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-218897-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 2/20/2025 8:03:54 AM

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)497-9396

Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-218897-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
	8
Client Sample Results	9
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Chain of Custody	23

10

12

13

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Qualifiers GC/MS VOA

Qualifier	Qualifier Description
	110 1/ 1100

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 25

A

5

6

7

10

46

13

Case Narrative

Client: Arcadis US Inc. Project: Ford LTP

Job ID: 240-218897-1 Eurofins Cleveland

Job Narrative 240-218897-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/13/2025 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.9°C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) analyzed in batch 240-645279 was outside the method criteria for the following analyte(s): 1,1-Dichloroethene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 25 2/20/2025

2

Job ID: 240-218897-1

3

4

5

8

. .

12

13

Method Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-218897-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

А

4

۾

9

10

12

Sample Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-218897-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-218897-1	TRIP BLANK_30	Water	02/10/25 00:00	02/13/25 08:00
240-218897-2	MW-74S_021025	Water	02/10/25 11:25	02/13/25 08:00
240-218897-3	MW-74_021025	Water	02/10/25 12:35	02/13/25 08:00
240-218897-4	DUP-07 021025	Water	02/10/25 00:00	02/13/25 08:00

4

7

a

10

11

13

Detection Summary

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_30 Lab Sample ID: 240-218897-1

No Detections.

Client Sample ID: MW-74S_021025 Lab Sample ID: 240-218897-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.0	1.0	0.46 ug/L	1	8260D	Total/NA

Client Sample ID: MW-74_021025 Lab Sample ID: 240-218897-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,4-Dioxane	2.2	2.0	0.86 ug/L		8260D SIM	Total/NA
Vinyl chloride	5.9	1.0	0.45 ug/L	1	8260D	Total/NA

Client Sample ID: DUP-07_021025 Lab Sample ID: 240-218897-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,4-Dioxane	2.1		2.0	0.86	ug/L	1	_	8260D SIM	Total/NA
Vinyl chloride	5.9		1.0	0.45	ug/L	1		8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

Page 8 of 25 2/20/2025

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_30

Date Received: 02/13/25 08:00

Lab Sample ID: 240-218897-1 Date Collected: 02/10/25 00:00

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1.0 1,1-Dichloroethene 1.0 U 0.49 ug/L 02/15/25 14:21 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 02/15/25 14:21 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 02/15/25 14:21 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 02/15/25 14:21 Trichloroethene 1.0 U 1.0 0.44 ug/L 02/15/25 14:21 Vinyl chloride 0.45 ug/L 1.0 U 1.0 02/15/25 14:21 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 112 62 - 137 02/15/25 14:21 4-Bromofluorobenzene (Surr) 88 02/15/25 14:21 56 - 136 97 78 - 122 02/15/25 14:21 Toluene-d8 (Surr) Dibromofluoromethane (Surr) 102 73 - 120 02/15/25 14:21

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: MW-74S_021025

Lab Sample ID: 240-218897-2 Date Collected: 02/10/25 11:25

Matrix: Water

Date Received: 02/13/25 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/18/25 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 127			_		02/18/25 15:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/16/25 01:17	1
cis-1,2-Dichloroethene	1.0		1.0	0.46	ug/L			02/16/25 01:17	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 01:17	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/16/25 01:17	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 01:17	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/16/25 01:17	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		62 - 137					02/16/25 01:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	62 - 137		02/16/25 01:17	1
4-Bromofluorobenzene (Surr)	85	56 ₋ 136		02/16/25 01:17	1
Toluene-d8 (Surr)	99	78 - 122		02/16/25 01:17	1
Dibromofluoromethane (Surr)	101	73 - 120		02/16/25 01:17	1

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Vinyl chloride

Client Sample ID: MW-74_021025

Date Received: 02/13/25 08:00

Date Collected: 02/10/25 12:35

5.9

Lab Sample ID: 240-218897-3 Matrix: Water

02/16/25 02:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.2		2.0	0.86	ug/L			02/18/25 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		68 - 127			-		02/18/25 16:21	1
Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	C/MS						
Method: SW846 8260D - Volat Analyte		ounds by G Qualifier	C/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		MDL 0.49		<u>D</u> .	Prepared	Analyzed 02/16/25 02:27	Dil Fac
Analyte	Result	Qualifier U	RL		ug/L	<u> </u>	Prepared	·	Dil Fac
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	Result 1.0	Qualifier U U	RL	0.49	ug/L ug/L	<u>D</u> -	Prepared	02/16/25 02:27	Dil Fac 1 1 1
Analyte 1,1-Dichloroethene	Result 1.0 1.0	Qualifier U U U	1.0 1.0	0.49 0.46	ug/L ug/L ug/L	<u> </u>	Prepared	02/16/25 02:27 02/16/25 02:27	Dil Fac 1 1 1 1

Surrogate	%Recovery Qualific	er Limits	Prepared Analy.	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	62 - 137	02/16/25	02:27 1
4-Bromofluorobenzene (Surr)	84	56 ₋ 136	02/16/25	02:27 1
Toluene-d8 (Surr)	96	78 - 122	02/16/25	02:27 1
Dibromofluoromethane (Surr)	101	73 - 120	02/16/25	02:27 1
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	1,2-Dichloroethane-d4 (Surr) 113 4-Bromofluorobenzene (Surr) 84 Toluene-d8 (Surr) 96	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 4-Bromofluorobenzene (Surr) 84 56 - 136 Toluene-d8 (Surr) 96 78 - 122	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 02/16/25 4-Bromofluorobenzene (Surr) 84 56 - 136 02/16/25 Toluene-d8 (Surr) 96 78 - 122 02/16/25

1.0

0.45 ug/L

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Trichloroethene

Client Sample ID: DUP-07_021025

Date Collected: 02/10/25 00:00 Date Received: 02/13/25 08:00 Lab Sample ID: 240-218897-4

02/19/25 03:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.1		2.0	0.86	ug/L			02/18/25 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 127			-		02/18/25 16:45	
: Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	C/MS						
Method: SW846 8260D - Volat Analyte	•	ounds by G	SC/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•	Qualifier		MDL 0.49		<u>D</u> .	Prepared	Analyzed 02/19/25 03:15	Dil Fac
Analyte	Result	Qualifier U	RL	0.49		<u>D</u> .	Prepared	·	Dil Fac 1
Analyte 1,1-Dichloroethene	Result 1.0	Qualifier U	RL	0.49	ug/L ug/L	<u> </u>	Prepared	02/19/25 03:15	Dil Fac 1 1 1

Vinyl chloride	5.9	1.0	0.45 ug/L		02/19/25 03:15	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120	62 - 137			02/19/25 03:15	1
4-Bromofluorobenzene (Surr)	85	56 ₋ 136			02/19/25 03:15	1
Toluene-d8 (Surr)	100	78 - 122			02/19/25 03:15	1
Dibromofluoromethane (Surr)	109	73 - 120			02/19/25 03:15	1

0.44 ug/L

2/20/2025

3

6

8

10

11

13

Surrogate Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-218897-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-218828-A-8 MS	Matrix Spike	105	97	101	100
240-218828-A-8 MSD	Matrix Spike Duplicate	115	92	91	105
240-218828-C-1 MS	Matrix Spike	102	95	97	98
240-218828-C-1 MSD	Matrix Spike Duplicate	101	97	97	98
240-218897-1	TRIP BLANK_30	112	88	97	102
240-218897-2	MW-74S_021025	111	85	99	101
240-218897-3	MW-74_021025	113	84	96	101
240-218897-4	DUP-07_021025	120	85	100	109
240-218979-B-1 MS	Matrix Spike	106	92	99	99
240-218979-B-1 MSD	Matrix Spike Duplicate	104	97	98	98
LCS 240-644941/6	Lab Control Sample	101	95	100	99
LCS 240-644951/4	Lab Control Sample	100	97	103	97
LCS 240-645279/4	Lab Control Sample	103	94	103	98
MB 240-644941/12	Method Blank	110	91	99	100
MB 240-644951/10	Method Blank	109	86	98	100
MB 240-645279/10	Method Blank	115	85	95	103

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCA						
Lab Sample ID	Client Sample ID	(68-127)						
240-218897-2	MW-74S_021025	92						
240-218897-3	MW-74_021025	100						
240-218897-4	DUP-07_021025	94						
240-218897-4 MS	DUP-07_021025	101						
240-218897-4 MSD	DUP-07_021025	99						
LCS 240-645195/4	Lab Control Sample	98						
MB 240-645195/7	Method Blank	97						

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Cleveland

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-644941/12

Matrix: Water

Project/Site: Ford LTP

Analysis Batch: 644941

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/15/25 12:47	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/15/25 12:47	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/15/25 12:47	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/15/25 12:47	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/15/25 12:47	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/15/25 12:47	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 62 - 137 02/15/25 12:47 110 4-Bromofluorobenzene (Surr) 91 56 - 136 02/15/25 12:47 02/15/25 12:47 Toluene-d8 (Surr) 99 78 - 122 Dibromofluoromethane (Surr) 100 73 - 120 02/15/25 12:47

Lab Sample ID: LCS 240-644941/6

Matrix: Water

Analysis Batch: 644941

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	24.3		ug/L		97	63 - 134	
cis-1,2-Dichloroethene	25.0	24.6		ug/L		98	77 - 123	
Tetrachloroethene	25.0	26.2		ug/L		105	76 - 123	
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	75 - 124	
Trichloroethene	25.0	24.1		ug/L		96	70 - 122	
Vinyl chloride	25.0	23.6		ug/L		94	60 - 144	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 101 62 - 137 4-Bromofluorobenzene (Surr) 56 - 136 95 Toluene-d8 (Surr) 100 78 - 122 73 - 120 Dibromofluoromethane (Surr) 99

Analysis Batch: 644941

Lab Sample ID: 240-218828-C-1 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	5.0	U	125	113		ug/L		91	56 - 135	
cis-1,2-Dichloroethene	9.2		125	132		ug/L		99	66 - 128	
Tetrachloroethene	120		125	223		ug/L		80	62 - 131	
trans-1,2-Dichloroethene	5.0	U	125	122		ug/L		98	56 - 136	
Trichloroethene	13		125	127		ug/L		91	61 - 124	
Vinyl chloride	5.0	U	125	112		ug/L		90	43 - 157	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		62 - 137
4-Bromofluorobenzene (Surr)	95		56 - 136
Toluene-d8 (Surr)	97		78 - 122

Eurofins Cleveland

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-218828-C-1 MS **Matrix: Water**

Project/Site: Ford LTP

Analysis Batch: 644941

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MS MS Surrogate

%Recovery Qualifier Limits Dibromofluoromethane (Surr) 98 73 - 120

Lab Sample ID: 240-218828-C-1 MSD

Matrix: Water

Analysis Batch: 644941

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 1,1-Dichloroethene 5.0 U 125 115 ug/L 92 56 - 135 26 cis-1,2-Dichloroethene 9.2 125 130 97 66 - 128 2 ug/L 14 Tetrachloroethene 120 125 213 ug/L 72 62 - 131 20 trans-1,2-Dichloroethene 5.0 U 125 120 ug/L 96 56 - 136 15 Trichloroethene 13 125 126 ug/L 91 61 - 124 15 Vinyl chloride 5.0 U 125 114 ug/L 43 - 157 24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		62 - 137
4-Bromofluorobenzene (Surr)	97		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	98		73 - 120

Lab Sample ID: MB 240-644951/10 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 644951

l		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/16/25 00:30	1
I	cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/16/25 00:30	1
	Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 00:30	1
I	trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/16/25 00:30	1
	Trichloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 00:30	1
I	Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/16/25 00:30	1

MB MB

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	62 - 137		02/16/25 00:30	1
4-Bromofluorobenzene (Surr)	86	56 - 136		02/16/25 00:30	1
Toluene-d8 (Surr)	98	78 - 122		02/16/25 00:30	1
Dibromofluoromethane (Surr)	100	73 - 120		02/16/25 00:30	1

Lab Sample ID: LCS 240-644951/4 **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 644951

Spike	LCS	LCS			%Rec
Analyte Added	Result	Qualifier Unit	D	%Rec	Limits
1,1-Dichloroethene 25.0	22.2	ug/L	_	89	63 - 134
cis-1,2-Dichloroethene 25.0	23.7	ug/L		95	77 - 123
Tetrachloroethene 25.0	23.8	ug/L		95	76 - 123
trans-1,2-Dichloroethene 25.0	23.4	ug/L		93	75 - 124
Trichloroethene 25.0	22.7	ug/L		91	70 - 122

Eurofins Cleveland

2/20/2025

Page 15 of 25

Prep Type: Total/NA

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Matrix: Water

Lab Sample ID: LCS 240-644951/4

Analysis Batch: 644951								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	25.0	21.3		ug/L		85	60 - 144	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	97		56 - 136
Toluene-d8 (Surr)	103		78 - 122
Dibromofluoromethane (Surr)	97		73 - 120

Lab Sample ID: 240-218828-A-8 MS

Matrix: Water

Analysis Batch: 644951

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS

	Sample	Sample	Spike	IVIO	IVIO				/onec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	5.0	U	125	96.8		ug/L		77	56 - 135	
cis-1,2-Dichloroethene	20		125	134		ug/L		91	66 - 128	
trans-1,2-Dichloroethene	5.0	U	125	109		ug/L		87	56 - 136	
Trichloroethene	37	F2	125	130		ug/L		75	61 - 124	
Vinyl chloride	5.0	U F2	125	103		ug/L		82	43 - 157	

Snike

MS MS Surrogate %Recovery Qualifier Limits 62 - 137 1,2-Dichloroethane-d4 (Surr) 105 4-Bromofluorobenzene (Surr) 97 56 - 136 Toluene-d8 (Surr) 101 78 - 122 73 - 120 Dibromofluoromethane (Surr) 100

Matrix: Water

Analysis Batch: 644951

Lab Sample ID: 240-218828-A-8 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MOD	MOD				%Rec		RPD
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
loroethene	5.0	U	125	121		ug/L		97	56 - 135	22	26
Dichloroethene	20		125	152		ug/L		106	66 - 128	13	14
2-Dichloroethene	5.0	U	125	118		ug/L		94	56 - 136	8	15
pethene	37	F2	125	162	F2	ug/L		101	61 - 124	22	15
loride	5.0	U F2	125	141	F2	ug/L		113	43 - 157	31	24
	nloroethene Dichloroethene 2-Dichloroethene pethene loride	Result ploroethene 5.0 Dichloroethene 20 2-Dichloroethene 5.0 pethene 37	Result Qualifier ploroethene 5.0 U Dichloroethene 20 U 22-Dichloroethene 5.0 U pethene 37 F2	Result olloroethene Qualifier Added olloroethene Dichloroethene 5.0 U 125 2-Dichloroethene 20 125 2-Dichloroethene 5.0 U 125 bethene 37 F2 125	Result oloroethene Qualifier Added Added Result	Result olloroethene Qualifier Added olloroethene Result olloroethene Qualifier Dichloroethene 5.0 U 125 121 2-Dichloroethene 20 125 152 2-Dichloroethene 5.0 U 125 118 bethene 37 F2 125 162 F2	Result olloroethene Qualifier Added olloroethene Result olloroethene Qualifier Unit olloroethene Unit	Result olloroethene Qualifier Added olloroethene Result olloroethene Qualifier oug/L Unit oug/L Description Dichloroethene 20 125 152 ug/L ug/L 2-Dichloroethene 5.0 U 125 118 ug/L 2-Dichloroethene 37 F2 125 162 F2 ug/L	Result olloroethene Qualifier Added olloroethene Result olloroethene Qualifier Unit olloroethene D %Recommender Dichloroethene 20 125 152 ug/L 106 2-Dichloroethene 5.0 U 125 118 ug/L 94 2-Dichloroethene 37 F2 125 162 F2 ug/L 101	Result Qualifier Added Result Qualifier Unit D %Rec Limits ploroethene 5.0 U 125 121 ug/L 97 56 - 135 Dichloroethene 20 125 152 ug/L 106 66 - 128 2-Dichloroethene 5.0 U 125 118 ug/L 94 56 - 136 2-Dichloroethene 37 F2 125 162 F2 ug/L 101 61 - 124	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ploroethene 5.0 U 125 121 ug/L 97 56 - 135 22 Dichloroethene 20 125 152 ug/L 106 66 - 128 13 2-Dichloroethene 5.0 U 125 118 ug/L 94 56 - 136 8 pethene 37 F2 125 162 F2 ug/L 101 61 - 124 22

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	115		62 _ 137
4-Bromofluorobenzene (Surr)	92		56 ₋ 136
Toluene-d8 (Surr)	91		78 - 122
Dibromofluoromethane (Surr)	105		73 - 120

Lab Sample ID: MB 240-645279/10

Matrix: Water

Analysis Batch: 645279

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 1.0 02/19/25 01:41 1,1-Dichloroethene 1.0 U 0.49 ug/L

Eurofins Cleveland

Page 16 of 25

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 240-645279/10

Matrix: Water

Analysis Batch: 645279

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			02/19/25 01:41	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/19/25 01:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/19/25 01:41	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/19/25 01:41	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/19/25 01:41	1

Surrogate	%Recovery	Qualifier Limits	Prepared	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	62 - 137		02/19/25 01:41	1
4-Bromofluorobenzene (Surr)	85	56 - 136	3	02/19/25 01:41	1
Toluene-d8 (Surr)	95	78 - 122	2	02/19/25 01:41	1
Dibromofluoromethane (Surr)	103	73 - 120)	02/19/25 01:41	1

Lab Sample ID: LCS 240-645279/4

Matrix: Water

Vinyl chloride

Analysis Batch: 645279

Client Sample ID: Lab Control Sample

60 - 144

79

Prep Type: Total/NA

%Rec Spike LCS LCS Added Result Qualifier Analyte Unit %Rec Limits 19.0 1,1-Dichloroethene 25.0 76 63 - 134 ug/L ug/L cis-1,2-Dichloroethene 25.0 22.0 88 77 - 123 Tetrachloroethene 25.0 21.4 86 76 - 123 ug/L trans-1,2-Dichloroethene 25.0 20.6 ug/L 82 75 - 124 Trichloroethene 25.0 20.9 83 70 - 122 ug/L

19.7

ug/L

25.0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		62 - 137
4-Bromofluorobenzene (Surr)	94		56 ₋ 136
Toluene-d8 (Surr)	103		78 - 122
Dibromofluoromethane (Surr)	98		73 - 120

Lab Sample ID: 240-218979-B-1 MS

Matrix: Water

Analysis Batch: 645279

Client Sample ID: Matrix Spil	(e
Prep Type: Total/N	Α

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	5.9	J	250	200		ug/L		78	56 - 135	
cis-1,2-Dichloroethene	16		250	253		ug/L		95	66 - 128	
Tetrachloroethene	10	U	250	183		ug/L		73	62 - 131	
trans-1,2-Dichloroethene	12		250	223		ug/L		84	56 - 136	
Trichloroethene	190	F1	250	362		ug/L		69	61 - 124	
Vinyl chloride	10	U	250	217		ug/L		87	43 - 157	

MS MS

Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	106		62 - 137	
4-Bromofluorobenzene (Surr)	92		56 ₋ 136	
Toluene-d8 (Surr)	99		78 - 122	
Dibromofluoromethane (Surr)	99		73 - 120	

Eurofins Cleveland

Page 17 of 25

Client: Arcadis US Inc. Project/Site: Ford LTP

Job ID: 240-218897-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab	Sample	ID: 240-218979-B	-1 MSD
Luv	Campic	ID. 270-2 1001 0-D	- 1 14100

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 645279

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	5.9	J	250	197		ug/L		76	56 - 135	2	26
cis-1,2-Dichloroethene	16		250	239		ug/L		89	66 - 128	6	14
Tetrachloroethene	10	U	250	176		ug/L		71	62 - 131	4	20
trans-1,2-Dichloroethene	12		250	218		ug/L		83	56 - 136	2	15
Trichloroethene	190	F1	250	335	F1	ug/L		58	61 - 124	8	15
Vinyl chloride	10	U	250	195		ug/L		78	43 - 157	11	24

MSD MSD

мв мв

70Necovery	Qualifier	Lillins
104		62 - 137
97		56 - 136
98		78 - 122
98		73 - 120
	104 97 98	97 98

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-645195/7

Matrix: Water

Analysis Batch: 645195

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte RLMDL Unit Analyzed Result Qualifier D Prepared Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 02/18/25 12:03

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 97 68 - 127 02/18/25 12:03

Lab Sample ID: LCS 240-645195/4

Matrix: Water

Analysis Batch: 645195

Spike LCS LCS %Rec Analyte Added Result Qualifier %Rec Limits Unit 1,4-Dioxane 10.0 9.49 ug/L 95 75 - 121

LCS LCS

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 68 - 127

Lab S

Matri

Analysis Batch: 645195

Sample ID: 240-218897-4 MS	Client Sample ID: DUP-07_021025
rix: Water	Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec 10.0 1,4-Dioxane 2.1 11.7 20 - 180 ug/L

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 101 68 - 127

Eurofins Cleveland

QC Sample Results

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-218897-4 MSD Client Sample ID: DUP-07_021025

Matrix: Water Prep Type: Total/NA

Analysis Batch: 645195

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.1		10.0	11.8		ug/L		97	20 - 180	0	20

MSD MSD

Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 68 - 127

QC Association Summary

Client: Arcadis US Inc. Job ID: 240-218897-1 Project/Site: Ford LTP

GC/MS VOA

Analysis Batch: 644941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-218897-1	TRIP BLANK_30	Total/NA	Water	8260D	_
MB 240-644941/12	Method Blank	Total/NA	Water	8260D	
LCS 240-644941/6	Lab Control Sample	Total/NA	Water	8260D	
240-218828-C-1 MS	Matrix Spike	Total/NA	Water	8260D	
240-218828-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 644951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-218897-2	MW-74S_021025	Total/NA	Water	8260D	<u> </u>
240-218897-3	MW-74_021025	Total/NA	Water	8260D	
MB 240-644951/10	Method Blank	Total/NA	Water	8260D	
LCS 240-644951/4	Lab Control Sample	Total/NA	Water	8260D	
240-218828-A-8 MS	Matrix Spike	Total/NA	Water	8260D	
240-218828-A-8 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 645195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-218897-2	MW-74S_021025	Total/NA	Water	8260D SIM	
240-218897-3	MW-74_021025	Total/NA	Water	8260D SIM	
240-218897-4	DUP-07_021025	Total/NA	Water	8260D SIM	
MB 240-645195/7	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-645195/4	Lab Control Sample	Total/NA	Water	8260D SIM	
240-218897-4 MS	DUP-07_021025	Total/NA	Water	8260D SIM	
240-218897-4 MSD	DUP-07_021025	Total/NA	Water	8260D SIM	

Analysis Batch: 645279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-218897-4	DUP-07_021025	Total/NA	Water	8260D	
MB 240-645279/10	Method Blank	Total/NA	Water	8260D	
LCS 240-645279/4	Lab Control Sample	Total/NA	Water	8260D	
240-218979-B-1 MS	Matrix Spike	Total/NA	Water	8260D	
240-218979-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Eurofins Cleveland

Lab Chronicle

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_30

Lab Sample ID: 240-218897-1 Date Collected: 02/10/25 00:00

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	644941	MS	EET CLE	02/15/25 14:21

Client Sample ID: MW-74S_021025 Lab Sample ID: 240-218897-2

Matrix: Water

Date Collected: 02/10/25 11:25 Date Received: 02/13/25 08:00

Date Received: 02/13/25 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	644951	MS	EET CLE	02/16/25 01:17
Total/NA	Analysis	8260D SIM		1	645195	R5XG	EET CLE	02/18/25 15:58

Client Sample ID: MW-74_021025 Lab Sample ID: 240-218897-3

Date Collected: 02/10/25 12:35 Matrix: Water

Date Received: 02/13/25 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	644951	MS	EET CLE	02/16/25 02:27
Total/NA	Analysis	8260D SIM		1	645195	R5XG	EET CLE	02/18/25 16:21

Client Sample ID: DUP-07_021025 Lab Sample ID: 240-218897-4

Date Collected: 02/10/25 00:00 **Matrix: Water**

Date Received: 02/13/25 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			645279	MS	EET CLE	02/19/25 03:15
Total/NA	Analysis	8260D SIM		1	645195	R5XG	EET CLE	02/18/25 16:45

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Page 21 of 25

2/20/2025

Accreditation/Certification Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-218897-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-28-25
Connecticut	State	PH-0806	12-31-26
Georgia	State	4062	02-27-25
Illinois	NELAP	200004	08-31-25
lowa	State	421	06-01-25
Kansas	NELAP	E-10336	01-31-26
Kentucky (UST)	State	112225	02-27-25
Kentucky (WW)	State	KY98016	12-31-25
Minnesota	NELAP	039-999-348	12-31-25
New Hampshire	NELAP	225024	09-30-25
New Jersey	NELAP	OH001	07-03-25
New York	NELAP	10975	04-02-25
Ohio	State	8303	11-04-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-25
Texas	NELAP	T104704517-22-19	08-31-25
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-25
West Virginia DEP	State	210	12-31-25
Wisconsin	State	399167560	08-31-25

4

5

6

8

9

10

12

13

Chain of Custody Record

Test,	An	ne	ric	a
THE LEADER	N ENVI	RONMEN	AL TEST	INC

Т	estAmerica Labora	tory location:	Farr	ningto	n Hills	3885	55 Hills	s Tec	h Dri	ve, S	uite 60	0, Farr	ningto	n Hill	s 4833	31						i		Ti	HE LEADER IN	ENVIRONM	ENTAL TEST
Client Contact	Regulat	ory program:	:	ſ	DW	′	Γ,	NPD	ES	i	RC	RA	-	Othe	er -												
Company Name: Arcadis	Client Project	Manager: Meg	an Me	ckley			Site	Cont	act: S	Samai	ntha Sa	paichle	er		T	Lab (Contac	t: Mil	ke Del	Moni	0	_			COC No:	S /	
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240					Telephone: 248-994-2240 Teleph				Telephone: 330-497-9396							7									
City/State/Zip: Novi, MI, 48377	Email: kristoff	- hindrau@an	an dia				Analysis Turnaround Time				Analyses						For lab use	1 only	COCs								
Phone: 248-994-2240	Email: Kriston	er.minskey@ar	cauis.	com							Allalysts																
Project Name: Ford LTP	Sampler Name	Jelemy		M	12/5		TAT if different from below 3 weeks 10 day 2 weeks										Walk-in client			1000							
Project Number: 30206169.0401.03	Method of Shipment/Carrier:				1	0 day	•		weeks week			S							₹		Lab sampling			BF FE			
PO # US3460021848	Shipping/Tracking No:			-			☐ 2 ☐ 1			X/N	rab		0	260E			99	S QC				Job/SDG N	•				
U # U33400021048	Shipping/11ac	ung No.			atrix			Ć					aple (5/3	90D	826	CE 8			1e 82	826				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sample Identification	Sample Date	Sample Time	Air		Solid	Other:	H2S04	EONH			NaOH Unpres		Filtered Sample (Y / N)	Composite=C / Grab=G	1,1-DCE 8260D	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM					ole Specific	
TRIP BLANK_48 30			Ì	1	, ,				1	~ ~						X	Ė	X	Х	X	_				1 Trir	Blank	
			\vdash	_	+	-	\vdash	\dashv	\rightarrow	+	+						-		-	-	-)	+	+	╁		s for 826	50D
MW- 745_021025	02/10/25	11:25		6	\perp	<u> </u>			(e	_			N	5	X	X	X	X	Х	X	X	Ш		\perp		s for 826	
MN-74-021025	02/10/2	12:35		ھ					6				N	B	X	×	χ	X	X	X	X						
					+		Н		\neg	\top			+-											1	630 		
				-	+	-	\vdash		-	+	-	-	+									\vdash	-	Ш		_	
																								L			
																								240-	218897	oc	
					+		\top		\dashv	\top	+		+													_	
A . A . A			\vdash	-	+		\vdash			_	-	-	+										_	-		1/	
00.6-07	02/10/125	_		Ġ					(j)				N	9	X	X	ゝ	×	X	X	λ					<u>x</u>	
Possible Hazard Identification			_				S	ample	e Disp	posal	(A fee	may be	assess	ed if	sample	s are	retai	ned lo	nger t	han 1	month)		-	l		
✓ Non-Hazard			Jnk	nown			<u> </u>	-	Retur	n to C	lient	₩.	Dispos	sal By	Lab		A	rchive	For		М	onths			-		_
Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadena	1970 COM	r gow																									
Level IV Reporting requested.	co.com. Cadena #	203726																									
Relinquished by: July Mus	Company: A	17		Date/T		۱ ر	(j.,	13	Ī	Receiv	ved by:	- 11			_				Com	pany:	cadi				Date/Time	~ lar-	16:0
Relinquished by:	Company	crais		ぴしし Date/T	·						ved by:	Cold	5 101	431	1 -				Com		- 401	J					17.0
	A~	rais:	Ŝ	21	121	25	14	50				W	18	M	6	_	1			1	E	14)			Date/Time	135	
Relinquished by:	Company	EXA		Date/I	5/12	1/25	-		1	Recei	ved in	Labora	forly by				_		Com	pany:	5				Date/Time	3-20	- 8
	10	2131			1.0	,,,,							_//	-//	7/	_		_		1-				_	7/0	1,0	

VOA Sample Preservation - Date/Time VOAs Frozen.
Sample(s)were further preserved in the laboratory Time preservedPreservative(s) added/Lot number(s)
20. SAMPLE PRESERVATION
Sample(s)were received after the recommended holding time had expired. Sample(s)were received in a broken container Sample(s)were received with bubble >6 mm in diameter (Notify PM)
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES LI additional next page Samples processed by
Concerning
Contacted PM Date by via Verbal Voice Mail Other
15 Were air bubbles > 6 mm in any VOA vials?
13 Were all preserved sample(s) at the correct pH upon receipt? 14 Were VOAs on the COC? Yes No (NA) pH Strip Lott HC448976
11 Sufficient quantity received to perform indicated analyses? 12 Are these work share samples and all listed on the COC? 15 tree Orientations 13-17 have been checked at the continuating laboratory.
Were correct bottle(s) used for the test(s) indicated?
Were the custody papers relinquished & signed in the appropriate place?
-Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Yes (No)
dated? (LLHgMeHg)? Yes No
IR GUN# (CF - C) Observed Cooler Temp / C
Blue Ice Dry Ice Water
Client Cooler Box Oth
aypoint) Client Drop Off E
0-12-25
Eurofins Cleveland Sample Receipt Form/Narrative Login # :
many to the second seco

Page 24 of 25

2/13/2025

Login Container Summary Report

240-218897

Temperature readings 2/20/2025

DUP-07_021025	DUP-07_021025	DUP-07_021025	DUP-07_021025	DUP-07_021025	DUP-07_021025	MW-74_021025	MW-74_021025	MW-74_021025	MW-74_021025	MW-74_021025	MW-74_021025	MW-74S_021025	MW-74S_021025	MW-74S_021025	MW-74S_021025	MW-74S_021025	MW-74S_021025	TRIP BLANK_30	Client Sample ID
240-218897-F-4	240-218897-E-4	240-218897-D-4	240-218897-C-4	240-218897-B-4	240-218897-A-4	240-218897-F-3	240-218897-E-3	240-218897-D-3	240-218897-C-3	240-218897-B-3	240-218897-A-3	240-218897-G-2	240-218897-E-2	240-218897-D-2	240-218897-C-2	240-218897-B-2	240-218897-A-2	240-218897-A-1	<u>Lab ID</u>
Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acıd	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acıd	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acıd	Voa Vial 40ml - Hydrochloric Acid	Voa Vial 40ml - Hydrochloric Acid	Container Type				
	Pri	age	25 (Approximate transfer to the second se				Container Preservation Preservation pH Temp Added Lot Number

DATA VERIFICATION REPORT

February 21, 2025

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - ON-SITE Soil Gas, Ground Water and Soil

Project number: 30251157.401.04 (vapor 301.04) 30206169.0401.04

Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 218897-1 Sample date: 2025-02-10

Report received by CADENA: 2025-02-20

Initial Data Verification completed by CADENA: 2025-02-21

Number of Samples:4 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

The following minor QC exceptions or missing information were noted:

GCMS VOC QC batch MS/MSD recovery outliers were not determined using a client sample so qualification was not required based on these sample-specific QC outliers.

GCMS VOC QC batch CCV response outliers as noted in the laboratory submittal case narrative were not used to qualify client sample results as part of this level 2 data package verification review.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, MS/MSD Recovery, MS/MSD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Inc, 1099 Highland Drive, Suite E, Ann Arbor, MI 48108 517-819-0356

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 218897-1

		Sample Name:	TRIP BL	ANK_30			MW-74	S_02102	.5		MW-74	_021025			DUP-07	_021025	5	
		Lab Sample ID:	240218	8971			240218	8972			240218	8973			240218	8974		
		Sample Date:	2/10/20)25			2/10/20)25			2/10/20	25			2/10/20	25		
				Report		Valid		Report		Valid		Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC																		
OSW-	<u>-8260D</u>																	
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		1.0	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		ND	1.0	ug/l		5.9	1.0	ug/l		5.9	1.0	ug/l	
OSW-	-8260DSIM																	
	1,4-Dioxane	123-91-1					ND	2.0	ug/l		2.2	2.0	ug/l		2.1	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-218897-1

CADENA Verification Report: 2025-02-21

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 58359R Review Level: Tier III Project: 30206169.0401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-218897-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent Sample	Ana	ılysis
Sample ID	Lab ID	Width	Collection Date	Farent Sample	VOC	VOC SIM
TRIP BLANK_30	240-218897-1	Water	02/10/2025		Х	
MW-74S_021025	240-218897-2	Water	02/10/2025		Х	X
MW-74_021025	240-218897-3	Water	02/10/2025		Х	X
DUP-07_021025	240-218897-4	Water	02/10/2025	MW-74_021025	Х	X

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted	Perfori Accep	mance otable	Not Required
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		X		Х	
Master tracking list		X		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		X		Х	
6. Sample collection date		X		Х	
7. Laboratory sample received date		X		Х	
8. Sample preservation verification (as applicable)		X		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample ID	Initial /Continuing	Compound	CCV (%D)
DUP-07_021025	Continuing Calibration Verification %D	1,1-Dichloroethene	-22.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	RRF <0.05	Detect	J
Campianon	RRF <0.01 ¹	Non-detect	R

Initial/Continuing	Criteria	Sample Result	Qualification
		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 OF RRF >0.01	Detect	No Action
	0/ DCD - 200/ or a correlation coefficient -0.00	Non-detect	UJ
latifal Calibration	%RSD > 20% or a correlation coefficient <0.99	Detect	J
Initial Calibration	0/ DOD 000/	Non-detect	R
	%RSD > 90%	Detect	J
	0/D 000/ (in an an air an air in an air in a	Non-detect	UJ
	%D >20% (increase in sensitivity)	Detect	J
	0/D 000///	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	0/D 000/ () // // // // // // // // // // // // //	Non-detect	R
	%D > 90% (increase/decrease in sensitivity)	Detect	J

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-74 021025 / DUP-07 021025	1,4-Dioxane	2.2	2.1	AC
WW-74_0210237 DOI -07_021023	Vinyl chloride	5.9	5.9	0.0

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Kequirea
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		X	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Febin J S

SIGNATURE:

DATE: March 17, 2025

PEER REVIEW: Andrew Korycinski

DATE: March 19, 2025

CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

Test,	An	ne	ric	a
THE LEADER	N ENVI	RONMEN	AL TEST	INC

Т	estAmerica Labora	tory location:	Farr	ningto	n Hills	3885	55 Hills	s Tec	h Dri	ve, S	uite 60	0, Farr	ningto	n Hill	s 4833	31						i		Ti	HE LEADER IN	ENVIRONM	ENTAL TEST
Client Contact	Regulat	ory program:	:	ſ	DW	′	Γ,	NPD	ES	i	RC	RA	-	Othe	er												
Company Name: Arcadis	Client Project	Manager: Meg	an Me	ckley			Site	Cont	act: S	Samai	ntha Sa	paichle	er		T	Lab (Contac	t: Mil	ke Del	Moni	0	_			COC No:	S /	
Address: 28550 Cabot Drive, Suite 500	Telephone: 248	-994-2240					Tele	phon	e: 24	8-994	-2240				-	Telep	hone:	330-4	97-93	96		+					7
City/State/Zip: Novi, MI, 48377	Email: kristoff	- hindrau@an	an dia					Analy	vais T	urnai	round .	ime							Á	naly	es	_			For lab use	1 only	COCs
Phone: 248-994-2240	Email: Kriston	er.minskey@ar	cauis.	com							-								<u> </u>								
Project Name: Ford LTP	Sampler Name	Jelemy		M	11/5						weeks	L													Walk-in cli		1000
Project Number: 30206169.0401.03	Method of Ship	,		• • •	(1)		1	0 day	•		weeks week			S							₹		- 1		Lab sampli	1g	BF FE
PO # US3460021848	Shipping/Track						-			☐ 2 ☐ 1			X/N	rab		0	260E			99	S QC				Job/SDG N	•	
U # U33400021048	Shipping/11ac	ung No.			atrix			Ć					aple (5/3	90D	826	CE 8			de 82	826				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sample Identification	Sample Date	Sample Time	Air		Solid	Other:	H2S04	EONH			NaOH Unpres		Filtered Sample (Y / N)	Composite=C / Grab=G	1,1-DCE 8260D	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D	PCE 8260D	TCE 8260D	Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM					ole Specific	
TRIP BLANK_48 30			Ì	1	, ,				1	~ ~						X	Ė	X	Х	X	_				1 Trir	Blank	
			\vdash	_	+	-	\vdash	\dashv	\rightarrow	+	+						-		-	-	-)	+	+	╁		s for 826	50D
MW- 745_021025	02/10/25	11:25		6	\perp	<u> </u>			(e	_			N	5	X	X	X	X	Х	X	X	Ш		\perp		s for 826	
MN-74-021025	02/10/2	12:35		ھ					6				N	B	X	×	χ	X	X	X	X						
					+		Н		\neg	\top			+-											1	630 		
				-	+	-	\vdash		-	+	-	-	+									\vdash	-	Ш		_	
																								L			
																								240-	218897	oc	
					+		\top		\dashv	\top	+		+													_	
A . A . A			\vdash	-	+		\vdash			_	-	-	+										_	-		1/	
00.6-07	02/10/125	_		Ġ					(_j)				N	9	X	X	ゝ	×	X	X	λ					<u>x</u>	
Possible Hazard Identification			_				S	ample	e Disp	posal	(A fee	may be	assess	ed if	sample	s are	retai	ned lo	nger t	han 1	month)		-	l		
✓ Non-Hazard			Jnk	nown			<u> </u>	-	Retur	n to C	lient	₩.	Dispos	sal By	Lab		A	rchive	For		М	onths			-		_
Special Instructions/QC Requirements & Comments: Submit all results through Cadena at jtomalia@cadena	1970 COM	r gow																									
Level IV Reporting requested.	co.com. Cadena #	203726																									
Relinquished by: July Mus	Company: A	17		Date/T		۱ ر	(j.,	13	Ī	Receiv	ved by:	- 11			_				Com	pany:	cadi				Date/Time	~ lar-	16:0
Relinquished by:	Company	crais		ぴしし Date/T	·						ved by:	Cold	5 101	431	1 -				Com		- 401	J					17.0
	A~	rais:	Ŝ	21	121	25	14	50				W	18	M	6	_	1			1	E	14)			Date/Time	135	
Relinquished by:	Company	EXA		Date/I	5/12	1/25	-		1	Recei	ved in	Labora	forly by				_		Com	pany:	5				Date/Time	3-20	- 8
	10	2131			1.0	,,,,							_//	-//	7/	_		_		1-				_	7/0	1,0	

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Qualifiers GC/MS VOA

Qualifier	Qualifier Description
	110 1/ 1100

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 25

A

5

6

7

10

46

13

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_30

Date Received: 02/13/25 08:00

Lab Sample ID: 240-218897-1 Date Collected: 02/10/25 00:00

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1.0 1,1-Dichloroethene 1.0 U 0.49 ug/L 02/15/25 14:21 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 02/15/25 14:21 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 02/15/25 14:21 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 02/15/25 14:21 Trichloroethene 1.0 U 1.0 0.44 ug/L 02/15/25 14:21 Vinyl chloride 0.45 ug/L 1.0 U 1.0 02/15/25 14:21 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 112 62 - 137 02/15/25 14:21 4-Bromofluorobenzene (Surr) 88 02/15/25 14:21 56 - 136 97 78 - 122 02/15/25 14:21 Toluene-d8 (Surr) Dibromofluoromethane (Surr) 102 73 - 120 02/15/25 14:21

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: MW-74S_021025

Lab Sample ID: 240-218897-2 Date Collected: 02/10/25 11:25

Matrix: Water

Date Received: 02/13/25 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			02/18/25 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 127			_		02/18/25 15:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			02/16/25 01:17	1
cis-1,2-Dichloroethene	1.0		1.0	0.46	ug/L			02/16/25 01:17	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 01:17	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			02/16/25 01:17	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			02/16/25 01:17	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			02/16/25 01:17	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		62 - 137					02/16/25 01:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	62 - 137		02/16/25 01:17	1
4-Bromofluorobenzene (Surr)	85	56 ₋ 136		02/16/25 01:17	1
Toluene-d8 (Surr)	99	78 - 122		02/16/25 01:17	1
Dibromofluoromethane (Surr)	101	73 - 120		02/16/25 01:17	1

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Vinyl chloride

Client Sample ID: MW-74_021025

Date Received: 02/13/25 08:00

Date Collected: 02/10/25 12:35

5.9

Lab Sample ID: 240-218897-3 Matrix: Water

02/16/25 02:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.2		2.0	0.86	ug/L			02/18/25 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		68 - 127			-		02/18/25 16:21	1
Method: SW846 8260D - Volat	tile Organic Comp	ounds by G	C/MS						
Method: SW846 8260D - Volat Analyte		ounds by G Qualifier	C/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		MDL 0.49		<u>D</u> .	Prepared	Analyzed 02/16/25 02:27	Dil Fac
Analyte	Result	Qualifier U	RL		ug/L	<u> </u>	Prepared	·	Dil Fac
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	Result 1.0	Qualifier U U	RL	0.49	ug/L ug/L	<u>D</u> -	Prepared	02/16/25 02:27	Dil Fac 1 1 1
Analyte 1,1-Dichloroethene	Result 1.0 1.0	Qualifier U U U	1.0 1.0	0.49 0.46	ug/L ug/L ug/L	<u> </u>	Prepared	02/16/25 02:27 02/16/25 02:27	Dil Fac 1 1 1 1

Surrogate	%Recovery (Qualifier L	imits.		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	6	62 - 137	_		02/16/25 02:27	1
4-Bromofluorobenzene (Surr)	84	5	i6 ₋ 136			02/16/25 02:27	1
Toluene-d8 (Surr)	96	7	'8 ₋ 122			02/16/25 02:27	1
Dibromofluoromethane (Surr)	101	7	'3 ₋ 120			02/16/25 02:27	1
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	1,2-Dichloroethane-d4 (Surr) 113 4-Bromofluorobenzene (Surr) 84 Toluene-d8 (Surr) 96	1,2-Dichloroethane-d4 (Surr) 113 6 4-Bromofluorobenzene (Surr) 84 5 Toluene-d8 (Surr) 96 7	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 4-Bromofluorobenzene (Surr) 84 56 - 136 Toluene-d8 (Surr) 96 78 - 122	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 4-Bromofluorobenzene (Surr) 84 56 - 136 Toluene-d8 (Surr) 96 78 - 122	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 4-Bromofluorobenzene (Surr) 84 56 - 136 Toluene-d8 (Surr) 96 78 - 122	1,2-Dichloroethane-d4 (Surr) 113 62 - 137 02/16/25 02:27 4-Bromofluorobenzene (Surr) 84 56 - 136 02/16/25 02:27 Toluene-d8 (Surr) 96 78 - 122 02/16/25 02:27

1.0

0.45 ug/L

Client: Arcadis US Inc. Job ID: 240-218897-1

Project/Site: Ford LTP

Client Sample ID: DUP-07_021025

Date Collected: 02/10/25 00:00

Lab Sample ID: 240-218897-4 Matrix: Water

Date Received: 02/13/25 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.1		2.0	0.86	ug/L			02/18/25 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 127					02/18/25 16:45	
Method: SW846 8260D - Volat	•	•				_			
Method: SW846 8260D - Volat Analyte	•	ounds by G Qualifier	C/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result	•		MDL 0.49		<u>D</u> .	Prepared	Analyzed 02/19/25 03:15	Dil Fac
Analyte	Result	Qualifier UJ	RL		ug/L	<u>D</u> .	Prepared	·	Dil Fac
Analyte 1,1-Dichloroethene	Result 1.0	Qualifier U U U	RL	0.49	ug/L ug/L	<u>D</u> .	Prepared	02/19/25 03:15	Dil Fac 1 1 1
Analyte 1,1-Dichloroethene cis-1,2-Dichloroethene	Result 1.0 1.0	Qualifier U U U	1.0 1.0	0.49 0.46	ug/L ug/L ug/L	<u>D</u> .	Prepared	02/19/25 03:15 02/19/25 03:15	Dil Fac 1 1 1 1

Vinyl chloride	5.9	1.0	0.45 ug/L		02/19/25 03:15	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120	62 - 137			02/19/25 03:15	1
4-Bromofluorobenzene (Surr)	85	56 ₋ 136			02/19/25 03:15	1
Toluene-d8 (Surr)	100	78 - 122			02/19/25 03:15	1
Dibromofluoromethane (Surr)	109	73 - 120			02/19/25 03:15	1