PREPARED FOR

Attn: Ms. Megan Meckley Arcadis US Inc. 28550 Cabot Drive Suite 500 Novi, Michigan 48377

Generated 5/19/2025 7:28:59 AM

JOB DESCRIPTION

Ford LTP

JOB NUMBER

240-224129-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 5/19/2025 7:28:59 AM

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)966-9783 Client: Arcadis US Inc. Project/Site: Ford LTP

Laboratory Job ID: 240-224129-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	21
Lab Chronicle	22
Certification Summary	23
Chain of Custody	

3

4

e

7

9

10

12

13

Definitions/Glossary

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Qualifiers GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL. RA. RE. IN	Indicates a Dilution. Re-analysis. Re-extraction. or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) EDL

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 27

Case Narrative

Client: Arcadis US Inc. Project: Ford LTP

Job ID: 240-224129-1 Eurofins Cleveland

Job Narrative 240-224129-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/9/2025 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 1.5°C, 2.0°C and 2.1°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 27 5/19/2025

9

Job ID: 240-224129-1

9

A

5

6

9

10

15

Method Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-224129-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CLE
8260D SIM	Volatile Organic Compounds (GC/MS)	SW846	EET CLE
5030C	Purge and Trap	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

- 5

4

D

7

Ŏ

10

12

13

Sample Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-224129-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-224129-1	TRIP BLANK_51	Water	05/06/25 00:00	05/09/25 08:00
240-224129-2	MW-75D_050625	Water	05/06/25 14:50	05/09/25 08:00
240-224129-3	MW-75SR_050625	Water	05/06/25 15:50	05/09/25 08:00
240-224129-4	DUP-08	Water	05/06/25 00:00	05/09/25 08:00
240-224129-5	DUP-09	Water	05/06/25 00:00	05/09/25 08:00

6

10

Detection Summary

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_51 Lab Sample ID: 240-224129-1

No Detections.

Client Sample ID: MW-75D_050625 Lab Sample ID: 240-224129-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,4-Dioxane	2.9		2.0	0.86	ug/L	1	_	8260D SIM	Total/NA
Vinyl chloride	1.6		1.0	0.45	ug/L	1		8260D	Total/NA

Client Sample ID: MW-75SR_050625 Lab Sample ID: 240-224129-3

No Detections.

Client Sample ID: DUP-08 Lab Sample ID: 240-224129-4

No Detections.

Client Sample ID: DUP-09 Lab Sample ID: 240-224129-5

Analyte	Result Qualifier	RL M	DL Unit	Dil Fac D	Method	Prep Type
1,4-Dioxane	2.8	2.0	.86 ug/L	1	8260D SIM	Total/NA
Vinyl chloride	1.9	1.0 0	.45 ug/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Page 8 of 27

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Date Received: 05/09/25 08:00

Client Sample ID: TRIP BLANK_51

Lab Sample ID: 240-224129-1 Date Collected: 05/06/25 00:00

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1.0 1,1-Dichloroethene 1.0 U 0.49 ug/L 05/15/25 15:53 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 05/15/25 15:53 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 05/15/25 15:53 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 05/15/25 15:53 Trichloroethene 1.0 U 1.0 0.44 ug/L 05/15/25 15:53 Vinyl chloride 0.45 ug/L 1.0 U 1.0 05/15/25 15:53 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 104 62 - 137 05/15/25 15:53 4-Bromofluorobenzene (Surr) 85 05/15/25 15:53 56 - 136 78 - 122 05/15/25 15:53 Toluene-d8 (Surr) 94 Dibromofluoromethane (Surr) 103 73 - 120 05/15/25 15:53

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Client Sample ID: MW-75D_050625

Lab Sample ID: 240-224129-2 Date Collected: 05/06/25 14:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.9		2.0	0.86	ug/L			05/15/25 04:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	<u></u>		68 - 127					05/15/25 04:45	1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 00:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 00:52	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 00:52	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 00:52	1
Trichloroethene	1.0	H	1.0	0.44	ua/l			05/16/25 00:52	1

Vinyl chloride	1.6	1.0	0.45 ug/L		05/16/25 00:52	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	62 - 137			05/16/25 00:52	1
4-Bromofluorobenzene (Surr)	92	56 ₋ 136			05/16/25 00:52	1
Toluene-d8 (Surr)	101	78 - 122			05/16/25 00:52	1
Dibromofluoromethane (Surr)	110	73 - 120			05/16/25 00:52	1

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Analyte

Date Received: 05/09/25 08:00

Client Sample ID: MW-75SR_050625

Lab Sample ID: 240-224129-3 Date Collected: 05/06/25 15:50

Result Qualifier

Matrix: Water

Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/14/25 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		68 - 127			_		05/14/25 15:27	1

MDL Unit

Prepared

=						•		
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L		05/16/25 01:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L		05/16/25 01:15	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L		05/16/25 01:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L		05/16/25 01:15	1
Trichloroethene	1.0	U	1.0	0.44	ug/L		05/16/25 01:15	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L		05/16/25 01:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137				05/16/25 01:15	1
4-Bromofluorobenzene (Surr)	90		56 ₋ 136				05/16/25 01:15	1
Toluene-d8 (Surr)	98		78 - 122				05/16/25 01:15	1
Dibromofluoromethane (Surr)	108		73 - 120				05/16/25 01:15	1

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Date Received: 05/09/25 08:00

Client Sample ID: DUP-08

Lab Sample ID: 240-224129-4 Date Collected: 05/06/25 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/14/25 15:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		68 - 127			-		05/14/25 15:50	1
Method: SW846 8260D - Volati	ile Organic Comp	ounds by G	SC/MS						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 01:38	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 01:38	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 01:38	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 01:38	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 01:38	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/16/25 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137			-		05/16/25 01:38	1
4-Bromofluorobenzene (Surr)	87		56 ₋ 136					05/16/25 01:38	1
Toluene-d8 (Surr)	96		78 - 122					05/16/25 01:38	1
Dibromofluoromethane (Surr)	105		73 - 120					05/16/25 01:38	1

5/19/2025

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Client Sample ID: DUP-09 Lab Sample ID: 240-224129-5

Date Collected: 05/06/25 00:00 Matrix: Water

Date Received: 05/09/25 08:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.8		2.0	0.86	ug/L			05/14/25 16:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		68 - 127			_		05/14/25 16:13	1
Method: SW846 8260D - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		=		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 02:02	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 02:02	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 02:02	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 02:02	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 02:02	1
Vinyl chloride	1.9		1.0	0.45	ug/L			05/16/25 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137			-		05/16/25 02:02	

56 - 136

78 - 122

73 - 120

87

99

111

5

7

8

10

12

13

05/16/25 02:02

05/16/25 02:02

05/16/25 02:02

Surrogate Summary

Client: Arcadis US Inc. Job ID: 240-224129-1 Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(62-137)	(56-136)	(78-122)	(73-120)
240-224129-1	TRIP BLANK_51	104	85	94	103
240-224129-2	MW-75D_050625	111	92	101	110
240-224129-3	MW-75SR_050625	109	90	98	108
240-224129-4	DUP-08	105	87	96	105
240-224129-5	DUP-09	109	87	99	111
240-224130-C-2 MS	Matrix Spike	97	101	103	99
240-224130-C-2 MSD	Matrix Spike Duplicate	94	97	97	93
240-224135-A-2 MS	Matrix Spike	99	105	104	100
240-224135-A-2 MSD	Matrix Spike Duplicate	96	101	100	95
LCS 240-656137/5	Lab Control Sample	101	107	104	102
LCS 240-656137/6	Lab Control Sample	97	92	92	98
LCS 240-656215/2	Lab Control Sample	97	103	102	99
LCSD 240-656215/3	Lab Control Sample Dup	100	104	104	102
MB 240-656137/10	Method Blank	107	92	99	102
MB 240-656215/6	Method Blank	106	90	99	103
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

			Percent Surrogate Recovery (Acceptance Limits)
		DCA	
Lab Sample ID	Client Sample ID	(68-127)	
240-224129-2	MW-75D_050625	76	
240-224129-3	MW-75SR_050625	82	
240-224129-4	DUP-08	83	
240-224129-5	DUP-09	77	
240-224135-E-2 MS	Matrix Spike	78	
240-224135-E-2 MSD	Matrix Spike Duplicate	77	
240-224193-D-3 MS	Matrix Spike	77	
240-224193-E-3 MSD	Matrix Spike Duplicate	70	
LCS 240-656016/5	Lab Control Sample	78	
_CS 240-656033/3	Lab Control Sample	78	
MB 240-656016/7	Method Blank	78	
MB 240-656033/5	Method Blank	76	

Page 14 of 27

Job ID: 240-224129-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-656137/10

Matrix: Water

Analysis Batch: 656137

Client	Sample	ID:	Meth	nod	Blank
	D.,				6 - 1/N I A

Prep Type: Total/NA

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/15/25 13:08	1
	cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/15/25 13:08	1
	Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/15/25 13:08	1
	trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/15/25 13:08	1
	Trichloroethene	1.0	U	1.0	0.44	ug/L			05/15/25 13:08	1
	Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/15/25 13:08	1

MB MB

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	62 - 137		05/15/25 13:08	1
4-Bromofluorobenzene (Surr)	92	56 ₋ 136		05/15/25 13:08	1
Toluene-d8 (Surr)	99	78 - 122		05/15/25 13:08	1
Dibromofluoromethane (Surr)	102	73 - 120		05/15/25 13:08	1

Lab Sample ID: LCS 240-656137/5

Matrix: Water

Analysis Batch: 656137

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	LUU	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	19.3		ug/L		96	63 - 134	
20.0	19.6		ug/L		98	77 - 123	
20.0	18.7		ug/L		94	76 - 123	
20.0	19.7		ug/L		99	75 - 124	
20.0	18.4		ug/L		92	70 - 122	
20.0	15.7		ug/L		78	60 - 144	
	20.0 20.0 20.0 20.0 20.0	Added Result 20.0 19.3 20.0 19.6 20.0 18.7 20.0 19.7 20.0 18.4	Added Result Qualifier 20.0 19.3 20.0 19.6 20.0 18.7 20.0 19.7 20.0 18.4	Added Result Qualifier Unit 20.0 19.3 ug/L 20.0 19.6 ug/L 20.0 18.7 ug/L 20.0 19.7 ug/L 20.0 18.4 ug/L	Added Result Qualifier Unit D 20.0 19.3 ug/L ug/L 20.0 19.6 ug/L ug/L 20.0 18.7 ug/L ug/L 20.0 19.7 ug/L ug/L 20.0 18.4 ug/L	Added Result Qualifier Unit D %Rec 20.0 19.3 ug/L 96 20.0 19.6 ug/L 98 20.0 18.7 ug/L 94 20.0 19.7 ug/L 99 20.0 18.4 ug/L 92	Added Result Qualifier Unit D %Rec Limits 20.0 19.3 ug/L 96 63 - 134 20.0 19.6 ug/L 98 77 - 123 20.0 18.7 ug/L 94 76 - 123 20.0 19.7 ug/L 99 75 - 124 20.0 18.4 ug/L 92 70 - 122

LCS LCS

98

Surrogate	%Recovery Q	ualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		62 - 137
4-Bromofluorobenzene (Surr)	107		56 - 136
Toluene-d8 (Surr)	104		78 - 122
Dibromofluoromethane (Surr)	102		73 - 120

Lab Sample ID: LCS 240-656137/6

Matrix: Water

Analysis Batch: 656137

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	92		56 - 136
Toluene-d8 (Surr)	92		78 - 122

Lab Sample ID: 240-224130-C-2 MS

Matrix: Water

Analysis Batch: 656137

Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	20.0	17.9		ug/L		89	56 - 135	
cis-1,2-Dichloroethene	1.0	U	20.0	18.6		ug/L		93	66 - 128	

73 - 120

Eurofins Cleveland

Page 15 of 27

QC Sample Results

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 240-224130-C-2 MS **Matrix: Water**

Analysis Batch: 656137

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Tetrachloroethene	1.0	U	20.0	18.0		ug/L		90	62 - 131
trans-1,2-Dichloroethene	1.0	U	20.0	18.6		ug/L		93	56 - 136
Trichloroethene	1.0	U	20.0	16.6		ug/L		83	61 - 124
Vinyl chloride	1.0	U	20.0	15.1		ug/L		76	43 - 157

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		62 - 137
4-Bromofluorobenzene (Surr)	101		56 - 136
Toluene-d8 (Surr)	103		78 - 122
Dibromofluoromethane (Surr)	99		73 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 656137

Lab Sample ID: 240-224130-C-2 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	1.0	U	20.0	16.6		ug/L		83	56 - 135	7	26
cis-1,2-Dichloroethene	1.0	U	20.0	18.3		ug/L		92	66 - 128	1	14
Tetrachloroethene	1.0	U	20.0	16.9		ug/L		84	62 - 131	6	20
trans-1,2-Dichloroethene	1.0	U	20.0	17.8		ug/L		89	56 - 136	4	15
Trichloroethene	1.0	U	20.0	16.5		ug/L		82	61 - 124	1	15
Vinyl chloride	1.0	U	20.0	13.9		ug/L		69	43 - 157	8	24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		62 - 137
4-Bromofluorobenzene (Surr)	97		56 - 136
Toluene-d8 (Surr)	97		78 - 122
Dibromofluoromethane (Surr)	93		73 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 656215

Matrix: Water

Lab Sample ID: MB 240-656215/6

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 00:29	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 00:29	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 00:29	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 00:29	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 00:29	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/16/25 00:29	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		62 - 137		05/16/25 00:29	1
4-Bromofluorobenzene (Surr)	90		56 - 136		05/16/25 00:29	1
Toluene-d8 (Surr)	99		78 - 122		05/16/25 00:29	1
Dibromofluoromethane (Surr)	103		73 - 120		05/16/25 00:29	1

Eurofins Cleveland

Client: Arcadis US Inc. Job ID: 240-224129-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-656215/2

Matrix: Water

Project/Site: Ford LTP

Analysis Batch: 656215

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Uni	it D	%Rec	Limits	
1,1-Dichloroethene	20.0	17.5	ug/	L	87	63 - 134	
cis-1,2-Dichloroethene	20.0	18.5	ug/	L	93	77 - 123	
Tetrachloroethene	20.0	17.0	ug/	L	85	76 - 123	
trans-1,2-Dichloroethene	20.0	18.2	ug/	L	91	75 - 124	
Trichloroethene	20.0	17.9	ug/	L	90	70 - 122	
Vinyl chloride	20.0	15.0	ug/	L	75	60 - 144	

LCS	LUS	
%Recovery	Qualifier	Limits
97		62 - 137
103		56 - 136
102		78 - 122
99		73 - 120
	%Recovery 97 103 102	103 102

Lab Sample ID: LCSD 240-656215/3

Matrix: Water

Analysis Batch: 656215

Client Sample ID: La	ab Contro	I Sample Dup
	Prep T	ype: Total/NA

7 maryoto Batom 600210	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20.0	18.9		ug/L		94	63 - 134	8	35
cis-1,2-Dichloroethene	20.0	19.1		ug/L		95	77 - 123	3	35
Tetrachloroethene	20.0	17.3		ug/L		87	76 - 123	2	35
trans-1,2-Dichloroethene	20.0	18.9		ug/L		95	75 - 124	4	35
Trichloroethene	20.0	17.7		ug/L		88	70 - 122	2	35
Vinyl chloride	20.0	15.7		ug/L		79	60 - 144	5	35
				_				_	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		62 - 137
4-Bromofluorobenzene (Surr)	104		56 ₋ 136
Toluene-d8 (Surr)	104		78 - 122
Dibromofluoromethane (Surr)	102		73 - 120

Analysis Batch: 656215

Lab Sample ID: 240-224135-A-2 MS	Client Sample ID: Matrix Spike
Matrix: Water	Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.0	U	20.0	19.8		ug/L		99	56 - 135	
cis-1,2-Dichloroethene	1.0	U	20.0	19.1		ug/L		95	66 - 128	
Tetrachloroethene	1.0	U	20.0	19.3		ug/L		96	62 - 131	
trans-1,2-Dichloroethene	1.0	U	20.0	19.4		ug/L		97	56 - 136	
Trichloroethene	1.0	U	20.0	17.3		ug/L		87	61 - 124	
Vinyl chloride	1.0	U	20.0	15.8		ug/L		79	43 - 157	
	MS	MS								

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		62 - 137
4-Bromofluorobenzene (Surr)	105		56 - 136
Toluene-d8 (Surr)	104		78 - 122

Eurofins Cleveland

5/19/2025

Page 17 of 27

Job ID: 240-224129-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

1.0 U

MR MR

Lab Sample ID: 240-224135-A-2 MS **Matrix: Water**

Analysis Batch: 656215

Client Sample ID: Matrix Spike Prep Type: Total/NA

43 - 157

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

MS MS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 100 73 - 120

Lab Sample ID: 240-224135-A-2 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Vinyl chloride

Analysis Batch: 656215

	-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	1,1-Dichloroethene	1.0	U	20.0	18.8		ug/L		94	56 - 135	5	26
	cis-1,2-Dichloroethene	1.0	U	20.0	18.4		ug/L		92	66 - 128	4	14
	Tetrachloroethene	1.0	U	20.0	19.1		ug/L		95	62 - 131	1	20
ı	trans-1,2-Dichloroethene	1.0	U	20.0	18.7		ug/L		94	56 - 136	4	15
	Trichloroethene	1.0	U	20.0	17.6		ug/L		88	61 - 124	2	15

16.0

20.0

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 96 62 - 137 4-Bromofluorobenzene (Surr) 101 56 - 136 Toluene-d8 (Surr) 100 78 - 122 Dibromofluoromethane (Surr) 95 73 - 120

Method: 8260D SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-656016/7

Matrix: Water

Analysis Batch: 656016

Prep Type: Total/NA

ug/L

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane 2.0 U 2.0 0.86 ug/L 05/14/25 14:40

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 78 68 - 127 05/14/25 14:40

Lab Sample ID: LCS 240-656016/5

Matrix: Water

Analysis Batch: 656016

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1 4-Dioxane		8 25		ua/l		82	75 121	

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 68 - 127 78

Lab Sample ID: 240-224135-E-2 MS

Matrix: Water

Analysis Batch: 656016

Allalysis Datcil. 000010										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	2.0	U	10.0	8.70		ug/L		87	20 - 180	

Eurofins Cleveland

Prep Type: Total/NA

Dil Fac

Prep Type: Total/NA

10

Client: Arcadis US Inc. Project/Site: Ford LTP

Job ID: 240-224129-1

Prep Type: Total/NA

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	78		68 - 127

Lab Sample ID: 240-224135-E-2 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water**

Analysis Batch: 656016

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	9.63		ug/L		96	20 - 180	10	20

MSD MSD %Recovery Qualifier Limits 68 - 127

Lab Sample ID: MB 240-656033/5 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Surrogate

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 656033									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/15/25 01:37	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		68 - 127			-		05/15/25 01:37	1

Lab Sample ID: LCS 240-656033/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 656033

LCS LCS Spike %Rec Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 10.0 8.86 ug/L 75 - 121

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 78 68 - 127

Lab Sample ID: 240-224193-D-3 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 656033

•	Sample S	Sample	Spike	MS	MS				%Rec
Analyte	Result (Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	2.0	U	10.0	10.0		ug/L		100	20 - 180

MS MS Surrogate Limits %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 68 - 127 77

Lab Sample ID: 240-224193-E-3 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 656033

Analysis Batom 600000	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	2.0	U	10.0	10.5		ug/L		105	20 - 180	4	20

Eurofins Cleveland

Prep Type: Total/NA

QC Sample Results

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Method: 8260D SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-224193-E-3 MSD

Matrix: Water

Analysis Batch: 656033

MSD MSD

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 70 68 - 127 **Client Sample ID: Matrix Spike Duplicate**

Prep Type: Total/NA

QC Association Summary

Client: Arcadis US Inc.

Project/Site: Ford LTP

Job ID: 240-224129-1

GC/MS VOA

Analysis Batch: 656016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-224129-3	MW-75SR_050625	Total/NA	Water	8260D SIM	
240-224129-4	DUP-08	Total/NA	Water	8260D SIM	
240-224129-5	DUP-09	Total/NA	Water	8260D SIM	
MB 240-656016/7	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-656016/5	Lab Control Sample	Total/NA	Water	8260D SIM	
240-224135-E-2 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-224135-E-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 656033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-224129-2	MW-75D_050625	Total/NA	Water	8260D SIM	
MB 240-656033/5	Method Blank	Total/NA	Water	8260D SIM	
LCS 240-656033/3	Lab Control Sample	Total/NA	Water	8260D SIM	
240-224193-D-3 MS	Matrix Spike	Total/NA	Water	8260D SIM	
240-224193-E-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D SIM	

Analysis Batch: 656137

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
240-224129-1	TRIP BLANK_51	Total/NA	Water	8260D	
MB 240-656137/10	Method Blank	Total/NA	Water	8260D	
LCS 240-656137/5	Lab Control Sample	Total/NA	Water	8260D	
LCS 240-656137/6	Lab Control Sample	Total/NA	Water	8260D	
240-224130-C-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-224130-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Analysis Batch: 656215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-224129-2	MW-75D_050625	Total/NA	Water	8260D	
240-224129-3	MW-75SR_050625	Total/NA	Water	8260D	
240-224129-4	DUP-08	Total/NA	Water	8260D	
240-224129-5	DUP-09	Total/NA	Water	8260D	
MB 240-656215/6	Method Blank	Total/NA	Water	8260D	
LCS 240-656215/2	Lab Control Sample	Total/NA	Water	8260D	
LCSD 240-656215/3	Lab Control Sample Dup	Total/NA	Water	8260D	
240-224135-A-2 MS	Matrix Spike	Total/NA	Water	8260D	
240-224135-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

8

9

11

13

Job ID: 240-224129-1

Client: Arcadis US Inc. Project/Site: Ford LTP

Client Sample ID: TRIP BLANK_51

Lab Sample ID: 240-224129-1 Date Collected: 05/06/25 00:00

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 05/15/25 15:53 Total/NA Analysis 8260D 656137 AJS EET CLE

Client Sample ID: MW-75D 050625 Lab Sample ID: 240-224129-2

Date Collected: 05/06/25 14:50 **Matrix: Water**

Date Received: 05/09/25 08:00

Date Received: 05/09/25 08:00

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number Analyst or Analyzed Туре Run Lab 8260D 656215 AJS 05/16/25 00:52 Total/NA EET CLE Analysis 8260D SIM 656033 EET CLE 05/15/25 04:45 Total/NA Analysis 1 R5XG

Client Sample ID: MW-75SR 050625 Lab Sample ID: 240-224129-3

Date Collected: 05/06/25 15:50 **Matrix: Water**

Date Received: 05/09/25 08:00

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor **Number Analyst** or Analyzed Lab 05/16/25 01:15 8260D Total/NA Analysis 656215 AJS EET CLE 05/14/25 15:27 Total/NA Analysis 8260D SIM 656016 R5XG EET CLE 1

Client Sample ID: DUP-08 Lab Sample ID: 240-224129-4

Date Collected: 05/06/25 00:00 **Matrix: Water**

Date Received: 05/09/25 08:00

Batch Batch Dilution Batch Prepared Method or Analyzed Factor **Prep Type** Type Run Number Analyst Lab 05/16/25 01:38 Total/NA 8260D 656215 AJS Analysis EET CLE Total/NA 8260D SIM 656016 R5XG EET CLE 05/14/25 15:50 Analysis 1

Client Sample ID: DUP-09 Lab Sample ID: 240-224129-5

Date Collected: 05/06/25 00:00

Date Received: 05/09/25 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	656215	AJS	EET CLE	05/16/25 02:02
Total/NA	Analysis	8260D SIM		1	656016	R5XG	EET CLE	05/14/25 16:13

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Page 22 of 27

Accreditation/Certification Summary

Client: Arcadis US Inc. Job ID: 240-224129-1 Project/Site: Ford LTP

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date			
Connecticut	State	PH-0806	12-31-26			
Georgia	State	4062	02-27-26			
Illinois	NELAP	200004	08-31-25			
lowa	State	421	06-01-25			
Kansas	NELAP	E-10336	01-31-26			
Kentucky (UST)	State	112225	02-28-26			
Kentucky (WW)	State	KY98016	12-31-25			
Minnesota	NELAP	039-999-348	12-31-25			
New Hampshire	NELAP	225024	09-30-25			
New Jersey	NELAP	OH001	07-03-25			
New York	NELAP	10975	04-01-26			
North Dakota	State	R-244	02-27-26			
Ohio	State	8303	11-04-25			
Ohio VAP	State	ORELAP 4062	02-28-26			
Oregon	NELAP	4062	02-27-26			
Pennsylvania	NELAP	68-00340	08-31-25			
Texas	NELAP	T104704517-22-19	08-31-25			
US Fish & Wildlife	US Federal Programs	A26406	02-28-26			
USDA	US Federal Programs	P330-18-00281	01-05-27			
Virginia	NELAP	460175	09-14-25			
West Virginia DEP	State	210	12-31-25			
Wisconsin	State	399167560	08-31-25			

MICHIGAN 190

Chain of Custody Record

TAN	en	CC
17 (11	1011	<u> </u>
	tAm	t <u>Ameri</u>

190 TestAi	stAmerica Laboratory location: Farmington Hills — 38855 Hills Tech Drive, Suite 600, Farmington Hills 48331 Regulatory program: DW NPDES RCRA Other														THE	THE LEADER IN ENVIRONMENTAL TES									
Client Contact	Regulat	ory program:		Г	DW	Г	NP	DES		□ RC	RA	П	Other	r											
ompany Name: Arcadis	Client Project	Manager: Mega	n Mec	kley		Si	te Cor	ıtact:	Sam	antha Sz	paichle	r		I	ab Co	ontact	Mike	DelN	Jonic	,		-			<u>CestAmerica Laboratories, In</u> COC No:
ddress: 28550 Cabot Drive, Suite 500	Telephone: 248	.004.2240				T	lenho	nu. 7.	48-00	4-2240				-	alanh	one: 3	20.40	7.030	6			-		-+	
ity/State/Zip: Novi, MI, 48377										-					eiepii	one. 3	JU/								1 of 1 COCs
hone: 248-994-2240	Email: megan.	meckley@arcac	lis.com				Ana	itysis	l urn:	around 1	ime	1	-	-	$\overline{}$			Ar	1alys	es				F	or lab use only
roject Name: Ford LTP	Sampler Name			0		T/	\T if di	(ferent		ow 3 weeks				-1										V	Valk-in client
		Kaylee	· L	leKo	Ū		10 d	ay	0	2 weeks													ļ	r	ab sampling
roject Number: 30251157.401.04	Method of Ship	ment/Carrier:					I week					8						SI							
O # US3460023914	Shipping/Track	sing No:								1 day		Filtered Sample (Y / N)	Composite=C / Grab	00g	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D			Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM				1	ob/SDG No:
				Mat	П	,	Т			reservat		ed Sam	osite=	1,1-DCE 8260D	S-DCE	-1,2-D(PCE 8260D	TCE 8260D	Chlorid	ioxane				Ť	Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air.	Sediment	Solid	112504	HNO3	HCI	NaOH	ZaAci NaOii Unpres	Other:	Filter	Com	1,1-D	cis-1.	Trans	PCE.	1 <u>CE</u>	Viny	1,4-D					Special Instructions:
TRIP BLANK_ 5')				1				1				Ņ	G	X	×	X	X	X	Х						1 Trip Blank
MW-75D_050625	5/4/25	1450	- Section 1	o				6												Ϋ́					3 VOAs for 8260D 3 VOAs for 8260D SIM
MW-755R_050625		1550		0				6																	
DUP-08			Ç	,				6																	
DUP-09	4		(1				6				L				1				1					ملا
			-		a salangan ang																				1222
							Ł	0		7		П												7	
									37	6/2						-	\exists	\neg						24	10-22442
							T	П				П	7				1								10-224129 COC —
Possible Hazard Identification Non-Hazard Identification Kin Irritant	Poise	n B	Jnkno	wn	!!_	\top	Samp			l (A fee Client		assesse Disposa				retaine			an 1 n		onths				
pecial Instructions/QC Requirements & Comments: Belde	en Roh	/																						-	
ubmit all results through Cadena at jtomalia@cadenaco.co evel IV Reporting requested.		203728																							
clinquished by: Mayble Polot	Company:	da)		ate/Tim	ne: . /25	17	00			ived by:	; (A	ld	 S.1	fora	rl.		9	Compa	any: FVC	id:	`			ľ	Pate/Time: 1700
elinquished by:	Company ARC	APIS	D	ate/Tim		5 16	.2:			ived by:	9	~		2			(Compa		A	7			r	5/6/25 1630
elinquished by:	Company	1	D	ate Tim	125	TX	0		Rece	ived in I	.aborat	ory by:	7	U	o.	hi	7	Comp	any	υe	2			D	519125 800

TestAmence & Design " are trecements of TestAmence Laboratories, In

े सोस्राम

urofins – Cleveland Sample Receipt Form/Narrative – Login#	
744 (A)	
icnt Avcaci'S Site Name	Cooler unpacked by:
poler Received on S19125 Opened on S19125	1006-12
edEx: 1st Grd Exp_UPS_FAS_Waypoint_Client Drop Off Eurofins Courier Other	Wher
keceipt After-hours Drop-off Date/Time Storage Location	
urofins Cooler # E Foam Box Client Cooler Box Other	
Packing material used. Bubble Wrap Foam Plastic Bag None Other	
COOLANT, Welle Blue Ice Dry Ice Water None	

Cooler temperature upon receipt 0 <u>ڻ</u> See Multiple Cooler Form

Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? (A Observed Cooler Temp Corrected Cooler Temp 2 2 **3** 2 **3** 8 X checked for pH by Tests that are not

2

840010 Shippers packing slip attached to the cooler(s)? -Were tamper/custody seals intact and uncompromised?

6

X

Receiving

ကိ

VOAs
Oil and Grease
TOC

Did custody papers accompany the sample(s)?

Were the custody papers relinquished & signed in the appropriate place?

Was/were the person(s) who collected the samples clearly identified on the COC?

Did all bottles arrive in good condition (Unbroken)?

Could all bottle labels (ID/Date/Time) be reconciled with the COC?

9 For each sample, does the COC specify preservatives (VN), # of containers (ON), Were correct bottle(s) used for the test(s) indicated? and sample 1 **FEET** No type of grab/comp(XDN)?

(<u>3</u>) <u>x</u>

Sufficient quantity received to perform indicated analyses?

12 Are these work share samples and all listed on the COC?

If yes, Questions 13-17 have been checked at the originating laboratory

Were all preserved sample(s) at the correct pH upon receipt?

13 14 15 16 Were au bubbles >6 mm in any VOA vials? Were VOAs on the COC?

Was a LL Hg or Me Hg trip blank present? Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Larger than this.
 Blank Lot # N/A

Contacted PM হ via Verbal Voice Mail Other

Concerning

18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page

Labeled by

Labels Venfied by

received Ş extra 719 ğ P 3/5 Sing VIAI Ð BUP-6

19 SAMPLE CONDITION

Sample(s) were received after the recommended holding time had expired

Sample(s) _____ Time preserved 20. SAMPLE PRESERVATION Sample(s) Sample(s) Preservative(s) added/Lot number(s): were received with bubble >6 mm in diameter (Notify PM) were received in a broken container were further preserved in the laboratory

WI-NC 099-042925 Cooler Receipt Form.doc

VOA Sample Preservation -

Date/Time VOAs Frozen

@@*

NA A

(3)

pH Strap Lo# HC457151

(3) \$(3) \$

nnershire Evaluation Form	T See Ten					
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Cllent	23
Wet Ice Blue Ice Dry Ice Water None	, , , , , , , , , , , , , , , , , , ,		IR GUN #	Box Other	Client	۳ n
Wet Ice Blue Ice Dry Ice Water None			IR GUN #	Box Other	Client	EC.
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water Nane			IR GUN #:	Box Other	Client	EC
Wetice Blueice Dryice Water None			IR GUN #:	Box Other	Client	23
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	<u>ب</u>
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	C Client	53
Wet Ice Blue Ice Dry Ice Water None			IR GUN #	Box Other	C Client	С
Wet Ice Blue Ice Dry Ice Water None			IR GUN #·	Box Other	Client	23
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	53
Wet Ice Blue Ice Dry Ice Water None			IR GUN #	Box Other	: Client	EC
Wet Ice Blue Ice Dry Ice Water Name			IR GUN #'	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	۳,
Wet ice Blue ice Dry ice Water Name			IR GUN #:	Box Other	Client	.
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	7 7
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	E
Wet Ice Blue Ice Dry Ice Water Nane			IR GUN #:	Box Other	Client	<u>ال</u>
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	box Other	Client	7
Wet ice Blue ice Dry ice Water None			IR GUN #:	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	53
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	
Wet Ice Blue Ice Dry Ice Water None		AND	IR GUN #	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	Box Other	Client	EC
Wet Ice Blue Ice Dry Ice Water None			IR GUN #:	lox Other	Client	EC
Wet Ice Bive Ice Dry ice Water None			!R GUN #:	Box Other	: Client	EC
Wetice Blueice Dryice Water None			IR GUN #:	Box Other	Client	8
Wellice Bluelice Drylice Waler None			IRGUN#:	Box Other	: Client	<u>ٿ</u>
Wellce Blue Ice Dry Ice Water None	2 0	L 2	IR GUN #:	Box Other	Client	গ
Wet Ice Bive ice Dry Ice Water None	5	17	IR GUN #:	Box Other	Client	(7)
Wel Jade Blue Ice Dry Ice Water None	1.2	2.6	IR GUN #:	Box Olher	Client	(6)
Coolant (Circle)	Corrected Temp °C	Observed Temp °C	IR Gun # (Circle)	scription le)	Cooler Description (Circle)	_

Login#•

5/9/2025

240-224129

5/19/2025

Login Container Summary Report

DUP-09 240-224129-F-5 Voa Vial 40ml - Hydrochloric Acid	240-224129-E-5	DUP-09 240-224129-D-5 Voa Vial 40ml - Hydrochloric Acid	DUP-09 240-224129-C-5 Voa Vial 40ml - Hydrochloric Acid	DUP-09 240-224129-B-5 Voa Vial 40ml - Hydrochloric Acid	DUP-09 240-224129-A-5 Voa Vial 40mi - Hydrochloric Acid	DUP-08 240-224129-F-4 Voa Vial 40ml - Hydrochloric Acid	DUP-08 240-224129-E-4 Voa Vial 40ml - Hydrochloric Acid	DUP-08 240-224129-D-4 Voa Vial 40ml - Hydrochloric Acid	DUP-08 240-224129-C-4 Voa Vial 40ml - Hydrochloric Acid	DUP-08 240-224129-B-4 Voa Vial 40ml - Hydrochloric Acid	DUP-08 240-224129-A-4 Voa Vial 40ml - Hydrochloric Acıd	MW-75SR_050625 240-224129-F-3 Voa Vial 40ml - Hydrochloric Acid	MW-75SR_050625 240-224129-E-3 Voa Vial 40ml - Hydrochloric Acid	MW-75SR_050625 240-224129-D-3 Voa Vial 40ml - Hydrochloric Acid	MW-75SR_050625 240-224129-C-3 Voa Vial 40ml - Hydrochloric Acid	MW-75SR_050625 240-224129-B-3 Voa Vial 40ml - Hydrochloric Acid	MW-75SR_050625 240-224129-A-3 Voa Vial 40ml - Hydrochloric Acid	MW-75D_050625 240-224129-F-2 Voa Vial 40ml - Hydrochloric Acid	MW-75D_050625 240-224129-E-2 Voa Vial 40ml - Hydrochloric Acid	MW-75D_050625 240-224129-D-2 Voa Vial 40ml - Hydrochloric Acid	MW-75D_050625 240-224129-C-2 Voa Vial 40ml - Hydrochloric Acid	MW-75D_050625 240-224129-B-2 Voa Vial 40ml Hydrochloric Acid	MW-75D_050625 240-224129-A-2 Voa Vial 40ml - Hydrochloric Acid	TRĮP BLANK_51 240-224129-A-1 Voa Vial 40ml - Hydrochloric Acid	Client Sample ID Lab ID Container Type
							-			Ť										-					Contain
l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acıd	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acıd	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	l 40ml - Hydrochloric Acid	<u>er Type</u>												
distribution of the state of th		***************************************				Martinia anna anna anna anna anna anna anna										- Andrewson - Andr		***************************************		Action of the last				***************************************	<u>pH Temp</u>
																									Added Added
							Pa	uge 2	27 o	f 27								***************************************							Added Lot Number

DATA VERIFICATION REPORT

May 19, 2025

Megan Meckley Arcadis 28550 Cabot Drive Suite 500 Novi, MI US 48377

CADENA project ID: E203728

Project: Ford Livonia Transmission Plant - ON-SITE Soil Gas, Ground Water and Soil

Project number: 30251157.401.04 (vapor 301.04) Event Specific Scope of Work References: Sample COC Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory submittal: 224129-1 Sample date: 2025-05-06

Report received by CADENA: 2025-05-19

Initial Data Verification completed by CADENA: 2025-05-19

Number of Samples:5 Sample Matrices:Water Test Categories:GCMS VOC

Please see attached criteria report or sample result/qualified analytical result summary for qualifier flags assigned to sample data.

There were no significant QC anomalies or exceptions to report.

Sample/MS/MSD Surrogate Recovery, Blank/LCS Surrogate Recovery, LCS/LCD Recovery, LCS/LCD RPD, Blank Contamination and Hold Time Exception were reviewed as part of our verification.

Data verification for the report specified above was completed using the Ford Motor Company Environmental Laboratory Technical Specification, the CADENA Standard Operating Procedure for the Verification of Environmental Analytical Data and the associated analytical methods as references for evaluating the batch QC, sample data and report content. The EPA National Functional Guidelines for validating organic and inorganic data were used as guidance when addressing out of control QC results and the associated data qualifiers.

The definitions of the qualifiers used for this data package are defined in the analytical report. CADENA valid qualifiers are defined in the table below. To view and download a PDF copy of the laboratory analytical report access the CADENA CLMS at http://clms.cadenaco.com/index.cfm.

Please contact me if you have any questions.

Sincerely,

Jim Tomalia

Project Scientist

CADENA Valid Qualifiers

Valid Qualifiers	Description
<	Less than the reported concentration.
>	Greater than the reported concentration.
В	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was greater than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the reported concentration. For Inorganic methods the sample concentration was greater than the RDL and less than 10x the blank concentration and is considered non-detect at the reported concentration.
Е	The analyte / Compound reported exceeds the calibration range and is considered estimated.
EMPC	Estimated Minimum Potential Contamination - Dioxin/Furan analyses only.
J	Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of an analyte / compound but the result is less than the sample Quantitation limit, but greater than zero. The flag is also used in data validation to indicate a reported value should be considered estimated due to associated quality assurance deficiencies.
J-	The result is an estimated quantity, but the result may be biased low.
JB	NON-DETECT AT THE CONCENTRATION REPORTED AND ESTIMATED
JH	The sample result is considered estimated and is potentially biased high.
JL	The sample result is considered estimated and is potentially biased low.
JUB	NON-DETECT AT THE REPORTING LIMIT AND ESTIMATED
NJ	Tentatively identified compound with approximated concentration.
R	Indicates the value is considered to be unusable. (Note: The analyte / compound may or may not be present.)
TNTC	Too Numerous to Count - Asbestos and Microbiological Results.
U	Indicates that the analyte / compound was analyzed for, but not detected.
UB	The analyte / compound was detected in the associated blank. For Organic methods the sample concentration was less than the RDL and less than 5x (or 10x for common lab contaminates) the blank concentration and is considered non-detect at the RDL. For Inorganic methods the sample concentration was less than the RDL and less than 10x the blank concentration and is considered non-detect at the RDL.
UJ	The analyte / compound was not detected above the reported sample Quantitation limit. However, the Quantitation limit is considered to be approximate due to associated quality assurance results and may or may not represent the actual limit of Quantitation to accurately and precisely report the analyte in the sample.

Analytical Results Summary

CADENA Project ID: E203728

Laboratory: Eurofins Environment Testing LLC - Cleveland

Laboratory Submittal: 224129-1

		Sample Name: Lab Sample ID: Sample Date:		1291			MW-75 240224 5/6/202		5		MW-755 240224 5/6/202		25		DUP-08 240224 5/6/202	1294			DUP-09 240224 5/6/202	1295		
				Report		Valid		Report		Valid		Report		Valid		Report		Valid		Report		Valid
	Analyte	Cas No.	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier	Result	Limit	Units	Qualifier
GC/MS VOC																						
OSW-8260	<u>)D</u>																					
	1,1-Dichloroethene	75-35-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	cis-1,2-Dichloroethene	156-59-2	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Tetrachloroethene	127-18-4	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	trans-1,2-Dichloroethene	156-60-5	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Trichloroethene	79-01-6	ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l	
	Vinyl chloride	75-01-4	ND	1.0	ug/l		1.6	1.0	ug/l		ND	1.0	ug/l		ND	1.0	ug/l		1.9	1.0	ug/l	
OSW-8260	<u>DDSIM</u>																					
	1,4-Dioxane	123-91-1					2.9	2.0	ug/l		ND	2.0	ug/l		ND	2.0	ug/l		2.8	2.0	ug/l	

Ford Motor Company – Livonia Transmission Project

Data Review

Livonia, Michigan

Volatile Organic Compounds (VOC) Analysis

SDG # 240-224129-1

CADENA Verification Report: 2025-05-13

Analyses Performed By: Eurofins Cleveland Barberton, Ohio

Report # 59608R Review Level: Tier III Project: 30251157.401.02

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 240-224129-1 for samples collected in association with the Ford – Livonia, Michigan site. The review was conducted as a Tier III validation in addition to a verification/Tier II validation review performed by CADENA Inc. and included review of level IV laboratory data package completeness. Only elements of a Tier III validation effort (Tier III) include a detailed review of laboratory raw data to check for errors in calculation, calibration review, internal standard review and compound identification) and omitted deviations from the CADENA verification/Tier II report are documented in this report. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Comple ID	Lab ID	Matrix	Sample	Darant Samula	Ana	lysis
Sample ID	Labib	Watrix	Collection Date	Parent Sample	voc	VOC SIM
TRIP BLANK_51	240-224129-1	Water	05/06/2025		Х	
MW-75D_050625	240-224129-2	Water	05/06/2025		Х	Х
MW-75SR_050625	240-224129-3	Water	05/06/2025		Х	Х
DUP-08	240-224129-4	Water	05/06/2025	MW-75SR_050625	Х	Х
DUP-09	240-224129-5	Water	05/06/2025	MW-75D_050625	X	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted	Perfori Accep		Not Required
	No	Yes	No	Yes	Required
Sample receipt condition		X		Х	
2. Requested analyses and sample results		X		Х	
Master tracking list		Х		Х	
4. Methods of analysis		X		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
Narrative summary of Quality Assurance or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260D and 8260D SIM. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999), as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
 - UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D/8260D-SIM	Water	14 days from collection to analysis	Cool to < 6 °C; pH < 2 with HCl

All samples were analyzed within the specified holding time criteria.

2. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

3. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

3.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All compounds associated with the initial calibrations were within the specified control limits.

3.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the continuing calibrations were within the specified control limits.

4. Internal Standard Performance

Internal standard performance criteria ensure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-75SR_050625 / DUP-08	All compounds	U	U	AC
MW-75D 050625 / DUP-09	1,4-Dioxane	2.9	2.8	AC
WW-75D_0506257 DOF-09	Vinyl chloride	1.6	1.9	AC

Note:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: 8260D/8260D-SIM	Rep	orted		rmance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times/Preservation		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Field Duplicate RPD		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Febin J S

SIGNATURE:

DATE: June 13, 2025

PEER REVIEW: Andrew Korycinski

DATE: June 16, 2025

NO CORRECTIONS/QUALIFERS ADDED TO SAMPLE ANALYSIS DATA SHEETS

MICHIGAN 190

Chain of Custody Record

TAN	en	CC
17 (11	1011	<u> </u>
	tAm	t <u>Ameri</u>

190 TestAi	merica Labora	tory location:	Farmi	ngton H	allis	38855 H	lills Te	ch D	rive,	Suite 60	0, Farm	nington	Hills	4833	1									THE	LEADER IN ENVIRONMENTAL TESTI
Client Contact	Regulat	ory program:		Г	DW	Г	NP	DES		□ RC	RA	П	Other	r											
ompany Name: Arcadis	Client Project	Manager: Mega	n Mec	kley		Si	te Cor	ıtact:	Sam	antha Sz	paichle	r		I	ab Co	ontact	Mike	DelN	Jonic	,		-			<u>CestAmerica Laboratories, In</u> COC No:
ddress: 28550 Cabot Drive, Suite 500	Telephone: 248	.004.2240				T	lenho	nu. 7.	48-00	4-2240				-	alanh	one: 3	20.40	7.030	6			-		-+	
ity/State/Zip: Novi, MI, 48377										-					eiepii	one. 3	JU/								1 of 1 COCs
hone: 248-994-2240	Email: megan.	meckley@arcac	lis.com				Ana	itysis	l urn:	around 1	ime	1	-	-	$\overline{}$			Ar	1alys	es				F	or lab use only
roject Name: Ford LTP	Sampler Name			0		T/	\T if di	(ferent		ow 3 weeks				-1										V	Valk-in client
		Kaylee	· L	leKo	Ū		10 d	ay	0	2 weeks													ļ	r	ab sampling
roject Number: 30251157.401.04	Method of Ship	ment/Carrier:								I week 2 days		z	P			8			٥	SI					
O # US3460023914	Shipping/Track	sing No:								1 day		Filtered Sample (Y / N)	Composite=C / Grab	00g	cis-1,2-DCE 8260D	Trans-1,2-DCE 8260D			Vinyl Chloride 8260D	1,4-Dioxane 8260D SIM				1	ob/SDG No:
				Mat	П	,	Т			reservat		ed Sam	osite=	1,1-DCE 8260D	S-DCE	-1,2-D(PCE 8260D	TCE 8260D	Chlorid	ioxane				Ť	Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air.	Sediment	Solid	112504	HNO3	HCI	NaOH	ZaAci NaOii Unpres	Other:	Filter	Com	1,1-D	cis-1.	Trans	PCE.	1 <u>CE</u>	Viny	1,4-D					Special Instructions:
TRIP BLANK_ 5')				1				1				Ņ	G	X	×	X	X	X	X						1 Trip Blank
MW-75D_050625	5/4/25	1450	- Section 1	o				6												Ϋ́					3 VOAs for 8260D 3 VOAs for 8260D SIM
MW-755R_050625		1550		0				6																	
DUP-08			Ç	,				6																	
DUP-09	4		(1				6								1				1					ملا
			-		a salangan ang																				1222
							Ł	0		7		П												7	
									37	6/2						-	\exists	\neg						24	10-22442
							T	П				П	7				1								10-224129 COC —
Possible Hazard Identification Non-Hazard Identification Kin Irritant	Poise	n B	Jnkno	wn	!!_	\top	Samp			l (A fee Client		assesse Disposa				retaine			an 1 n		onths				
pecial Instructions/QC Requirements & Comments: Belde	en Roh	/																						-	
ubmit all results through Cadena at jtomalia@cadenaco.co evel IV Reporting requested.		203728																							
clinquished by: Mayble Polot	Company:	da)		ate/Tim	ne: . /25	17	00			ived by:	; (A	ld	 S.1	fora	rl.		9	Compa	any: FVC	id:	`			ľ	Pate/Time: 1700
elinquished by:	Company ARC	APIS	D	ate/Tim		5 16	.2:			ived by:	9	~		2			(Compa		A	7			r	5/6/25 1630
elinquished by:	Company	1	D	ate Tim	125	TX	0		Rece	ived in I	.aborat	ory by:	7	U	o.	hi	7	Comp	any	υe	2			D	519125 800

TestAmence & Design " are trecements of TestAmence Laboratories, In

Definitions/Glossary

Client: Arcadis US Inc.

Job ID: 240-224129-1

Project/Site: Ford LTP

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Я

4 4

12

13

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Date Received: 05/09/25 08:00

Client Sample ID: TRIP BLANK_51

Lab Sample ID: 240-224129-1 Date Collected: 05/06/25 00:00

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1.0 1,1-Dichloroethene 1.0 U 0.49 ug/L 05/15/25 15:53 cis-1,2-Dichloroethene 1.0 U 1.0 0.46 ug/L 05/15/25 15:53 Tetrachloroethene 1.0 U 1.0 0.44 ug/L 05/15/25 15:53 trans-1,2-Dichloroethene 1.0 U 1.0 0.51 ug/L 05/15/25 15:53 Trichloroethene 1.0 U 1.0 0.44 ug/L 05/15/25 15:53 Vinyl chloride 0.45 ug/L 1.0 U 1.0 05/15/25 15:53 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 104 62 - 137 05/15/25 15:53 4-Bromofluorobenzene (Surr) 85 05/15/25 15:53 56 - 136 78 - 122 05/15/25 15:53 Toluene-d8 (Surr) 94 Dibromofluoromethane (Surr) 103 73 - 120 05/15/25 15:53

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Client Sample ID: MW-75D_050625

Lab Sample ID: 240-224129-2 Date Collected: 05/06/25 14:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.9		2.0	0.86	ug/L			05/15/25 04:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	<u></u>		68 - 127					05/15/25 04:45	1

Method: SW846 8260D - Volatil									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 00:52	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 00:52	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 00:52	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 00:52	1
Trichloroethene	1.0	H	1.0	0.44	ua/l			05/16/25 00:52	1

Vinyl chloride	1.6	1.0	0.45 ug/L		05/16/25 00:52	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	62 - 137			05/16/25 00:52	1
4-Bromofluorobenzene (Surr)	92	56 ₋ 136			05/16/25 00:52	1
Toluene-d8 (Surr)	101	78 - 122			05/16/25 00:52	1
Dibromofluoromethane (Surr)	110	73 - 120			05/16/25 00:52	1

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Analyte

Date Received: 05/09/25 08:00

Client Sample ID: MW-75SR_050625

Lab Sample ID: 240-224129-3 Date Collected: 05/06/25 15:50

Result Qualifier

Matrix: Water

Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/14/25 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		68 - 127			_		05/14/25 15:27	1

MDL Unit

Prepared

=						•		
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L		05/16/25 01:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L		05/16/25 01:15	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L		05/16/25 01:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L		05/16/25 01:15	1
Trichloroethene	1.0	U	1.0	0.44	ug/L		05/16/25 01:15	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L		05/16/25 01:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137				05/16/25 01:15	1
4-Bromofluorobenzene (Surr)	90		56 ₋ 136				05/16/25 01:15	1
Toluene-d8 (Surr)	98		78 - 122				05/16/25 01:15	1
Dibromofluoromethane (Surr)	108		73 - 120				05/16/25 01:15	1

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Date Received: 05/09/25 08:00

Client Sample ID: DUP-08

Lab Sample ID: 240-224129-4 Date Collected: 05/06/25 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.0	U	2.0	0.86	ug/L			05/14/25 15:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		68 - 127			-		05/14/25 15:50	1
Method: SW846 8260D - Volati	ile Organic Comp	ounds by G	SC/MS						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 01:38	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 01:38	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 01:38	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 01:38	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 01:38	1
Vinyl chloride	1.0	U	1.0	0.45	ug/L			05/16/25 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		62 - 137			-		05/16/25 01:38	1
4-Bromofluorobenzene (Surr)	87		56 ₋ 136					05/16/25 01:38	1
Toluene-d8 (Surr)	96		78 - 122					05/16/25 01:38	1
Dibromofluoromethane (Surr)	105		73 - 120					05/16/25 01:38	1

5/19/2025

Client: Arcadis US Inc. Job ID: 240-224129-1

Project/Site: Ford LTP

Client Sample ID: DUP-09 Lab Sample ID: 240-224129-5

Date Collected: 05/06/25 00:00 Matrix: Water

Date Received: 05/09/25 08:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.8		2.0	0.86	ug/L			05/14/25 16:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		68 - 127			_		05/14/25 16:13	1
Method: SW846 8260D - Volat Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
		=		MDI	Unit	D	Prenared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.49	ug/L			05/16/25 02:02	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.46	ug/L			05/16/25 02:02	1
Tetrachloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 02:02	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.51	ug/L			05/16/25 02:02	1
Trichloroethene	1.0	U	1.0	0.44	ug/L			05/16/25 02:02	1
Vinyl chloride	1.9		1.0	0.45	ug/L			05/16/25 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		62 - 137			-		05/16/25 02:02	

56 - 136

78 - 122

73 - 120

87

99

111

5

7

8

10

12

13

05/16/25 02:02

05/16/25 02:02

05/16/25 02:02